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Department of Algebra and Geometry,
Faculty of Science, Palacký University
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Abstract

Dually residuated lattice-ordered monoids (DR`-monoids) gener-
alize lattice-ordered groups and include also some algebras related to
fuzzy logic (e.g. GMV -algebras and pseudo BL-algebras). In the pa-
per, we give some necessary and sufficient conditions for a DR`-monoid
to be representable (i.e. a subdirect product of totally ordered DR`-
monoids) and we prove that the class of representable DR`-monoids is
a variety.
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Commutative dually residuated `-monoids (DR`-semigroups) were intro-
duced in [18] as a common generalization of Abelian lattice-ordered groups
(`-groups) and Brouwerian algebras. Likewise, well-known MV -algebras
that constitute an algebraic counterpart of the ÃLukasiewicz logic and
BL-algebras as algebras of Hájek’s basic logic are contained among bounded
DR`-semigroups (see [15] and [16]). Moreover, any BL-algebra (and
hence any MV -algebra) is a representable DR`-semigroup, that is, a subdi-
rect product of totally ordered DR`-semigroups. By [19], commutative rep-
resentable DR`-semigroups are characterized by the identity
(x− y) ∧ (y − x) ≤ 0.

Non-commutative DR`-monoids embrace lattice-ordered groups as well
as some algebras that are in close connection to fuzzy logic. For instance,
pseudo BL-algebras and, in particular, GMV -algebras (called also pseudo
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MV -algebras), i.e. non-commutative extensions of BL-algebras and MV -
algebras, respectively, can be viewed as a particular kind of bounded DR`-
monoids (see [13] and [17]).

The objective of the present paper is the description of representable
DR`-monoids; it is shown that those form a variety.

Recall the notion of a (non-commutative) DR`-monoid. An algebra
(A; +, 0,∨,∧,⇀, ↽) of type 〈2, 0, 2, 2, 2, 2〉 is said to be a dually residuated
lattice-ordered monoid, or simply a DR`-monoid, if

(i) (A; +, 0,∨,∧) is an `-monoid, i.e., (A; +, 0) is a monoid, (A;∨,∧) is a
lattice and ”+” distributes over ”∨” and ”∧”;

(ii) for any x, y ∈ A, x ⇀ y is the least s ∈ A such that s + y ≥ x, and
x ↽ y is the least t ∈ A such that y + t ≥ x; and

(iii) A fulfils the identities

((x ⇀ y) ∨ 0) + y ≤ x ∨ y, y + ((x ↽ y) ∨ 0) ≤ x ∨ y.

In the original definition the validity of the inequalities x ⇀ x ≥ 0 and
x ↽ x ≥ 0 was also desired, but analogously as in [11], one can prove that
we always have x ⇀ x = x ↽ x = 0. Moreover, (iii) holds even with ”≤”
substituted by ”=”. Notice next that the condition (ii) is equivalent to the
following system of identities (see [17]):

(x ⇀ y) + y ≥ x, y + (x ↽ y) ≥ x,

x ⇀ y ≤ (x ∨ z) ⇀ y, x ↽ y ≤ (x ∨ z) ↽ y,

(x + y) ⇀ y ≤ x, (y + x) ↽ y ≤ x.

Thus DR`-monoids form an equational class. Some properties of this variety
were examined in [10].

Let us mention several concepts and facts from [12], [13] and [14]. For
basic properties of non-commutative DR`-monoids see [10] or [12].

For any x of a DR`-monoid A, the absolute value of x is defined by
|x| = x ∨ (0 ⇀ x), or equivalently |x| = x ∨ (0 ↽ x), and x+ = x ∨ 0 is the
positive part of x. For each X ⊆ A, let X+ = {x ∈ X : x ≥ 0}.

A subset H of A is said to be an ideal of A if it satisfies the following
conditions:
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(I1) 0 ∈ H;

(I2) if x, y ∈ H, then x + y ∈ H;

(I3) for all x ∈ H and y ∈ A, |y| ≤ |x| implies y ∈ H.

