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Abstract

The class of dually residuated lattice ordered monoids (DR`-monoids)
contains, in an appropriate signature, all `-groups, Brouwerian alge-
bras, MV - and GMV -algebras, BL- and pseudo BL-algebras, etc.
In the paper we study direct products and decompositions of DR`-
monoids in general and we characterize ideals of DR`-monoids which
are direct factors. The results are then applicable to all above men-
tioned special classes of DR`-monoids.
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1. Introduction

Commutative dually residuated lattice-ordered monoids (in short: DR`-
monoids) were introduced and studied by K.L.N. Swamy in [20], [21], [22] as
a common generalization of commutative lattice-ordered groups (`-groups)
and Brouwerian algebras. The papers [23], [24], [9]–[15], [4] and the part of
the thesis [5] engaged the further research of structure properties of com-
mutative DR`-monoids. It was shown that MV -algebras (see [13]) and BL-
algebras (see [14]) which are an algebraic counterpart of the ÃLukasiewicz
infinite valued logic and Hájek basic fuzzy logic, respectively, can be under-
stood as special cases of commutative DR`-monoids. General DR`-monoids
(i.e., not necessarily commutative), the special case of which are also all
`-groups, were introduced by Kovář in [5]. GMV -algebras were defined as
a non-commutative generalization of MV -algebras in [16] and it was shown
there that they are special cases of DR`-monoids. This fact was then used
when studying GMV -algebras in [17] and [18]. Similarly, it was proved in
[6] that pseudo BL-algebras (defined in [2] as a non-commutative generaliza-
tion of BL-algebras) are also a special case of DR`-monoids. DR`-monoids
were further studied in [8], [7] and [19].

In the paper we shall study direct products and direct decompositions
of DR`-monoids. The general results are then applicable for all mentioned
special cases of DR`-monoids.

2. Basic notions and notation

Definition. An algebra M=(M;+, 0,∨,∧,⇀, ↽) of signature 〈2, 0, 2, 2, 2, 2〉
is called a dually residuated (non-commutative) lattice-ordered monoid ( a
DR`-monoid) if
(M1) (M ; +, 0,∨,∧) is a lattice-ordered monoid (`-monoid), that is, (M ; +, 0)

is a (non-commutative) monoid, (M,∨,∧) is a lattice, and for any
x, y, u, v ∈ M, the following identities are satisfied:

u + (x ∨ y) + v = (u + x + v) ∨ (u + y + v),

u + (x ∧ y) + v = (u + x + v) ∧ (u + y + v);

(M2) if ≤ denotes the order on M induced by the lattice (M ;∨,∧), then,
for any x, y ∈ M, we have
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x ⇀ y is the least element s ∈ M such that s + y ≥ x,

x ↽ y is the least element t ∈ M such that y + t ≥ x;

(M3) M fulfils the identities

((x ⇀ y) ∨ 0) + y ≤ x ∨ y, y + ((x ↽ y) ∨ 0) ≤ x ∨ y,

x ⇀ x ≥ 0, x ↽ x ≥ 0.

Commutative DR`-monoids (called DR`-semigroups) were introduced by
K.L.N. Swamy in [20] as a common generalization of commutative `-groups
and Brouwerian algebras. The present definition of a non-commutative ex-
tension of DR`-monoids is due to [5]. Also, for basic properties of non-
commutative DR`-monoids see [5].

Let us denote by M+ = {x ∈ M : 0 ≤ x} the set of all positive elements
in M .

Examples.
a) Let G = (G; +, 0,−(·),∨,∧) be an `-group. Set x ⇀ y = x − y and

x ↽ y = −y + x for any x, y ∈ G. Then (G; +, 0,∨,∧,⇀,↽) is a
DR`-monoid.

b) Let G be an `-group and G+ be its positive cone, i.e.: G+ = {x ∈
G : 0 ≤ x}. Set x ⇀ y = (x− y) ∨ 0 and x ↽ y = (−y + x) ∨ 0 for any
elements x, y ∈ G+. Then (G+; +, 0,∨,∧,⇀, ↽) is a DR`-monoid.

