ON ABSOLUTE RETRACTS AND ABSOLUTE CONVEX RETRACTS IN SOME CLASSES OF ℓ-GROUPS

Ján Jakubík

Matematický ústav SAV,
Grešáková 6, 040 01 Košice, Slovakia
email: kstefan@saske.sk

Abstract

By dealing with absolute retracts of ℓ-groups we use a definition analogous to that applied by Halmos for the case of Boolean algebras. The main results of the present paper concern absolute convex retracts in the class of all archimedean ℓ-groups and in the class of all complete ℓ-groups.

Keywords: ℓ-group, absolute retract, absolute convex retract, archimedean ℓ-group, complete ℓ-group, orthogonal completeness.

2000 Mathematics Subject Classification: 06F20, 06F15.

1. Introduction

Retracts of abelian ℓ-groups and of abelian cyclically ordered groups were investigated in [6], [7], [8].

Suppose that \mathcal{C} is a class of algebras. An algebra $A \in \mathcal{C}$ is called an absolute retract in \mathcal{C} if, whenever $B \in \mathcal{C}$ and A is a subalgebra of B, then A is a retract of B (i.e., there is a homomorphism h of B onto A such that $h(a) = a$ for each $a \in A$). Cf., e.g., Halmos [3].

Further, let \mathcal{C} be a class of ℓ-groups. An element $A \in \mathcal{C}$ will be called an absolute convex retract in \mathcal{C} if, whenever $B \in \mathcal{C}$ and A is a convex ℓ-subgroup of B, then A is a retract of B.

Let \(\mathcal{G} \) and \(\text{Arch} \) be the class of all \(\ell \)-groups, or the class of all archimedean \(\ell \)-groups, respectively.

It is easy to verify (cf. Section 2 below) that for \(A \in \mathcal{G} \) the following conditions are equivalent:

\[(i) \ A \text{ is an absolute retract in } \mathcal{G};\]
\[(ii) \ A \text{ is an absolute convex retract in } \mathcal{G};\]
\[(iii) \ A = \{0\}.
\]

In this note we prove

\((\alpha)\) Let \(A \) be an absolute retract in the class \(\text{Arch} \). Then the \(\ell \)-group \(A \) is divisible, complete and orthogonally complete.

By applying a result of [5] we obtain

\((\beta)\) Let \(A \in \text{Arch} \) and suppose that the \(\ell \)-group \(A \) is complete and orthogonally complete. Then \(A \) is an absolute convex retract in the class \(\text{Arch} \).

The question whether the implication in (\(\alpha \)) (or in (\(\beta \)), respectively) can be reversed remains open.

Let us denote by

\(\text{Compl} \) - the class of all complete \(\ell \)-groups;
\(\text{Compl}^* \) - the class of all \(\ell \)-groups which are complete and orthogonally complete.

\((\gamma)\) Let \(A \in \text{Compl} \). Then the following conditions are equivalent:

\[(i) \ A \text{ is orthogonally complete.}\]
\[(ii) \ A \text{ is an absolute convex retract in the class } \text{Compl}.\]

As a corollary we obtain that each \(\ell \)-group belonging to \(\text{Compl}^* \) is an absolute convex retract in the class \(\text{Compl}^* \).

We prove that if the class \(\mathcal{C} \subseteq \mathcal{G} \) is closed with respect to direct products and if \(A_i \ (i \in I) \) are absolute (convex) retracts in \(\mathcal{C} \), then their direct product \(\prod_{i \in I} A_i \) is also an absolute (convex) retract in \(\mathcal{C} \).
2. Preliminaries

For \(\ell \)-groups we apply the notation as in Conrad [1]. Hence, in particular, the group operation in an \(\ell \)-group is written additively.

