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Abstract

Dually residuated lattice-ordered monoids (D R¢-monoids) gener-
alize lattice-ordered groups and include also some algebras related to
fuzzy logic (e.g. GMV-algebras and pseudo BL-algebras). In the pa-
per, we give some necessary and sufficient conditions for a D R¢-monoid
to be representable (i.e. a subdirect product of totally ordered D R{-
monoids) and we prove that the class of representable D R¢-monoids is
a variety.
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Commutative dually residuated ¢-monoids (D R/¢-semigroups) were intro-
duced in [18] as a common generalization of Abelian lattice-ordered groups
(-groups) and Brouwerian algebras. Likewise, well-known MV -algebras
that constitute an algebraic counterpart of the Lukasiewicz logic and
B L-algebras as algebras of Hajek’s basic logic are contained among bounded
D R(l-semigroups (see [15] and [16]). Moreover, any BL-algebra (and
hence any MV -algebra) is a representable D R/-semigroup, that is, a subdi-
rect product of totally ordered D R/-semigroups. By [19], commutative rep-
resentable  DR/f-semigroups are characterized by the identity
(—y)A(y—=) <0

Non-commutative D R¢-monoids embrace lattice-ordered groups as well
as some algebras that are in close connection to fuzzy logic. For instance,
pseudo BL-algebras and, in particular, GMV-algebras (called also pseudo
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MYV -algebras), i.e. non-commutative extensions of BL-algebras and MV-
algebras, respectively, can be viewed as a particular kind of bounded D R/-
monoids (see [13] and [17]).

The objective of the present paper is the description of representable
D R/{-monoids; it is shown that those form a variety.

Recall the notion of a (non-commutative) DR¢-monoid. An algebra
(A;4,0,V, A, —, ) of type (2,0,2,2,2,2) is said to be a dually residuated
lattice-ordered monoid, or simply a D R{-monoid, if

(i) (A;+,0,V,A) is an f-monoid, i.e., (4;+,0) is a monoid, (A;V,A) is a
lattice and ”+4” distributes over ”V” and ”A”;

(ii) for any z,y € A, x — y is the least s € A such that s +y > =z, and
x ~— y is the least t € A such that y +¢ > x; and

(iii) A fulfils the identities

(z—=y)VO) +y<zVy, y+(z—y)V0) <zVy.

In the original definition the validity of the inequalities + — x > 0 and
x ~— x > 0 was also desired, but analogously as in [11], one can prove that
we always have * — = = z «— x = 0. Moreover, (iii) holds even with ”<”
substituted by ”=". Notice next that the condition (ii) is equivalent to the
following system of identities (see [17]):

=y +y>z, y+(r—y) >z,
r—=y<(xzVz)—y, z~—y<(xVz)v—uy,
(z+y) —~y<z (y+2)—y<z

Thus D Rf-monoids form an equational class. Some properties of this variety
were examined in [10].

Let us mention several concepts and facts from [12], [13] and [14]. For
basic properties of non-commutative DR/{-monoids see [10] or [12].

For any x of a DR{-monoid A, the absolute value of x is defined by
|z| = 2 vV (0 — ), or equivalently |z| = 2z V (0 «— ), and 27 = 2 V 0 is the
positive part of . For each X C A, let X ={z € X : 2 > 0}.

A subset H of A is said to be an ideal of A if it satisfies the following
conditions:
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(I1) 0 € H;
(I12) if z,y € H, then x +y € H;
(I3) forallz € H and y € A, |y| < |z| implies y € H.

Under the ordering by set inclusion, the set of all ideals of any D R¢-monoid
becomes an algebraic, distributive lattice Z(A).

An ideal H of A is said to be prime if it is a finitely meet-irreducible
element of the lattice Z(A) of all ideals of A, i.e., if H = JN K, then H = J
or H=K for all J,K € Z(A). The prime ideals play an important role in
the study of ideals since each ideal is an intersection of prime ideals. The
assumption of the validity of the identities

=y Ay—=2)"=0
(*)

(z—y) " Aly—z)"=0

makes it possible to prove the following useful characterization of prime
ideals. Let us note that the conditions (i) through (iv) are equivalent in any
D R/-monoid.