c) Let B = (B;∨,∧) be a Brouwerian algebra, i.e. a dually relative
pseudo-complemented lattice with the largest element (that means, for
any a, b ∈ B, there exists the smallest element x ∈ B such that b∨x ≥
a). Let us denote by a − b this relative pseudocomplement x of the
element b with respect to the element a. The lattice (B;∨,∧) has the
smallest element 0 and if we set a+b = a∨b and a ⇀ b = a ↽ b = a−b
for every a, b ∈ B, then (B; +, 0,∨,∧,⇀,↽) is a commutative DR`-
monoid.

d) Let A = (A;⊕,¬,∼, 0, 1) be a GMV -algebra (see, e.g., [16]), i.e. a
non-commutative generalization of an MV -algebra. For any x, y ∈ A,
put x¯ y =∼ (¬x⊕ ¬y), x ⇀ y = ¬y ¯ x and x ↽ y = x¯ ∼ y. If we
denote x∨y = x⊕ (y¯ ∼ x) and x∧y = x¯ (y⊕ ∼ x), then (A;∨,∧) is
a bounded distributive lattice and the algebra (A;⊕, 0,∨,∧,⇀, ↽) is
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a (bounded) DR`-monoid. If the addition ⊕ is commutative, then the
negations ¬ and ∼ coincide, A is an MV -algebra, and the induced
DR`-monoid is commutative.

Let M be a DR`-monoid and x ∈ M . Then the absolute value of an element
x is |x| = x ∨ (0 ⇀ x).

Definitions.
a) If M is a DR`-monoid and ∅ 6= I ⊆ M , then I is called an ideal of M

if the following conditions are satisfied:

(1) x, y ∈ I =⇒ x + y ∈ I;

(2) x ∈ I, y ∈ M, |y| ≤ |x| =⇒ y ∈ I.

b) An ideal I is said to be normal if for each x, y ∈ M the equivalence:
x ⇀ y ∈ I ⇐⇒ x ↽ y ∈ I

is satisfied.

Remark. By [8], normal ideals are just kernels of DR`-homomorphisms.

It is proved in [8] that the set C(M) of all ideals of an arbitrary DR`-
monoid M , ordered by set inclusion, is an algebraic Brouwerian lattice in
which infima coincide with set intersections. Further, by Lemma 21 of [8],
if I and J are normal ideals of a DR`-monoid M, then their join I ∨ J in
C(M) is the following set:

I ∨ J = {x ∈ M : |x| ≤ a + b, for some a ∈ I+, b ∈ J+}.

Definitions.
a) Let M be a DR`-monoid and X ⊆ M . Then the set

X⊥ = {y ∈ M : |x| ∧ |y| = 0, for each x ∈ X}
is called the polar of X in M .

b) A subset X ⊆ M is a polar in M if there exists Y ⊆ M such that
X = Y ⊥.

By [7], every polar in M belongs to C(M) and it is a polar of some ideal of
M . The polar of any ideal I ∈ C(M) is its pseudocomplement in the lattice
C(M) and therefore the set P(M) of all polars in M is a complete Boolean
algebra with respect to set inclusion.
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3. Direct products and decompositions

In this section we will study properties of direct products of DR`-monoids,
in particular with respect to possibilities of introduction of inner direct
products.

Lemma 1 . Let M be a DR`-monoid. Then for any v, w ∈ M we have
v ⇀ w = 0 if and only if v ↽ w = 0.

Proof. If v ⇀ w = 0 and x ∈ M , then x + v ≥ w if and only if x ≥ 0.
Hence w = 0 + w ≥ v. Then also w + 0 ≥ v, thus 0 ≥ v ↽ w. At the same
time w ≥ v implies v ↽ w ≥ 0; therefore, v ↽ w = 0.

Let B and C be DR`-monoids and let M = B × C be their direct
product. Denote B̃, C̃ ⊆ M such that

B̃ = {(x1, 0) : x1 ∈ B},

C̃ = {(0, x2) : x2 ∈ C}.

The following proposition seems to be well-known as a folklore:

Proposition 2 . If B and C are DR`-monoids and M = B × C then B̃
and C̃ are normal ideals of DR`-monoid M and it holds:

a) B̃ + C̃ = M, B̃ ∩ C̃ = {0};
b) x + y = x′ + y′ implies x = x′, y = y′ for each x, x′ ∈ B̃ and

y, y′ ∈ C̃.

