REPRESENTABLE DUALLY RESIDUATED LATTICE-ORDERED MONOIDS

Jan Kühr

Department of Algebra and Geometry, Faculty of Science, Palacký University Tomkova 40, 779 00 Olomouc, Czech Republic e-mail: kuhr@inf.upol.cz

Abstract

Dually residuated lattice-ordered monoids ($DR\ell$ -monoids) generalize lattice-ordered groups and include also some algebras related to fuzzy logic (e.g. GMV-algebras and pseudo BL-algebras). In the paper, we give some necessary and sufficient conditions for a $DR\ell$ -monoid to be representable (i.e. a subdirect product of totally ordered $DR\ell$ -monoids) and we prove that the class of representable $DR\ell$ -monoids is a variety.

Keywords: $DR\ell$ -monoid, ideal, prime ideal, polar, normal ideal, representable $DR\ell$ -monoid.

2000 Mathematics Subject Classification: 06F05, 03G25.

Commutative dually residuated ℓ -monoids ($DR\ell$ -semigroups) were introduced in [18] as a common generalization of Abelian lattice-ordered groups (ℓ -groups) and Brouwerian algebras. Likewise, well-known MV-algebras that constitute an algebraic counterpart of the Łukasiewicz logic and BL-algebras as algebras of Hájek's basic logic are contained among bounded $DR\ell$ -semigroups (see [15] and [16]). Moreover, any BL-algebra (and hence any MV-algebra) is a representable $DR\ell$ -semigroup, that is, a subdirect product of totally ordered $DR\ell$ -semigroups. By [19], commutative representable $DR\ell$ -semigroups are characterized by the identity $(x-y) \wedge (y-x) \leq 0$.

Non-commutative $DR\ell$ -monoids embrace lattice-ordered groups as well as some algebras that are in close connection to fuzzy logic. For instance, pseudo BL-algebras and, in particular, GMV-algebras (called also pseudo

MV-algebras), i.e. non-commutative extensions of BL-algebras and MV-algebras, respectively, can be viewed as a particular kind of bounded $DR\ell$ -monoids (see [13] and [17]).

The objective of the present paper is the description of representable $DR\ell$ -monoids; it is shown that those form a variety.

Recall the notion of a (non-commutative) $DR\ell$ -monoid. An algebra $(A; +, 0, \vee, \wedge, \rightharpoonup, \smile)$ of type $\langle 2, 0, 2, 2, 2, 2 \rangle$ is said to be a dually residuated lattice-ordered monoid, or simply a $DR\ell$ -monoid, if

- (i) $(A; +, 0, \vee, \wedge)$ is an ℓ -monoid, i.e., (A; +, 0) is a monoid, $(A; \vee, \wedge)$ is a lattice and "+" distributes over " \vee " and " \wedge ";
- (ii) for any $x, y \in A$, $x \to y$ is the least $s \in A$ such that $s + y \ge x$, and $x \leftarrow y$ is the least $t \in A$ such that $y + t \ge x$; and
- (iii) A fulfils the identities

$$((x \to y) \lor 0) + y \le x \lor y, \ y + ((x \leftarrow y) \lor 0) \le x \lor y.$$

In the original definition the validity of the inequalities $x \to x \ge 0$ and $x \to x \ge 0$ was also desired, but analogously as in [11], one can prove that we always have $x \to x = x \to x = 0$. Moreover, (iii) holds even with " \le " substituted by "=". Notice next that the condition (ii) is equivalent to the following system of identities (see [17]):

$$(x \rightharpoonup y) + y \ge x, \ y + (x \leftarrow y) \ge x,$$

$$x \rightharpoonup y \le (x \lor z) \rightharpoonup y, \ x \leftarrow y \le (x \lor z) \leftarrow y,$$

$$(x + y) \rightharpoonup y \le x, \ (y + x) \leftarrow y \le x.$$

Thus $DR\ell$ -monoids form an equational class. Some properties of this variety were examined in [10].

Let us mention several concepts and facts from [12], [13] and [14]. For basic properties of non-commutative $DR\ell$ -monoids see [10] or [12].

For any x of a $DR\ell$ -monoid A, the absolute value of x is defined by $|x| = x \lor (0 \rightharpoonup x)$, or equivalently $|x| = x \lor (0 \multimap x)$, and $x^+ = x \lor 0$ is the positive part of x. For each $X \subseteq A$, let $X^+ = \{x \in X : x \ge 0\}$.