Lemma 1 [14]. If A satisfies (x), then for any ideal H, the following
statements are equivalent (for all J, K € Z(A) and z,y € A):

(i) H is prime;

(ii)) f JN K C H, then J C H or K C H;
(iii) if |x| Aly| € H, thenx € H ory € H;

(iv) ifeANye H", thenx € H ory € H;

(vi) ifeANy=0, thenx € H ory € H;

(vii) (z—~y)t €H or (y—=2)" € H;

(x—y)t€H or(y~—ax)" € H;

)
)
)
)
(v) ifeNy€ H, thenx € H ory e H;
)
)
(viii)
)

(ix) the set of all ideals exceeding H is totally ordered by inclusion.
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Since (*) holds in any f-group, in any linearly ordered (and hence in any
representable) D R/-monoid and in any bounded D R¢-monoid, which is in-
duced by a GMV-algebra or by a pseudo BL-algebra, respectively (see [17]
and [13]), the previous lemma describes the prime ideals (respectively, prime
filters in the case of pseudo BL-algebras) in the mentioned algebras.

We say that an ideal H of a D Rf-monoid A is normalif t+H+T = H" 42
for all z € A. For any H € Z(A), H is normal if and only if (z — y)* € H
iff (zx — y)" € H for all z,y € A.

As it was proved in [12], the normal ideals of any DR/-monoid corre-
spond one-to-one to its congruence relations; the lattice AN/(A) of all normal
ideals is isomorphic with Con(A), the congruence lattice of A.

The next lemma states an important property of normal prime ideals:

Lemma 2. Let A be a DR{-monoid satisfying (x) and H be a normal ideal.
Then A/ H s totally ordered if and only if H is prime. |

Let A be a DR/¢-monoid and X C A. The set
Xt={acA:|a|Alz|=0foral ze X}

is called the polar of X. For any a € A, we write briefly a' instead of {a}~.
A subset X of A is a polar in A if X =Y~ for some Y C A.

By [14], X L is equal to the intersection of all minimal prime ideals not
containing X and hence any polar is an ideal in A. In addition, the polars
are just the pseudocomplements in the ideal lattice Z(A).

Let {A;}ier be a collection of D Rl-monoids. Recall that A is a subdirect
product of {A;}ier if there is an embedding ¢ of A into the direct product
[I;c; Ai such that the homomorphisms ¢m; map A onto A; for all i € I,
where 7; is the natural projection of Hie 1 A; onto A;.

A DR/-monoid is said to be representable if it is a subdirect product
of linearly ordered D R{-monoids. Note that representable ¢-groups are also
called residually ordered ¢-groups (see, e.g., [7]).

If a DR/-monoid fulfils (), then, by Lemma 2, its subdirect representa-
tions by totally ordered D R¢-monoids are associated with families of normal
prime ideals whose intersections are precisely {0}. Therefore, it is obvious
that every commutative DR/{-monoid satisfying (x — y) A (y —x) < 0 is
representable. On the contrary, this fails in the case of non-commutative
DR/{-monoids. For instance, any ¢-group G is a D R¢-monoid with (%), how-
ever, G need not be representable (residually ordered).
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Lemma 3. If P is a minimal prime ideal of a DR{-monoid A, then AT\ P
is a mazimal filter of the lattice (AT;V,A).

Proof. By Zorn’s Lemma, there exists a maximal filter F' of (A*;V,A)
with AT\ P C F. (Since P* is also a prime ideal of (A™;V,A), it follows
that AT\ P = A"\ P" is a prime filter of (A™;V, A) which is contained in
some maximal filter.) The aim of the proof is to show F = A™\ PT.

We claim that Pt = QF, where Q@ = J{at : a € F}.

If z € QF, that is, x Aa = 0 for some a € F, then z ¢ F. Indeed, if
xr € F, then 0 = x A a € F which entails F = AT. Thus z € AT\ F C
AT\ (AT \ PT) = P*, whence Qt C AT\ F C PT.

We shall now prove that ) is a prime ideal of A.

(I1): Since any principal polar a® contains 0, so deos Q.

(I2): If z,y € Q, i.e., |x| Aa =0 and |y| A b= 0 for some a,b € F, then
0 < |z+y|Aanb < (|z|+|y|+]|z]) Aarb < (Jz|Aanb)+(|y| AaAb)+(|z| AaAb) =
0. Therefore = +y € (a Ab)* C Q.

(I3): It is obvious since at is an ideal of A for each a € A.

In order to prove that @ is prime, suppose that z Ay € Q" yet = ¢ Q,
that is, z Ay Aa =0 for some a € F, and z Aa >0 foralla € F. If z ¢ F,
then the filter of (A1;V, A) generated by F'U{x} is equal to A", and hence
0 > aNx for some a € F, a contradiction. Therefore x € F, and so xAa € F
which yields y € (z A a)t C Q.