Proposition 3 . If M = B × C, then

B̃ = C̃⊥ and C̃ = B̃⊥.

Proof. For any elements x1 ∈ B and y2 ∈ C it is satisfied

|(x1, 0)| ∧ |(0, y2)| ∈ B̃ ∩ C̃ = {(0, 0)}.

Therefore, B̃ ⊆ C̃⊥ and C̃ ⊆ B̃⊥.
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Conversely, let (z1, z2) ∈
(
B̃⊥

)+
. Then

(z1, z2) = (z1, 0) + (0, z2) and (z1, 0) = (z1, 0) ∧ (z1, z2) = (0, 0).

Thus
(
B̃⊥

)+
⊆ C̃, therefore also B̃⊥ ⊆ C̃, it means B̃⊥ = C̃.

Analogously, C̃⊥ ⊆ B̃.

Now we will deal with possibility of introduction of an inner direct
decomposition of DR`-monoids.

At first, we will prove the following lemma.

Lemma 4 . Let M be a DR`-monoid and let I, J ∈ C(M) be such that
I + J = M and I ∩ J = {0}. If a ∈ M and a1 ∈ I, a2 ∈ J are such that
a = a1 + a2, then a ≥ 0 if and only if a1 ≥ 0 and a2 ≥ 0.

Proof. Suppose 0 ≤ a = a1 +a2. Then 0 ⇀ a2 ≤ (a1 +a2) ⇀ a2. Since, by
Lemma 1.1.19 of [5], it holds (p + q) ⇀ r ≤ p + (q ⇀ r) for any p, q, r ∈ M ,
in our case we obtain (a1+a2) ⇀ a2 ≤ a1+(a2 ⇀ a2) = a1. So 0 ⇀ a2 ≤ a1.
Therefore, 0 ≤ (0 ⇀ a2) ∨ 0 ≤ a1 ∨ 0 ∈ I. Hence (0 ⇀ a2) ∨ 0 ∈ I ∩ J , that
means (0 ⇀ a2) ∨ 0 = 0. Thus 0 ⇀ a2 ≤ 0. By Lemma 1.1.16 of [5], p ≥ q if
and only if q ⇀ p ≤ 0, for any p, q ∈ M . Thus we have a2 ≥ 0. Similarly,
a1 ≥ 0.

The converse implication is obvious.

Definitions.
a) An element y of a DR`-monoid M is called singular if 0 ⇀ y = 0 (or

equivalently, by Lemma 1, 0 ↽ y = 0).

b) An element x ∈ M is called invertible if there exists an inverse element
for it in the monoid (M ; +, 0).

Denote by Sing(M) the set of all singular elements in M and by Inv(M) the
set of all invertible elements in M .

Remarks. Kovář proved in [5] (see Theorem 1.2.16 and Lemma 1.2.11)
that Sing(M) ∈ C(M), Sing(M) ⊆ M+ and 0 is the least element in
Sing(M). Further, by Theorems 1.2.1 and 1.2.4 of [5], Inv(M) is also an
ideal of M which is, moreover, an `-group. The ideals Sing(M) and Inv(M)
play an important role in the study of structure properties of DR`-monoids
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because, by Theorem 1.3.6 of [5], each DR`-monoid M is isomorphic to the
direct product of the DR`-monoids Sing(M) and Inv(M).

At the same time, extreme case can arise, because if M is an `-group,
then Sing(M) = {0} and Inv(M) = M . If M is a Brouwerian algebra, then,
conversely, Sing(M) = M and Inv(M) = {0}. Consequently, the cardinality
of Sing(M) determines the degree of dissimilarity of properties of a given
DR`-monoid from properties of an `-group.

Proposition 5 . If M is a DR`-monoid and a, b ∈ M are orthogonal (i.e.
|a| ∧ |b| = 0), then a + b = b + a.

Proof. a) Assume a, b ∈ M+ and a ∧ b = 0. By Lemmas 1.1.5 and
1.1.9 of [5], for any x, y, z ∈ M it holds x ⇀ x = 0 and x ⇀ (y ∧ z) =
(x ⇀ y) ∨ (x ⇀ z), hence in our case we have

(a ⇀ (a ∧ b)) + b = ((a ⇀ a) ∨ (a ⇀ b)) + b = (0 ∨ (a ⇀ b)) + b = a ∨ b,

therefore a + b = a ∨ b = b + a, in our case.
b) Now, let a, b be arbitrary elements in M such that |a| ∧ |b| = 0.