A subset H of A is said to be an ideal of A if it satisfies the following conditions:

- (I1) $0 \in H$;
- (I2) if $x, y \in H$, then $x + y \in H$;
- (I3) for all $x \in H$ and $y \in A$, $|y| \le |x|$ implies $y \in H$.

Under the ordering by set inclusion, the set of all ideals of any $DR\ell$ -monoid becomes an algebraic, distributive lattice $\mathcal{I}(A)$.

An ideal H of A is said to be prime if it is a finitely meet-irreducible element of the lattice $\mathcal{I}(A)$ of all ideals of A, i.e., if $H = J \cap K$, then H = J or H = K for all $J, K \in \mathcal{I}(A)$. The prime ideals play an important role in the study of ideals since each ideal is an intersection of prime ideals. The assumption of the validity of the identities

$$(x \rightharpoonup y)^{+} \wedge (y \rightharpoonup x)^{+} = 0$$

$$(x \leftharpoondown y)^{+} \wedge (y \leftharpoondown x)^{+} = 0$$

makes it possible to prove the following useful characterization of prime ideals. Let us note that the conditions (i) through (iv) are equivalent in any $DR\ell$ -monoid.

Lemma 1 [14]. If A satisfies (*), then for any ideal H, the following statements are equivalent (for all $J, K \in \mathcal{I}(A)$ and $x, y \in A$):

- (i) H is prime;
- (ii) if $J \cap K \subseteq H$, then $J \subseteq H$ or $K \subseteq H$;
- (iii) if $|x| \wedge |y| \in H$, then $x \in H$ or $y \in H$;
- (iv) if $x \wedge y \in H^+$, then $x \in H$ or $y \in H$;
- (v) if $x \land y \in H$, then $x \in H$ or $y \in H$;
- (vi) if $x \wedge y = 0$, then $x \in H$ or $y \in H$;
- (vii) $(x \rightharpoonup y)^+ \in H$ or $(y \rightharpoonup x)^+ \in H$;
- (viii) $(x \leftarrow y)^+ \in H$ or $(y \leftarrow x)^+ \in H$;
- (ix) the set of all ideals exceeding H is totally ordered by inclusion.

Since (*) holds in any ℓ -group, in any linearly ordered (and hence in any representable) $DR\ell$ -monoid and in any bounded $DR\ell$ -monoid, which is induced by a GMV-algebra or by a pseudo BL-algebra, respectively (see [17] and [13]), the previous lemma describes the prime ideals (respectively, prime filters in the case of pseudo BL-algebras) in the mentioned algebras.

We say that an ideal H of a $DR\ell$ -monoid A is normal if $x+H^+=H^++x$ for all $x \in A$. For any $H \in \mathcal{I}(A)$, H is normal if and only if $(x \to y)^+ \in H$ iff $(x \to y)^+ \in H$ for all $x, y \in A$.

As it was proved in [12], the normal ideals of any $DR\ell$ -monoid correspond one-to-one to its congruence relations; the lattice $\mathcal{N}(A)$ of all normal ideals is isomorphic with $\mathrm{Con}(A)$, the congruence lattice of A.

The next lemma states an important property of normal prime ideals:

Lemma 2. Let A be a $DR\ell$ -monoid satisfying (*) and H be a normal ideal. Then A/H is totally ordered if and only if H is prime.

Let A be a $DR\ell$ -monoid and $X \subseteq A$. The set

$$X^{\perp} = \{ a \in A : |a| \land |x| = 0 \text{ for all } x \in X \}$$

is called the *polar of* X. For any $a \in A$, we write briefly a^{\perp} instead of $\{a\}^{\perp}$. A subset X of A is a *polar in* A if $X = Y^{\perp}$ for some $Y \subseteq A$.

By [14], X^{\perp} is equal to the intersection of all minimal prime ideals not containing X and hence any polar is an ideal in A. In addition, the polars are just the pseudocomplements in the ideal lattice $\mathcal{I}(A)$.

