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Abstract

By dealing with absolute retracts of `-groups we use a definition
analogous to that applied by Halmos for the case of Boolean algebras.
The main results of the present paper concern absolute convex retracts
in the class of all archimedean `-groups and in the class of all complete
`-groups.
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1. Introduction

Retracts of abelian `-groups and of abelian cyclically ordered groups were
investigated in [6], [7], [8].

Suppose that C is a class of algebras. An algebra A ∈ C is called an
absolute retract in C if, whenever B ∈ C and A is a subalgebra of B, then
A is a retract of B (i.e., there is a homomorphism h of B onto A such that
h(a) = a for each a ∈ A). Cf., e.g., Halmos [3].

Further, let C be a class of `-groups. An element A ∈ C will be called an
absolute convex retract in C if, whenever B ∈ C and A is a convex `-subgroup
of B, then A is a retract of B.
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Let G and Arch be the class of all `-groups, or the class of all archimedean
`-groups, respectively.

It is easy to verify (cf. Section 2 below) that for A ∈ G the following
conditions are equivalent:

(i) A is an absolute retract in G;

(ii) A is an absolute convex retract in G;

(iii) A = {0}.

In this note we prove

(α) Let A be an absolute retract in the class Arch. Then the `-group A
is divisible, complete and orthogonally complete.

By applying a result of [5] we obtain

(β) Let A ∈ Arch and suppose that the `-group A is complete and orthog-
onally complete. Then A is an absolute convex retract in the class
Arch.

The question whether the implication in (α) (or in (β), respectively) can be
reversed remains open.

Let us denote by
Compl - the class of all complete `-groups;
Compl∗ - the class of all `-groups which are complete and orthogonally
complete.

(γ) Let A ∈ Compl. Then the following conditions are equivalent:

(i) A is orthogonally complete.

(ii) A is an absolute convex retract in the class Compl.

As a corollary we obtain that each `-group belonging to Compl∗ is an abso-
lute convex retract in the class Compl∗.

We prove that if the class C ⊆ G is closed with respect to direct products
and if Ai (i ∈ I) are asbolute (convex) retracts in C, then their direct product∏

i∈I Ai is also an absolute (convex) retract in C.
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2. Preliminaries

For `-groups we apply the notation as in Conrad [1]. Hence, in particular,
the group operation in an `-group is written additively.

We recall some relevant notions. Let G be an `-group. G is divisible if
for each a ∈ G and each positive integer n there is x ∈ G with nx = a. A
system ∅ 6= {xi}i∈I ⊆ G+ is called orthogonal (or disjoint) if xi(1) ∧xi(2) = 0
whenever i(1) and i(2) are distinct elements of I. If each orthogonal subset
of G possesses the supremum in G then G is said to be orthogonally complete.
G is complete if each nonempty bounded subset of G has the supremum and
the infimum in G.

G is archimedean if, whenever 0 < x ∈ G and y ∈ G, then there is a
positive integer n such that nx � y. For each archimedean `-group G there
exists a complete `-group D(G) (the Dedekind completion of G) such that

(i) G is a closed `-subgroup of D(G);

(ii) for each x ∈ D(G) there are subsets {yi}i∈I and {zj}j∈J of G such
that the relations

sup{xi}i∈I = x = inf{zj}j∈J

are valid in D(G).

Let G1 be a linearly ordered group and let G2 be an `-group. The symbol
G1 ◦ G2 denotes the lexicographic product of G1 and G2. The elements of
G1 ◦G2 are pairs (g1, g2) with g1 ∈ G1 and g2 ∈ G2. For each g2 ∈ G2, the
pair (0, g2) will be identified with the element g2 of G2. Then G2 is a convex
`-subgroup of G1 ◦G2.

Lemma 2.1. Let A be an `-group, A 6= {0}, and let G1 be a linearly ordered
group, G1 6= {0}. Put B = G1 ◦A. Then A fails to be a retract of B.

Proof. By way of contradiction, suppose that A is a retract of B. Let h
be the corresponding retract homomorphism of B onto A; i.e., h(a) = a
for each a ∈ A. There exists g1 ∈ G1 with g1 > 0. Denote (g1, 0) = b,
h(b) = a. Further, there exists a1 ∈ A with a1 > a. We have a1 < b, whence
h(a1) 5 h(b), thus a1 5 a, which is a contradiction.