As mentioned in the previous remark, by Theorem 1.3.6 of [5], M is the
direct product of its ideals Sing(M) and Inv(M). Hence there are a′, b′ ∈
Sing(M) and xa, xb ∈ Inv(M) such that a = a′ + xa, b = b′ + xb. By [5],
|a| = a′+ |xa|, |b| = b′+ |xb|. Therefore, the assumption |a| ∧ |b| = 0 implies
a′ ∧ b′ = 0 and |xa| ∧ |xb| = 0.

By the part a), we obtain a′ + b′ = b′ + a′. As Inv(M) is an `-group,
it holds that |xa| ∧ |xb| = 0 entails xa + xb = xb + xa. Moreover, since M
is isomorphic to the direct product of Sing(M) and Inv(M), elements in
Sing(M) commute with those in Inv(M). Thus

a + b = (a′ + xa) + (b′ + xb) = a′ + b′ + xa + xb =

= b′ + a′ + xb + xa = (b′ + xb) + (a′ + xa) = b + a.

Theorem 6 . Let M be a DR`-monoid and I, J ∈ C(M). Let the following
conditions be satisfied:

1. I + J = M, I ∩ J = {0};
2. ∀x, x′ ∈ I, y, y′ ∈ J ; x + y = x′ + y′ =⇒ x = x′, y = y′.
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If M = I × J is the direct product of the DR`-monoids I and J, then M
and M are isomorphic.

Proof. The conditions 1 and 2 obviously yield that for every element a ∈ M
there exist unique elements a1 ∈ I and a2 ∈ J such that a = a1 + a2. Hence
the mapping f : a 7−→ (a1, a2) is a bijection of M onto M .

Let us suppose x ∈ I and y ∈ J . Then |x| ∈ I, |y| ∈ J and
|x| ∧ |y| ∈ I ∩ J = {0}. It follows that x and y are orthogonal. Therefore,
x + y = y + x by Proposition 5. For this reason it holds for any elements
a, b ∈ M

a + b = (a1 + a2) + (b1 + b2) = (a1 + b1) + (a2 + b2),

therefore
f(a + b) = (a1 + b1, a2 + b2) = f(a) + f(b).

Assume again a = a1 + a2, b = b1 + b2 ∈ M, a1, b1 ∈ I, a2, b2 ∈ J
and let a ≤ b. By Lemma 1.1.14 of [5], there exists x ∈ M+ such that
a + x = b. Let x = x1 + x2, where x1 ∈ I, x2 ∈ J . By Lemma 4, it holds
x1 ∈ I+ and x2 ∈ J+. From this we have (a1 + x1) + (a2 + x2) = b1 + b2,
i.e. a1 + x1 = b1, a2 + x2 = b2, where 0 ≤ x1, 0 ≤ x2. As 0 ≤ x1, it holds
a1 ≤ a1 + x1 = b1. Similarly, a2 ≤ b2.

Hence, for any a, b ∈ M , a ≤ b if and only if f(a) ≤ f(b).
We have proved that f is an isomorphism of lattice-ordered monoids

(M ; +, 0,∨,∧) and (M ; +, 0,∨,∧). Since the values of the operations ⇀ and
↽ are uniquely determined in both the DR`-monoids M = (M ; +, 0,∨,∧,⇀
,↽) and (M ; +, 0,∨,∧,⇀, ↽) in the same manner by means of the operation
+ and the order relation ≤, DR`-monoids M = I + J and M = I × J are
also isomorphic.

Remarks.
a) Let Ĩ = {(x, 0); x ∈ I} and J̃ = {(0, y); y ∈ J}. Since I ∼= Ĩ and

J ∼= J̃ , the ideals I and J are (by Proposition 2 and Theorem 6)
normal in M .

b) By Theorem 6 and Proposition 3, the set of all direct factors of a DR`-
monoid M is a subset of the set of all polars in M . In particular,
Sing(M) and Inv(M) are polars in M . It holds

(Sing(M))⊥ = Inv(M) and (Inv(M))⊥ = Sing(M).
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If M is a DR`-monoid and I ∈ C(M), let us denote by D(I) the join of
ideals I and I⊥ in the lattice C(M).