We recall some relevant notions. Let \(G \) be an \(\ell \)-group. \(G \) is divisible if for each \(a \in G \) and each positive integer \(n \) there is \(x \in G \) with \(nx = a \). A system \(\emptyset \neq \{ x_i \}_{i \in I} \subseteq G^+ \) is called orthogonal (or disjoint) if \(x_{i(1)} \wedge x_{i(2)} = 0 \) whenever \(i(1) \) and \(i(2) \) are distinct elements of \(I \). If each orthogonal subset of \(G \) possesses the supremum in \(G \) then \(G \) is said to be orthogonally complete. \(G \) is complete if each nonempty bounded subset of \(G \) has the supremum and the infimum in \(G \). \(G \) is archimedean if, whenever \(0 < x \in G \) and \(y \in G \), then there is a positive integer \(n \) such that \(nx \not\leq y \). For each archimedean \(\ell \)-group \(G \) there exists a complete \(\ell \)-group \(D(G) \) (the Dedekind completion of \(G \)) such that

(i) \(G \) is a closed \(\ell \)-subgroup of \(D(G) \);

(ii) for each \(x \in D(G) \) there are subsets \(\{ y_i \}_{i \in I} \) and \(\{ z_j \}_{j \in J} \) of \(G \) such that the relations

\[
\sup \{ x_i \}_{i \in I} = x = \inf \{ z_j \}_{j \in J}
\]

are valid in \(D(G) \).

Let \(G_1 \) be a linearly ordered group and let \(G_2 \) be an \(\ell \)-group. The symbol \(G_1 \circ G_2 \) denotes the lexicographic product of \(G_1 \) and \(G_2 \). The elements of \(G_1 \circ G_2 \) are pairs \((g_1, g_2)\) with \(g_1 \in G_1 \) and \(g_2 \in G_2 \). For each \(g_2 \in G_2 \), the pair \((0, g_2)\) will be identified with the element \(g_2 \) of \(G_2 \). Then \(G_2 \) is a convex \(\ell \)-subgroup of \(G_1 \circ G_2 \).

Lemma 2.1. Let \(A \) be an \(\ell \)-group, \(A \neq \{0\} \), and let \(G_1 \) be a linearly ordered group, \(G_1 \neq \{0\} \). Put \(B = G_1 \circ A \). Then \(A \) fails to be a retract of \(B \).

Proof. By way of contradiction, suppose that \(A \) is a retract of \(B \). Let \(h \) be the corresponding retract homomorphism of \(B \) onto \(A \); i.e., \(h(a) = a \) for each \(a \in A \). There exists \(g_1 \in G_1 \) with \(g_1 > 0 \). Denote \((g_1, 0) = b, h(b) = a \). Further, there exists \(a_1 \in A \) with \(a_1 > a \). We have \(a_1 < b \), whence \(h(a_1) \leq h(b) \), thus \(a_1 \leq a \), which is a contradiction. \(\blacksquare \)

Let us denote by \(\mathcal{A} \) the class of all abelian lattice ordered groups. If \(A, G_1 \) and \(B \) are as in Lemma 2.1 and \(A, G_1 \in \mathcal{A} \), then also \(B \) belongs to \(\mathcal{A} \). Thus Lemma 2.1 yields
Proposition 2.2. Let $C \in \{G, A\}$ and let A be an absolute retract (or an absolute convex retract, respectively) in the class C. Then $A = \{0\}$. ■

It is obvious that $\{0\}$ is an absolute (convex) retract in both the classes G and A.

Let us remark that if $G_1, B \in G$ and if G_1 is a retract of B, then G_1 need not be a convex ℓ-subgroup of B. This is verified by the following example:

Let G_1 be a linearly ordered group, $G_1 \neq \{0\}$. Further, let $G_2 \in G$, $G_2 \neq \{0\}$. Put $B = G_1 \circ G_2$. If $g_1 \in G_1$, then the element $(g_1, 0)$ of B will be identified with the element g_1 of G_1. Thus G_1 turns out to be an ℓ-subgroup of B which is not a convex subset of B. For each $(g_1, g_2) \in B$ we put $h((g_1, g_2)) = g_1$. Then h is a homomorphism of B onto G_1 such that $h(g_1) = g_1$ for each $g_1 \in G_1$. Hence G_1 is a retract of B.

3. PROOFS OF (α), (β) AND (γ)

In this section we assume that A is an archimedean ℓ-group. Hence A is abelian.

It is well-known that there exists the divisible hull A^d of A. Thus

(i) A^d is a divisible ℓ-group;

(ii) A is an ℓ-subgroup of A^d;

(iii) if $g \in A^d$, then there are $a \in A$, a positive integer n and an integer m such that $ng = ma$.

Lemma 3.1. Assume that A is an absolute retract in the class Arch. Then the ℓ-group A is divisible.