Let z € Q; then |x| € QT C P*, whence # € P showing Q C P.
However, P is minimal prime; so Q = P. Hence PT = Q™ as claimed. This
gives PT = AT\ F, and consequently, FF = A"\ P*. |

Observe that we have shown somewhat more than stated:
Lemma 4. A prime ideal P of a DR{-monoid A is minimal if and only if
P:U{aL:aeA‘F\P}.

Proof. By the proof of the previous lemma, P = |J{at : a € F}, where
F=AT\PT.

Conversely, suppose that Q C P for some prime ideal Q). If Q # P, then
thereis x € PT\Q, i.e., z € a* for some a € AT\ P. Since xtAa =0,z ¢ Q
and @ is prime, it follows that a € Q C P, a contradiction. Thus Q = P. m

The following results generalize the analogous properties of /-groups, pseudo
MV -algebras (GMV-algebras) and pseudo BL-algebras (see [7], [6], [4], [5]
and [13]):



120 J. KUHR

Theorem 5. For any DR{-monoid A satisfying (x), the following state-
ments are equivalent:

(i) A is representable.

(ii) There exists a family {P;}icr of normal prime ideals of A such that

ieIPi = {0}

(iii) Ewery polar is a normal ideal.
(iv) For any a € A*, a+ € N(A).
(v) Every minimal prime ideal is normal.

Proof. As argued above, the equivalence of (i) and (ii) is clear.
(i) = (iii). Suppose that A is a subdirect product of linearly ordered
DR/{-monoids {A;}icr. Observe that

(1) :cAyinff{iEI:xi>0i}ﬁ{i€I:yi>Oi}:®

for all z,y € AT, as all A; are linearly ordered.
Let now P be a polar in A, i.e., P = P, Let x € A, a € P+ and
y € Pt. Then z +a >z implies 2 +a = (x +a) Vo = ((z +a) = z) + .
Further,
{’iGI:(ZL‘i—I-(IZ')—\$i>0¢}g{i611ai>0i}.

Indeed, if a; = 0;, then (z; + a;) — z; = z; — z; = 0;. Hence, we obtain

{iel:(zi+a;)—a;>0}N{iel:|y| >0} C
Q{ie[:ai>0i}ﬂ{ielz|yi|>01}:®,

by (1), since a A |y| = 0. Therefore, ((x +a) — z) A |y| = 0, and thus
(x+a) =~z € Pt =P Hence, v +a=((r+a) ~z)+2€ P +x
proving x + PT C P* 4+ 2. One analogously proves the other inclusion.

The implication (iii) = (iv) is obvious and (iv) implies (v) immediately
by Lemma 4.

(v) = (ii). Since every prime ideal contains a minimal prime ideal and
the intersection of all prime ideals equals to {0}, so does the intersection of
all minimal prime ideals. Thus A is representable. [
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Theorem 6. A DR{-monoid is representable if and only if it satisfies the
identities

(2) (@ =y " Ay —=2)" +2) —2) =0,

(3) (=) A2+ (y~—2)") = 2) =0.

Proof. Any linearly ordered DR/{-monoid satisfies (2) and (3) since either
(x = y)t =0or (y = x)" = 0 (respectively, either (z — y)© = 0 or
(y ~— x)T = 0). Therefore the part "only if” is obvious.

Conversely, suppose that the above identities are satisfied by A; then A

fulfils also (%) (put z = 0). In view of Theorem 5, it suffices to prove that

2+ is normal for all x € AT.

Let y € (1), that is, y A x = 0. Observe that in this case
r=z—=yAr)=@—=yV@-2)=@—=yVo=(z—y)",
and similarly y = (y — x)". Hence, by (2),
eA((y+2)—2)=@—=y" A(ly—2)"+2)—2)=0;

thus (y + 2) «— z € ()T, Further, y + 2z > z implies y + 2 = (y +2) Vz =
24+ ((y + 2) «— 2) € z+ (z1)* which shows (z1)* +2 C 2+ (z1)T. The
other inclusion follows similarly by (3). |

Corollary 7. A DR{-monoid is representable if and only if it satisfies the
identities

(=) A (((y = 2) +2) —2) <0,
(x~—y) AN((z+ (y ~z)) = 2) <0.
Proof. One readily sees that

(=" A(ly—=2)" +2)—2)=[z =y A(((y = 2) +2) — 2)]7,

@—y) A E+y—a)") =)=y A (E+y—) 2"

Corollary 8. The class of all representable DR{-monoids is a proper
subvariety of the variety of all DR{-monoids.
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