Under the ordering by set inclusion, the set of all ideals of any DR`-monoid
becomes an algebraic, distributive lattice I(A).

An ideal H of A is said to be prime if it is a finitely meet-irreducible
element of the lattice I(A) of all ideals of A, i.e., if H = J ∩K, then H = J
or H = K for all J,K ∈ I(A). The prime ideals play an important role in
the study of ideals since each ideal is an intersection of prime ideals. The
assumption of the validity of the identities

(x ⇀ y)+ ∧ (y ⇀ x)+ = 0

(x ↽ y)+ ∧ (y ↽ x)+ = 0
(∗)

makes it possible to prove the following useful characterization of prime
ideals. Let us note that the conditions (i) through (iv) are equivalent in any
DR`-monoid.

Lemma 1 [14]. If A satisfies (∗), then for any ideal H, the following
statements are equivalent (for all J,K ∈ I(A) and x, y ∈ A):

(i) H is prime;

(ii) if J ∩K ⊆ H, then J ⊆ H or K ⊆ H;

(iii) if |x| ∧ |y| ∈ H, then x ∈ H or y ∈ H;

(iv) if x ∧ y ∈ H+, then x ∈ H or y ∈ H;

(v) if x ∧ y ∈ H, then x ∈ H or y ∈ H;

(vi) if x ∧ y = 0, then x ∈ H or y ∈ H;

(vii) (x ⇀ y)+ ∈ H or (y ⇀ x)+ ∈ H;

(viii) (x ↽ y)+ ∈ H or (y ↽ x)+ ∈ H;

(ix) the set of all ideals exceeding H is totally ordered by inclusion.
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Since (∗) holds in any `-group, in any linearly ordered (and hence in any
representable) DR`-monoid and in any bounded DR`-monoid, which is in-
duced by a GMV -algebra or by a pseudo BL-algebra, respectively (see [17]
and [13]), the previous lemma describes the prime ideals (respectively, prime
filters in the case of pseudo BL-algebras) in the mentioned algebras.

We say that an ideal H of a DR`-monoid A is normal if x+H+ = H++x
for all x ∈ A. For any H ∈ I(A), H is normal if and only if (x ⇀ y)+ ∈ H
iff (x ↽ y)+ ∈ H for all x, y ∈ A.

As it was proved in [12], the normal ideals of any DR`-monoid corre-
spond one-to-one to its congruence relations; the lattice N (A) of all normal
ideals is isomorphic with Con(A), the congruence lattice of A.

The next lemma states an important property of normal prime ideals:

Lemma 2 . Let A be a DR`-monoid satisfying (∗) and H be a normal ideal.
Then A/H is totally ordered if and only if H is prime.

Let A be a DR`-monoid and X ⊆ A. The set

X⊥ = {a ∈ A : |a| ∧ |x| = 0 for all x ∈ X}

is called the polar of X. For any a ∈ A, we write briefly a⊥ instead of {a}⊥.
A subset X of A is a polar in A if X = Y ⊥ for some Y ⊆ A.

By [14], X⊥ is equal to the intersection of all minimal prime ideals not
containing X and hence any polar is an ideal in A. In addition, the polars
are just the pseudocomplements in the ideal lattice I(A).

Let {Ai}i∈I be a collection of DR`-monoids. Recall that A is a subdirect
product of {Ai}i∈I if there is an embedding ϕ of A into the direct product∏

i∈I Ai such that the homomorphisms ϕπi map A onto Ai for all i ∈ I,
where πi is the natural projection of

∏
i∈I Ai onto Ai.

A DR`-monoid is said to be representable if it is a subdirect product
of linearly ordered DR`-monoids. Note that representable `-groups are also
called residually ordered `-groups (see, e.g., [7]).

If a DR`-monoid fulfils (∗), then, by Lemma 2, its subdirect representa-
tions by totally ordered DR`-monoids are associated with families of normal
prime ideals whose intersections are precisely {0}. Therefore, it is obvious
that every commutative DR`-monoid satisfying (x − y) ∧ (y − x) ≤ 0 is
representable. On the contrary, this fails in the case of non-commutative
DR`-monoids. For instance, any `-group G is a DR`-monoid with (∗), how-
ever, G need not be representable (residually ordered).
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Lemma 3 . If P is a minimal prime ideal of a DR`-monoid A, then A+ \P
is a maximal filter of the lattice (A+;∨,∧).