Proof. By way of contradiction, suppose that A fails to be divisible. Thus there are $a_1 \in A$ and $n \in \mathbb{N}$ such that there is no x in A with $nx = a_1$.

Put $B = A^d$. In view of the assumption, A is a retract of B; let h be the corresponding retract homomorphism.

There exists $b \in B$ with $nb = a_1$. Then $b \notin A$. Denote $h(b) = a$. We have

$$a_1 = h(a_1) = h(nb) = nh(b) = na,$$

which is a contradiction. ■
Lemma 3.2. Assume that A is an absolute retract in the class Arch. Then A is a complete ℓ-group.

Proof. By way of contradiction, suppose that A fails to be complete. Put $B = D(A)$. Then A is an ℓ-subgroup of B and $A \neq B$. Thus there is $b \in B$ such that b does not belong to A.

In view of the assumption, A is a retract of B; let h be the corresponding retract homomorphism. Put $h(b) = a$.

There exists a subset $\{a_i\}_{i \in I}$ of A such that the relation

$$b = \bigvee_{i \in I} a_i$$

is valid in B. Hence $a_i \leq b$ for each $i \in I$. This yields

$$a_i = h(a_i) \leq h(b) = a$$

for each $i \in I$. Thus $b \leq a$.

At the same time, there exists a subset $\{a'_j\}_{j \in J}$ of A such that the relation

$$b = \bigwedge_{j \in J} a'_j$$

holds in B. Hence $b \leq a'_j$ for each $j \in J$, thus by applying the homomorphism h we obtain that $a \leq a'_j$ for each $j \in J$. Therefore $a \leq b$. Summarizing, $a = b$ and we arrived at a contradiction.

Lemma 3.3. Suppose that H is a complete ℓ-group. Then there exists an ℓ-group K such that

(i) H is a convex ℓ-subgroup of K;

(ii) K is complete and orthogonally complete;

(iii) for each $0 < k \in K$ there exists a disjoint subset $\{x_i\}_{i \in I}$ of H such that the relation

$$k = \bigvee_{i \in I} x_i$$

is valid in K.

Proof. This is a consequence of results of [5]. □

Lemma 3.4. Assume that A is an absolute retract in the class Arch. Then the ℓ-group A is orthogonally complete.

Proof. In view of Lemma 3.2, A is complete. Put $A = H$ and let K be as in Lemma 3.3. According to the assumption, A is a retract of K. Let h be the corresponding retract homomorphism.

Let $0 < k \in K$ and let $\{x_i\}_{i \in I}$ be as in Lemma 3.3. Put $h(k) = a$. Then $a \geq h(x_i) = x_i$ for each $i \in I$, whence $k \leq a$. Thus the condition (i) of Lemma 3.3 yields that $k \in A$. Hence $K^+ \subseteq A$ and then $K \subseteq A$. Therefore $K = A$ and so A is orthogonally complete. □

From Lemmas 3.1, 3.2 and 3.4 we conclude that (α) is valid.

Let $G_1, G_2 \in G$; their direct product is denoted by $G_1 \times G_2$. If $g_1 \in G_1$, then the element $(g_1, 0)$ of $G_1 \times G_2$ will be identified with g_1. Similarly, for $g_2 \in G_2$, the element $(0, g_2)$ of $G_1 \times G_2$ will be identified with g_2. Under this identification, both G_1 and G_2 are convex ℓ-subgroups of $G_1 \times G_2$.

Definition 3.5. (Cf. [2].) Let $G_1 \in \text{Arch}$. We say that G_1 has the splitting property if, whenever $H \in \text{Arch}$ and G_1 is a convex ℓ-subgroup of H, then G_1 is a direct factor of H.

Proposition 3.6. (Cf. [4].) Let $G_1 \in \text{Arch}$. Then the following conditions are equivalent:

(i) G_1 has the splitting property.

(ii) The ℓ-group G_1 is complete and orthogonally complete.

Lemma 3.7. Let $H \in G$ and let G_1 be a direct factor of H. Then G_1 is a retract of H.