Let us denote by A the class of all abelian lattice ordered groups. If A,G1

and B are as in Lemma 2.1 and A,G1 ∈ A, then also B belongs to A. Thus
Lemma 2.1 yields
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Proposition 2.2. Let C ∈ {G,A} and let A be an absolute retract (or an
absolute convex retract, respectively) in the class C. Then A = {0}.
It is obvious that {0} is an absolute (convex) retract in both the classes G
and A.

Let us remark that if G1, B ∈ G and if G1 is a retract of B, then G1

need not be a convex `-subgroup of B. This is verified by the following
example:

Let G1 be a linearly ordered group, G1 6= {0}. Further, let G2 ∈ G,
G2 6= {0}. Put B = G1 ◦ G2. If g1 ∈ G1, then the element (g1, 0) of B
will be identified with the element g1 of G1. Thus G1 turns out to be an
`-subgroup of B which is not a convex subset of B. For each (g1, g2) ∈ B
we put h((g1, g2)) = g1. Then h is a homomorphism of B onto G1 such that
h(g1) = g1 for each g1 ∈ G1. Hence G1 is a retract of B.

3. Proofs of (α), (β) and (γ)

In this section we assume that A is an archimedean `-group. Hence A is
abelian.

It is well-known that there exists the divisible hull Ad of A. Thus

(i) Ad is a divisible `-group;

(ii) A is an `-subgroup of Ad;

(iii) if g ∈ Ad, then there are a ∈ A, a positive integer n and an integer m
such that ng = ma.

Lemma 3.1. Assume that A is an absolute retract in the class Arch. Then
the `-group A is divisible.

Proof. By way of contradiction, suppose that A fails to be divisible. Thus
there are a1 ∈ A and n ∈ N such that there is no x in A with nx = a1.

Put B = Ad. In view of the assumption, A is a retract of B; let h be
the corresponding retract homomorphism.

There exists b ∈ B with nb = a1. Then b /∈ A. Denote h(b) = a. We
have

a1 = h(a1) = h(nb) = nh(b) = na,

which is a contradiction.
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Lemma 3.2. Assume that A is an absolute retract in the class Arch. Then
A is a complete `-group.

Proof. By way of contradiction, suppose that A fails to be complete. Put
B = D(A). Then A is an `-subgroup of B and A 6= B. Thus there is b ∈ B
such that b does not belong to A.

In view of the assumption, A is a retract of B; let h be the corresponding
retract homomorphism. Put h(b) = a.

There exists a subset {ai}i∈I of A such that the relation

b =
∨

i∈I

ai

is valid in B. Hence ai 5 b for each i ∈ I. This yields

ai = h(ai) 5 h(b) = a

for each i ∈ I. Thus b 5 a.
At the same time, there exists a subset {a′j}j∈J of A such that the

relation

b =
∧

j∈J

a′j

holds in B. Hence b 5 a′j for each j ∈ J , thus by applying the homo-
morphism h we obtain that a 5 a′j for each j ∈ J . Therefore a 5 b.
Summarizing, a = b and we arrived at a contradiction.

Lemma 3.3. Suppose that H is a complete `-group. Then there exists an
`-group K such that

(i) H is a convex `-subgroup of K;

(ii) K is complete and orthogonally complete;

(iii) for each 0 < k ∈ K there exists a disjoint subset {xi}i∈I of H such
that the relation

k =
∨

i∈I

xi

is valid in K.
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Proof. This is a consequence of results of [5].

Lemma 3.4. Assume that A is an absolute retract in the class Arch. Then
the `-group A is orthogonally complete.

Proof. In view of Lemma 3.2, A is complete. Put A = H and let K be as
in Lemma 3.3. According to the assumption, A is a retract of K. Let h be
the corresponding retract homomorphism.

Let 0 < k ∈ K and let {xi}i∈I be as in Lemma 3.3. Put h(k) = a. Then
a = h(xi) = xi for each i ∈ I, whence k 5 a. Thus the condition (i) of
Lemma 3.3 yields that k ∈ A. Hence K+ ⊆ A and then K ⊆ A. Therefore
K = A and so A is orthogonally complete.

From Lemmas 3.1, 3.2 and 3.4 we conclude that (α) is valid.
Let G1, G2 ∈ G; their direct product is denoted by G1×G2. If g1 ∈ G1,

then the element (g1, 0) of G1 ×G2 will be identified with g1. Similarly, for
g2 ∈ G2, the element (0, g2) of G1 × G2 will be identified with g2. Under
this identification, both G1 and G2 are convex `-subgroups of G1 ×G2.