Proof. By Zorn’s Lemma, there exists a maximal filter F of (A+;∨,∧)
with A+ \ P ⊆ F . (Since P+ is also a prime ideal of (A+;∨,∧), it follows
that A+ \ P = A+ \ P+ is a prime filter of (A+;∨,∧) which is contained in
some maximal filter.) The aim of the proof is to show F = A+ \ P+.

We claim that P+ = Q+, where Q =
⋃{a⊥ : a ∈ F}.

If x ∈ Q+, that is, x ∧ a = 0 for some a ∈ F , then x /∈ F . Indeed, if
x ∈ F, then 0 = x ∧ a ∈ F which entails F = A+. Thus x ∈ A+ \ F ⊆
A+ \ (A+ \ P+) = P+, whence Q+ ⊆ A+ \ F ⊆ P+.

We shall now prove that Q is a prime ideal of A.
(I1): Since any principal polar a⊥ contains 0, so deos Q.
(I2): If x, y ∈ Q, i.e., |x| ∧ a = 0 and |y| ∧ b = 0 for some a, b ∈ F , then

0 ≤ |x+y|∧a∧b ≤ (|x|+|y|+|x|)∧a∧b ≤ (|x|∧a∧b)+(|y|∧a∧b)+(|x|∧a∧b) =
0. Therefore x + y ∈ (a ∧ b)⊥ ⊆ Q.

(I3): It is obvious since a⊥ is an ideal of A for each a ∈ A.
In order to prove that Q is prime, suppose that x ∧ y ∈ Q+ yet x /∈ Q,

that is, x ∧ y ∧ a = 0 for some a ∈ F , and x ∧ a > 0 for all a ∈ F . If x /∈ F,
then the filter of (A+;∨,∧) generated by F ∪{x} is equal to A+, and hence
0 ≥ a∧x for some a ∈ F , a contradiction. Therefore x ∈ F , and so x∧a ∈ F
which yields y ∈ (x ∧ a)⊥ ⊆ Q.

Let x ∈ Q; then |x| ∈ Q+ ⊆ P+, whence x ∈ P showing Q ⊆ P .
However, P is minimal prime; so Q = P . Hence P+ = Q+ as claimed. This
gives P+ = A+ \ F , and consequently, F = A+ \ P+.

Observe that we have shown somewhat more than stated:

Lemma 4 . A prime ideal P of a DR`-monoid A is minimal if and only if

P =
⋃
{a⊥ : a ∈ A+ \ P}.

Proof. By the proof of the previous lemma, P =
⋃{a⊥ : a ∈ F}, where

F = A+ \ P+.
Conversely, suppose that Q ⊆ P for some prime ideal Q. If Q 6= P, then

there is x ∈ P+ \Q, i.e., x ∈ a⊥ for some a ∈ A+ \P . Since x∧a = 0, x /∈ Q
and Q is prime, it follows that a ∈ Q ⊆ P , a contradiction. Thus Q = P .

The following results generalize the analogous properties of `-groups, pseudo
MV -algebras (GMV -algebras) and pseudo BL-algebras (see [7], [6], [4], [5]
and [13]):
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Theorem 5 . For any DR`-monoid A satisfying (∗), the following state-
ments are equivalent:

(i) A is representable.

(ii) There exists a family {Pi}i∈I of normal prime ideals of A such that
⋂

i∈I
Pi = {0}.

(iii) Every polar is a normal ideal.

(iv) For any a ∈ A+, a⊥ ∈ N (A).

(v) Every minimal prime ideal is normal.