Proposition 7 . If M is a DR`-monoid, I ∈ C(M) and I is a direct factor
of DR`-monoid D(I), then I + I⊥ ∈ C(D(I)) and I + I⊥ = D(I) = I ∨ I⊥

(in the sense of C(M)).

Proof. Since I and I⊥ are normal ideals of D(I), by Lemma 21 of [8], it
holds that

I ∨ I⊥ = {x ∈ D(I); |x| ≤ a + b, where a ∈ I, b ∈ I⊥}.

in C(D(I)) (consequently, also in C(M)).
By Proposition 5, a+b = b+a = a∨b. By Theorem 1.1.23 of [5], the un-

derlying lattice (M ;∨,∧) is distributive, therefore the lattice (D(I)+;∨,∧)
is also distributive. For this reason, from the inequality |x| ≤ a + b, where

a ∈ I+ and b ∈
(
I⊥

)+
, it follows the existence of elements 0 ≤ a1 ≤

a, 0 ≤ b1 ≤ b in D(I) such that |x| = a1 ∨ b1 = a1 + b1. At the same time
a1 ∈ I, b1 ∈ I⊥ and hence I ∨ I⊥ = I + I⊥.

Corollary 8 . If M is a DR`-monoid and I ∈ C(M), then DR`-monoids
I +I⊥ and I×I⊥ are isomorphic if and only if x+y = x′+y′ implies x = x′

and y = y′, for any x, x′ ∈ I and y, y′ ∈ I⊥.

By Proposition 15 of [8], for any ideal I of a DR`-monoid M (and hence
also for each polar in M) it holds that its polar I⊥ is the pseudocomplement
of I in C(M). We can specify this result for the direct factors of M .

Proposition 9 . If an ideal I of a DR`-monoid M is a direct factor in M ,
then the polar I⊥ is the complement of I in the lattice C(M).

Now we can prove the following proposition:

Proposition 10 . If M is an arbitrary DR`-monoid, then ideals I of M ,
for which there exists an ideal J ∈ C(M) such that I and J satisfy condition
1 from Theorem 6, form a Boolean lattice. This lattice is a sublattice of
C(M).

Proof. Let I and J satisfy the given assumptions. Then from distributivity
of the lattice C(M) we obtain
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(I ∨ J) ∩
(
I⊥ ∩ J⊥

)
=

(
I ∩ I⊥ ∩ J⊥

)
∨

(
J ∩ I⊥ ∩ J⊥

)
= {0},

(I ∨ J) ∨
(
I⊥ ∩ J⊥

)
=

(
I ∨ J ∨ I⊥

)
∩

(
I ∨ J ∨ J⊥

)
= M,

hence I ∨ J and I⊥ ∩ J⊥ satisfy condition 1.
The remaining part of the assertion follows from Proposition 9.

Let us consider the following condition of uniqueness of decomposition for
DR`-monoids M :

(UD)
If I, J ∈ C(M), I ∩ J = {0}, x, x′ ∈ I, y, y′ ∈ J

and x + y = x′ + y′, then x = x′ and y = y′.

Theorem 11 . If DR`-monoid M satisfies condition (UD), then the direct
factors in M form a Boolean sublattice of the lattice C(M).

Proof. If condition (UD) holds in M , then I ∈ C(M) is a direct factor if
and only if I and J = I⊥ satisfy condition 1. Therefore, the theorem follows
from Proposition 10.

Remark. If G is an `-group, then DR`-monoids G and G+ satisfy condition
(UD). Hence their direct factors form a Boolean lattice.

References

[1] R.L.O. Cignoli, I.M.L. D’Ottaviano and D. Mundici, Foundations of Many-
valued Reasoning, Kluwer Acad. Publ., Dordrecht 2000.

[2] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo BL-algebras: Part I,
Multiple-Valued Logic 8 (2002), 673–714.
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[6] J. Kühr, Pseudo BL-algebras and DR`-monoids, Math. Bohemica 128 (2003),
199–208.
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