Download PDF - Duality for some free modes
ArticleOriginal scientific text
Title
Duality for some free modes
Authors 1, 1, 2
Affiliations
- Faculty of Mathematics and Information Sciences, Warsaw University of Technology, 00-661 Warsaw, Poland
- Department of Mathematics, Iowa State University, Ames, Iowa 50011, U.S.A.
Abstract
The paper establishes a duality between a category of free subreducts of affine spaces and a corresponding category of generalized hypercubes with constants. This duality yields many others, in particular a duality between the category of (finitely generated) free barycentric algebras (simplices of real affine spaces) and a corresponding category of hypercubes with constants.
Keywords
duality, modes, affine spaces and their subreducts, barycentric algebras, convex sets, simplices, hypercubes
Bibliography
- R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, MO, 1974.
- D.M. Clark and B.A. Davey, Natural Dualities for the Working Algebraists, Cambridge University Press, Cambridge 1998.
- B. Csákány, Varieties of affine modules, Acta Sci Math. 37 (1975), 3-10.
- B.A. Davey, Duality theory on ten dollars a day, 'Algebras and Orders', Kluwer Acad. Publ. 1993, 71-111.
- B.A. Davey and R.W. Quackenbush, Bookkeeping duality for paraprimal algebras, Contributions to General Algebra 9 (1995), 19-26.
- B.A. Davey and H. Werner, Dualities and equivalences for varieties of algebras, Colloq. Math. Soc. J. Bolyai 33 (1980), 101-275.
- G. Grätzer, Universal Algebra, Springer-Verlag, Berlin 1979.
- K.H. Hofmann, M. Mislove and A. Stralka, The Pontryagin Duality of Compact 0-Dimensional Semilattices and its Applications, Springer-Verlag,Berlin 1974.
- J. Jezek and T. Kepka, Free commutative idempotent abelian groupoids and quasigroups, Acta Univ. Carolin. Math. Phys. 17 (1976), 13-19.
- J. Jezek and T. Kepka, Medial Groupoids, Academia, Praha 1983.
- S. MacLane, Categories for the Working Mathematician, Springer-Verlag, Berlin 1971.
- A. I. Mal'cev, Algebraic Systems, Springer-Verlag, New York 1973.
- W.D. Neumann, On the quasivariety of convex subsets of affine spaces, Arch. Math. 21 (1970), 11-16.
- K. Pszczoła, Duality for affine spaces over finite fields, Contributions to General Algebra 13 (2001), 285-293.
- K.J. Pszczoła, A.B. Romanowska and J.D.H. Smith, Duality for quadrilaterals, Contribution to General Algebra, to appear.
- A.B. Romanowska, Barycentric algebras, 'General Algebra and Applications', Shaker Verlag, Aachen 2000, 167-181.
- A.B. Romanowska and J.D.H. Smith, Modal Theory, Heldermann-Verlag, Berlin 1985.
- A.B. Romanowska and J.D.H. Smith, Semilattice-based dualities, Studia Logica 56 (1996), 225-261.
- A.B. Romanowska and J.D.H. Smith, Duality for semilattice representations, J. Pure Appl. Algebra 115 (1997), 289-308.
- A.B. Romanowska and J.D.H. Smith, Embedding sums of cancellatice modes into functorial sums of affine spaces, 'Unsolved Problems on Mathematics for the 21st Century, a Tribute to Kiyoshi Iseki's 80th Birthday', IOS Press, Amsterdam 2001, 127-139.
- A.B. Romanowska and J.D.H. Smith, Modes, World Scientific, Singapore 2002.
- A.B. Romanowska and J.D.H. Smith, Poset extensions, convex sets, and semilattice presentations, preprint, 2002.
- J.D.H. Smith and A. B. Romanowska, Post-Modern Algebra, Wiley, New York, NY, 1999.