Proof. As argued above, the equivalence of (i) and (ii) is clear.
(i) ⇒ (iii). Suppose that A is a subdirect product of linearly ordered

DR`-monoids {Ai}i∈I . Observe that

(1) x ∧ y = 0 iff {i ∈ I : xi > 0i} ∩ {i ∈ I : yi > 0i} = ∅

for all x, y ∈ A+, as all Ai are linearly ordered.
Let now P be a polar in A, i.e., P = P⊥⊥. Let x ∈ A, a ∈ P+ and

y ∈ P⊥. Then x + a ≥ x implies x + a = (x + a) ∨ x = ((x + a) ⇀ x) + x.
Further,

{i ∈ I : (xi + ai) ⇀ xi > 0i} ⊆ {i ∈ I : ai > 0i}.
Indeed, if ai = 0i, then (xi + ai) ⇀ xi = xi ⇀ xi = 0i. Hence, we obtain

{i ∈ I : (xi + ai) ⇀ xi > 0i} ∩ {i ∈ I : |yi| > 0i} ⊆

⊆ {i ∈ I : ai > 0i} ∩ {i ∈ I : |yi| > 0i} = ∅,

by (1), since a ∧ |y| = 0. Therefore, ((x + a) ⇀ x) ∧ |y| = 0, and thus
(x + a) ⇀ x ∈ P⊥⊥ = P . Hence, x + a = ((x + a) ⇀ x) + x ∈ P+ + x
proving x + P+ ⊆ P+ + x. One analogously proves the other inclusion.

The implication (iii) ⇒ (iv) is obvious and (iv) implies (v) immediately
by Lemma 4.

(v) ⇒ (ii). Since every prime ideal contains a minimal prime ideal and
the intersection of all prime ideals equals to {0}, so does the intersection of
all minimal prime ideals. Thus A is representable.
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Theorem 6 . A DR`-monoid is representable if and only if it satisfies the
identities

(x ⇀ y)+ ∧ (((y ⇀ x)+ + z) ↽ z) = 0,(2)

(x ↽ y)+ ∧ ((z + (y ↽ x)+) ⇀ z) = 0.(3)

Proof. Any linearly ordered DR`-monoid satisfies (2) and (3) since either
(x ⇀ y)+ = 0 or (y ⇀ x)+ = 0 (respectively, either (x ↽ y)+ = 0 or
(y ↽ x)+ = 0). Therefore the part ”only if” is obvious.

Conversely, suppose that the above identities are satisfied by A; then A
fulfils also (∗) (put z = 0). In view of Theorem 5, it suffices to prove that
x⊥ is normal for all x ∈ A+.

Let y ∈ (x⊥)+, that is, y ∧ x = 0. Observe that in this case

x = x ⇀ (y ∧ x) = (x ⇀ y) ∨ (x ⇀ x) = (x ⇀ y) ∨ 0 = (x ⇀ y)+,

and similarly y = (y ⇀ x)+. Hence, by (2),

x ∧ ((y + z) ↽ z) = (x ⇀ y)+ ∧ (((y ⇀ x)+ + z) ↽ z) = 0;

thus (y + z) ↽ z ∈ (x⊥)+. Further, y + z ≥ z implies y + z = (y + z) ∨ z =
z + ((y + z) ↽ z) ∈ z + (x⊥)+ which shows (x⊥)+ + z ⊆ z + (x⊥)+. The
other inclusion follows similarly by (3).

Corollary 7 . A DR`-monoid is representable if and only if it satisfies the
identities

(x ⇀ y) ∧ (((y ⇀ x) + z) ↽ z) ≤ 0,

(x ↽ y) ∧ ((z + (y ↽ x)) ⇀ z) ≤ 0.

Proof. One readily sees that

(x ⇀ y)+ ∧ (((y ⇀ x)+ + z) ↽ z) = [(x ⇀ y) ∧ (((y ⇀ x) + z) ↽ z)]+,

(x ↽ y)+ ∧ ((z + (y ↽ x)+) ⇀ z) = [(x ↽ y) ∧ ((z + (y ↽ x)) ⇀ z)]+.

Corollary 8 . The class of all representable DR`-monoids is a proper
subvariety of the variety of all DR`-monoids.
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