Let $\{A_i\}_{i\in I}$ be a collection of $DR\ell$ -monoids. Recall that A is a subdirect product of $\{A_i\}_{i\in I}$ if there is an embedding φ of A into the direct product $\prod_{i\in I}A_i$ such that the homomorphisms $\varphi\pi_i$ map A onto A_i for all $i\in I$, where π_i is the natural projection of $\prod_{i\in I}A_i$ onto A_i .

A $DR\ell$ -monoid is said to be representable if it is a subdirect product of linearly ordered $DR\ell$ -monoids. Note that representable ℓ -groups are also called residually ordered ℓ -groups (see, e.g., [7]).

If a $DR\ell$ -monoid fulfils (*), then, by Lemma 2, its subdirect representations by totally ordered $DR\ell$ -monoids are associated with families of normal prime ideals whose intersections are precisely $\{0\}$. Therefore, it is obvious that every commutative $DR\ell$ -monoid satisfying $(x-y) \land (y-x) \leq 0$ is representable. On the contrary, this fails in the case of non-commutative $DR\ell$ -monoids. For instance, any ℓ -group G is a $DR\ell$ -monoid with (*), however, G need not be representable (residually ordered).

Lemma 3. If P is a minimal prime ideal of a $DR\ell$ -monoid A, then $A^+ \setminus P$ is a maximal filter of the lattice $(A^+; \vee, \wedge)$.

Proof. By Zorn's Lemma, there exists a maximal filter F of $(A^+; \vee, \wedge)$ with $A^+ \setminus P \subseteq F$. (Since P^+ is also a prime ideal of $(A^+; \vee, \wedge)$, it follows that $A^+ \setminus P = A^+ \setminus P^+$ is a prime filter of $(A^+; \vee, \wedge)$ which is contained in some maximal filter.) The aim of the proof is to show $F = A^+ \setminus P^+$.

We claim that $P^+ = Q^+$, where $Q = \bigcup \{a^{\perp} : a \in F\}$.

If $x \in Q^+$, that is, $x \wedge a = 0$ for some $a \in F$, then $x \notin F$. Indeed, if $x \in F$, then $0 = x \wedge a \in F$ which entails $F = A^+$. Thus $x \in A^+ \setminus F \subseteq A^+ \setminus (A^+ \setminus P^+) = P^+$, whence $Q^+ \subseteq A^+ \setminus F \subseteq P^+$.

We shall now prove that Q is a prime ideal of A.

- (II): Since any principal polar a^{\perp} contains 0, so deos Q.
- (I2): If $x, y \in Q$, i.e., $|x| \wedge a = 0$ and $|y| \wedge b = 0$ for some $a, b \in F$, then $0 \le |x+y| \wedge a \wedge b \le (|x|+|y|+|x|) \wedge a \wedge b \le (|x| \wedge a \wedge b) + (|y| \wedge a \wedge b) + (|x| \wedge a \wedge b) = 0$. Therefore $x + y \in (a \wedge b)^{\perp} \subseteq Q$.
 - (I3): It is obvious since a^{\perp} is an ideal of A for each $a \in A$.

In order to prove that Q is prime, suppose that $x \wedge y \in Q^+$ yet $x \notin Q$, that is, $x \wedge y \wedge a = 0$ for some $a \in F$, and $x \wedge a > 0$ for all $a \in F$. If $x \notin F$, then the filter of $(A^+; \vee, \wedge)$ generated by $F \cup \{x\}$ is equal to A^+ , and hence $0 \geq a \wedge x$ for some $a \in F$, a contradiction. Therefore $x \in F$, and so $x \wedge a \in F$ which yields $y \in (x \wedge a)^{\perp} \subseteq Q$.

Let $x \in Q$; then $|x| \in Q^+ \subseteq P^+$, whence $x \in P$ showing $Q \subseteq P$. However, P is minimal prime; so Q = P. Hence $P^+ = Q^+$ as claimed. This gives $P^+ = A^+ \setminus F$, and consequently, $F = A^+ \setminus P^+$.

Observe that we have shown somewhat more than stated:

Lemma 4. A prime ideal P of a $DR\ell$ -monoid A is minimal if and only if

$$P = \bigcup \{a^{\perp} : a \in A^+ \setminus P\}.$$

Proof. By the proof of the previous lemma, $P = \bigcup \{a^{\perp} : a \in F\}$, where $F = A^+ \setminus P^+$.