Definition 3.5. (Cf. [2].) Let G1 ∈ Arch. We say that G1 has the splitting
property if, whenever H ∈ Arch and G1 is a convex `-subgroup of H, then
G1 is a direct factor of H.

Proposition 3.6. (Cf. [4].) Let G1 ∈ Arch. Then the following conditions
are equivalent:

(i) G1 has the splitting property.

(ii) The `-group G1 is complete and orthogonally complete.

Lemma 3.7. Let H ∈ G and let G1 be a direct factor of H. Then G1 is a
retract of H.

Proof. There exists G2 ∈ G such that H = G1 ×G2. For (g1, g2) ∈ H we
put h((g1, g2)) = g1. Then h is a retract homomorphism of H onto G1.

Proof of (β). Let A,B ∈ Arch and suppose that A is a convex `-subgroup
of B. Further, suppose that A is complete and orthogonally complete. In
view of Proposition 3.6, A is a direct factor of B. Hence according to Lemma
3.7, A is a retract of B. Therefore A is an absolute convex retract in the
class Arch.
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Lemma 3.8. Let A ∈ Compl. Suppose that A is an absolute convex retract
in the class Compl. Then A is orthogonally complete.

Proof. Put H =A and let K be as in Lemma 3.3. In view of Lemma 3.3 (i),
A is a convex `-subgroup of K. Hence according to the assumption, A is a
retract of K. Now it suffices to apply the same method as in the proof of
Lemma 3.4.

Lemma 3.9. Let A ∈ Compl. Suppose that A is orthogonally complete.
Then A is an absolute convex retract in the class Compl.

Proof. In view of (β), A is an absolute convex retract in the class Arch.
It is well-known that the class Compl is a subclass of Arch. Hence A is an
absolute convex retract in the class Compl.

From Lemmas 3.8 and 3.9 we conclude that (γ) holds.

Corollary 3.10. Let A ∈ Compl∗. Then A is an absolute convex retract in
the class Compl∗.

4. Direct products

Let Ai (i ∈ I) be `-groups; consider their direct product

(1) A =
∏

i∈I

Ai.

Without loss of generality we can suppose that Ai(1)∩Ai(2) = {0} whenever
i(1) and i(2) are distinct elements of I. For a ∈ A and i ∈ I, we denote by
ai or by a(Ai) the component of a in the direct factor Ai.
Let i ∈ I. Put

A′i = {a ∈ A : ai = 0}.
Then we have

(2) A = Ai ×A′i,

A′i =
∏

j∈I\{i}
Aj .
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Let i(0) ∈ I and ai(0) ∈ Ai(1). There exists a ∈ A such that

ai =





ai(0) if i = i(0),

0 otherwise.

Then the element a of A will be identified with the element ai(0) of Ai(0).
Under this identification, each Ai turns out to be a convex `-subgroup of A.

Lemma 4.1. Let B be an `-group and let A be an `-subgroup of B. Suppose
that (1) is valid. Let i be a fixed element of I and assume that Ai is a retract
of B; the corresponding retract homomorphism will be denoted by hi. Then
for each a ∈ A the relation

hi(a) = ai

is valid.

Proof. a) At first let 0 5 a′ ∈ A′i and 0 5 ai ∈ Ai. Then a′ ∧ ai = 0, thus

0 = hi(a′) ∧ hi(ai) = hi(a′) ∧ ai.

Since this is valid for each ai ∈ Ai and hi(a′) ∈ Ai we conclude that hi(a′) =
0. Then hi(−a′) = 0 as well and this yields that hi(a′′) = 0 for each a′′ ∈ A′i.

b) Let a ∈ A. In view of (2) we have

a = ai + a(A′i).

Thus

hi(a) = hi(ai) + hi(a(A′i)).

According to a), hi(a(A′i)) = 0. Thus hi(a) = ai.

Lemma 4.2. Let B be an `-group and let A be an `-subgroup of B. Sup-
pose that (1) is valid and that for each i ∈ I, Ai is a retract of B; the
corresponding retract homomorphism will be denoted by hi. For b ∈ B we
put

h(b) = b1 ∈ A,

where b1
i = hi(b) for each i ∈ I. Then
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(i) h is a homomorphism of B into A;

(ii) h(a) = a for each a ∈ A.