Conversely, suppose that $Q \subseteq P$ for some prime ideal Q. If $Q \neq P$, then there is $x \in P^+ \setminus Q$, i.e., $x \in a^{\perp}$ for some $a \in A^+ \setminus P$. Since $x \wedge a = 0$, $x \notin Q$ and Q is prime, it follows that $a \in Q \subseteq P$, a contradiction. Thus Q = P.

The following results generalize the analogous properties of ℓ -groups, pseudo MV-algebras (GMV-algebras) and pseudo BL-algebras (see [7], [6], [4], [5] and [13]):

Theorem 5. For any $DR\ell$ -monoid A satisfying (*), the following statements are equivalent:

- (i) A is representable.
- (ii) There exists a family $\{P_i\}_{i\in I}$ of normal prime ideals of A such that

$$\bigcap_{i\in I} P_i = \{0\}.$$

- (iii) Every polar is a normal ideal.
- (iv) For any $a \in A^+$, $a^{\perp} \in \mathcal{N}(A)$.
- (v) Every minimal prime ideal is normal.

Proof. As argued above, the equivalence of (i) and (ii) is clear.

(i) \Rightarrow (iii). Suppose that A is a subdirect product of linearly ordered $DR\ell$ -monoids $\{A_i\}_{i\in I}$. Observe that

(1)
$$x \wedge y = 0 \text{ iff } \{i \in I : x_i > 0_i\} \cap \{i \in I : y_i > 0_i\} = \emptyset$$

for all $x, y \in A^+$, as all A_i are linearly ordered.

Let now P be a polar in A, i.e., $P = P^{\perp \perp}$. Let $x \in A$, $a \in P^+$ and $y \in P^{\perp}$. Then $x + a \ge x$ implies $x + a = (x + a) \lor x = ((x + a) \rightharpoonup x) + x$. Further,

$$\{i \in I : (x_i + a_i) \rightarrow x_i > 0_i\} \subseteq \{i \in I : a_i > 0_i\}.$$

Indeed, if $a_i = 0_i$, then $(x_i + a_i) \rightharpoonup x_i = x_i \rightharpoonup x_i = 0_i$. Hence, we obtain

$$\{i \in I : (x_i + a_i) \rightharpoonup x_i > 0_i\} \cap \{i \in I : |y_i| > 0_i\} \subseteq$$

$$\subseteq \{i \in I : a_i > 0_i\} \cap \{i \in I : |y_i| > 0_i\} = \emptyset,$$

by (1), since $a \wedge |y| = 0$. Therefore, $((x+a) \rightharpoonup x) \wedge |y| = 0$, and thus $(x+a) \rightharpoonup x \in P^{\perp \perp} = P$. Hence, $x+a = ((x+a) \rightharpoonup x) + x \in P^+ + x$ proving $x+P^+ \subseteq P^+ + x$. One analogously proves the other inclusion.

The implication (iii) \Rightarrow (iv) is obvious and (iv) implies (v) immediately by Lemma 4.

 $(v) \Rightarrow (ii)$. Since every prime ideal contains a minimal prime ideal and the intersection of all prime ideals equals to $\{0\}$, so does the intersection of all minimal prime ideals. Thus A is representable.

Theorem 6. A $DR\ell$ -monoid is representable if and only if it satisfies the identities

$$(2) \qquad (x \rightharpoonup y)^+ \land (((y \rightharpoonup x)^+ + z) \leftharpoondown z) = 0,$$

$$(3) \qquad (x \leftarrow y)^+ \wedge ((z + (y \leftarrow x)^+) \rightharpoonup z) = 0.$$

Proof. Any linearly ordered $DR\ell$ -monoid satisfies (2) and (3) since either $(x \rightharpoonup y)^+ = 0$ or $(y \rightharpoonup x)^+ = 0$ (respectively, either $(x \leftharpoonup y)^+ = 0$ or $(y \leftharpoonup x)^+ = 0$). Therefore the part "only if" is obvious.

Conversely, suppose that the above identities are satisfied by A; then A fulfils also (*) (put z=0). In view of Theorem 5, it suffices to prove that x^{\perp} is normal for all $x \in A^{+}$.

Let $y \in (x^{\perp})^+$, that is, $y \wedge x = 0$. Observe that in this case

$$x = x \rightarrow (y \land x) = (x \rightarrow y) \lor (x \rightarrow x) = (x \rightarrow y) \lor 0 = (x \rightarrow y)^+,$$

and similarly $y = (y \rightarrow x)^+$. Hence, by (2),

$$x \wedge ((y+z) \leftarrow z) = (x \rightharpoonup y)^+ \wedge (((y \rightharpoonup x)^+ + z) \leftarrow z) = 0;$$

thus $(y+z) \leftarrow z \in (x^{\perp})^+$. Further, $y+z \geq z$ implies $y+z = (y+z) \vee z = z + ((y+z) \leftarrow z) \in z + (x^{\perp})^+$ which shows $(x^{\perp})^+ + z \subseteq z + (x^{\perp})^+$. The other inclusion follows similarly by (3).

Corollary 7. A $DR\ell$ -monoid is representable if and only if it satisfies the identities

$$(x \rightharpoonup y) \land (((y \rightharpoonup x) + z) \leftarrow z) < 0,$$

$$(x \leftarrow y) \land ((z + (y \leftarrow x)) \rightarrow z) \le 0.$$

Proof. One readily sees that

$$(x \rightharpoonup y)^+ \land (((y \rightharpoonup x)^+ + z) \leftarrow z) = [(x \rightharpoonup y) \land (((y \rightharpoonup x) + z) \leftarrow z)]^+,$$

$$(x \leftarrow y)^+ \land ((z + (y \leftarrow x)^+) \rightharpoonup z) = [(x \leftarrow y) \land ((z + (y \leftarrow x)) \rightharpoonup z)]^+.$$

Corollary 8. The class of all representable $DR\ell$ -monoids is a proper subvariety of the variety of all $DR\ell$ -monoids.

References

- [1] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York 1981.
- [2] A. Di Nola, G. Georgescu, and A. Iorgulescu, *Pseudo BL-algebras: Part I*, Mult.-Valued Logic **8** (2002), 673–714.
- [3] A. Di Nola, G. Georgescu, and A. Iorgulescu, *Pseudo BL-algebras: Part II*, Mult.-Valued Logic 8 (2002), 717–750.
- [4] A. Dvurečenskij, On pseudo MV-algebras, Soft Comput. 5 (2001), 347–354.
- [5] A. Dvurečenskij, States on pseudo MV-algebras, Studia Logica 68 (2001), 301–327.
- [6] G. Georgescu, and A. Iorgulescu, Pseudo MV-algebras, Mult.-Valued Logic 6 (2001), 95–135.
- [7] A.M.W. Glass, *Partially Ordered Groups*, World Scientific, Singapore-New Jersey-London-Hong Kong 1999.
- [8] G. Grätzer, General Lattice Theory, Birkhäuser, Basel-Boston-Berlin 1998.
- [9] M.E. Hansen, Minimal prime ideals in autometrized algebras, Czechoslovak Math. J. **44** (**119**) (1994), 81–90.
- [10] T. Kovář, A general theory of dually residuated lattice-ordered monoids, Ph.D. thesis, Palacký University, Olomouc 1996.
- [11] T. Kovář, Two remarks on dually residuated lattice-ordered semigroups, Math. Slovaca **49** (1999), 17–18.
- [12] J. Kühr, *Ideals of non-commutative DRl-monoids*, Czechoslovak Math. J., to appear.
- [13] J. Kühr, Pseudo BL-algebras and DR ℓ -monoids, Math. Bohem. **128** (2003), 199–208.
- [14] J. Kühr, Prime ideals and polars in $DR\ell$ -monoids and pseudo BL-algebras, Math. Slovaca **53** (2003), 233–246.
- [15] J. Rachunek, MV-algebras are categorically equivalent to a class of $DR\ell_{1(i)}$ semigroups, Math. Bohem. **123** (1998), 437–441.
- [16] J. Rachůnek, A duality between algebras of basic logic and bounded representable $DR\ell$ -monoids, Math. Bohem. **126** (2001), 561–569.
- [17] J. Rachůnek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J. **52** (127) (2002), 255–273.
- [18] K.L.N. Swamy, Dually residuated lattice-ordered semigroups. I, Math. Ann. **159** (1965), 105–114.

 $[19] \;\; \text{K.L.N. Swamy}, \, \textit{Dually residuated lattice-ordered semigroups. III}, \, \text{Math. Ann.}$ **167** (1966), 71–74.

Received 11 February 2003