Proof. The definition of h and the relation (1) immediately yield that (i)
is valid. Let a ∈ A and i ∈ I. Put h(a) = a1. We have

a = ai + a(A′i),

thus by applying (i),

h(a) = h(ai) + h(a(A′i),

a1
i = hi(ai) + hi(a(A′i)).

Since hi(ai) = ai and because (a(A′i))i = 0, according to Lemma 4.1, we
obtain

a1
i = ai for each i ∈ I,

thus a1 = a.

Corollary 4.3. Let the assumptions of Lemma 4.2 be valid. Then A is a re-
tract
of B.

From Corollary 4.3 we immediately conclude

Proposition 4.4. Assume that C is a class of `-groups which is closed with
respect to direct products. Let Ai (i ∈ I) be absolute retracts in C and let (1)
be valid. Then A is an absolute retract in C.

Proposition 4.5. Assume that C is a class of `-groups which is closed with
respect to direct products. Let Ai (i ∈ I) be absolute convex retracts in C
and let (1) be valid. Then A is an absolute convex retract in C.
Proof. Let B ∈ C and suppose that A is a convex `-subgroup of B. Then
all Ai are convex `-subgroups of B. Hence in view of the assumption, all
Ai are retracts of B. Thus according to Corollary 4.3, A is a retract of B.
Therefore A is an absolute convex retract in the class C.
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5. An example

The assertions of the following two lemmas are easy to verify; the proofs
will be omitted.

Lemma 5.1. Let A be an `-group which is complete and divisible. Then

(i) we can define (in a unique way) a multiplication of elements of A
with reals such that A turns out to be a vector lattice;

(ii) if r > 0 is a real, 0 < a ∈ A, X = {q1 ∈ Q : 0 < q1 5 r},
Y = {q2 ∈ R : r 5 q2}, then the relations

sup(q1a) = ra = inf(q2a)

are valid in A;

(iii) if A1 is an `-subgroup of A such that A1 is complete and divisible,
and a1 ∈ A, then for each real r the multiplication ra1 in A1 gives
the same result as the multiplication ra1 in A.

Lemma 5.2. Let A be as in Lemma 5.1 and suppose that A =
∏

i∈I Ai.
Then all Ai are complete and divisible; moreover, for each real r, each a ∈ A
and each i ∈ I we have

(ra)i = rai.

Let R be the additive group of all reals with the natural linear order. We
denote by CR the class of all lattice ordered groups which can be expressed
as direct products of `-groups isomorphic to R.

We remark that if B ∈ CR and if A is an `-subgroup of B which is
isomorphic to R, then A need not be a convex `-subgroup of B. In fact,
suppose that

B =
∏

i∈I

Bi,

where each Bi is isomorphic to R; let ϕi be and isomorphism of R onto Bi.
For each r ∈ R put

ϕ(r) = (. . . , ϕi(r), . . . )i∈I ,
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A = ϕ(R).

A is an `-subgroup of B; if I has more than one element, then A fails to be
convex in B.

Let B be as above; suppose that A is an `-group isomorphic to R and
that A is an `-subgroup of B. Let 0 < a ∈ A. Then ai = a(Bi) = 0 for each
i ∈ I and there exists i(0) ∈ I with ai(0) > 0. Thus, in view of Lemma 5.1,
we have (ra)i(0) > 0 for each r ∈ R with r 6= 0. Further, for each a1 ∈ A
there exists a uniquely determined element r ∈ R with a1 = ra. This yields
that the mapping

ϕi(0) : a1 7→ (a1)i(0)

is an isomorphism of A into Bi(0).
Let b ∈ Bi(0). There exists a unique r ∈ R such that

b = rai(0).

Then, in view of Lemma 5.2, b = (ra)i(0) and hence the mapping ϕi(0) is an
isomorphism of A onto Bi(0).

For each b ∈ B we put

h(b) = ϕ−1
i(0) (bi(0)).

Then h is a homomorphism of B into A. For a1 ∈ A the definition of ϕi(0)

yields

h(a1) = a1.

Thus we obtain

Lemma 5.3. Let B ∈ CR and let A be an `-subgroup of B such that A is
isomorphic to R. Then A is a retract of B.

Corollary 5.4. Let A be an `-group isomorphic to R. Then A is an absolute
retract in the class CR.

From Lemma 5.4 and Corollary 4.5 we conclude

Proposition 5.5. Each element of CR is an absolute retract in the class
CR.
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