Proof. There exists $G_2 \in G$ such that $H = G_1 \times G_2$. For $(g_1, g_2) \in H$ we put $h((g_1, g_2)) = g_1$. Then h is a retract homomorphism of H onto G_1. □

Proof of (β). Let $A, B \in \text{Arch}$ and suppose that A is a convex ℓ-subgroup of B. Further, suppose that A is complete and orthogonally complete. In view of Proposition 3.6, A is a direct factor of B. Hence according to Lemma 3.7, A is a retract of B. Therefore A is an absolute convex retract in the class Arch. □
Lemma 3.8. Let $A \in \text{Compl}$. Suppose that A is an absolute convex retract in the class Compl. Then A is orthogonally complete.

Proof. Put $H = A$ and let K be as in Lemma 3.3. In view of Lemma 3.3 (i), A is a convex ℓ-subgroup of K. Hence according to the assumption, A is a retract of K. Now it suffices to apply the same method as in the proof of Lemma 3.4.

Lemma 3.9. Let $A \in \text{Compl}$. Suppose that A is orthogonally complete. Then A is an absolute convex retract in the class Compl.

Proof. In view of (β), A is an absolute convex retract in the class Arch. It is well-known that the class Compl is a subclass of Arch. Hence A is an absolute convex retract in the class Compl.

From Lemmas 3.8 and 3.9 we conclude that (γ) holds.

Corollary 3.10. Let $A \in \text{Compl}^*$. Then A is an absolute convex retract in the class Compl^*.

4. **Direct products**

Let $A_i (i \in I)$ be ℓ-groups; consider their direct product

$$A = \prod_{i \in I} A_i.$$

Without loss of generality we can suppose that $A_i(\mathfrak{1}) \cap A_{i(2)} = \{0\}$ whenever $i(\mathfrak{1})$ and $i(\mathfrak{2})$ are distinct elements of I. For $a \in A$ and $i \in I$, we denote by a_i or by $a(A_i)$ the component of a in the direct factor A_i.

Let $i \in I$. Put

$$A'_i = \{a \in A : a_i = 0\}.$$

Then we have

$$A = A_i \times A'_i,$$

$$A'_i = \prod_{j \in I \setminus \{i\}} A_j.$$

Let $i(0) \in I$ and $a_i^{(0)} \in A_i^{(1)}$. There exists $a \in A$ such that

$$a_i = \begin{cases}
 a_i^{(0)} & \text{if } i = i(0), \\
 0 & \text{otherwise}.
\end{cases}$$

Then the element a of A will be identified with the element $a_i^{(0)}$ of $A_i^{(0)}$. Under this identification, each A_i turns out to be a convex ℓ-subgroup of A.

Lemma 4.1. Let B be an ℓ-group and let A be an ℓ-subgroup of B. Suppose that (1) is valid. Let i be a fixed element of I and assume that A_i is a retract of B; the corresponding retract homomorphism will be denoted by h_i. Then for each $a \in A$ the relation

$$h_i(a) = a_i$$

is valid.

Proof. a) At first let $0 \leq a' \in A'_i$ and $0 \leq a^i \in A_i$. Then $a' \land a^i = 0$, thus

$$0 = h_i(a') \land h_i(a^i) = h_i(a') \land a^i.$$

Since this is valid for each $a^i \in A_i$ and $h_i(a') \in A_i$ we conclude that $h_i(a') = 0$. Then $h_i(-a') = 0$ as well and this yields that $h_i(a'') = 0$ for each $a'' \in A'_i$.

b) Let $a \in A$. In view of (2) we have

$$a = a_i + a(A'_i).$$

Thus

$$h_i(a) = h_i(a_i) + h_i(a(A'_i)).$$

According to a), $h_i(a(A'_i)) = 0$. Thus $h_i(a) = a_i$.

Lemma 4.2. Let B be an ℓ-group and let A be an ℓ-subgroup of B. Suppose that (1) is valid and that for each $i \in I$, A_i is a retract of B; the corresponding retract homomorphism will be denoted by h_i. For $b \in B$ we put

$$h(b) = b^1 \in A,$$

where $b^1_i = h_i(b)$ for each $i \in I$. Then
(i) \(h \) is a homomorphism of \(B \) into \(A \);
(ii) \(h(a) = a \) for each \(a \in A \).

Proof. The definition of \(h \) and the relation (1) immediately yield that (i) is valid. Let \(a \in A \) and \(i \in I \). Put \(h(a) = a^1 \). We have

\[
a = a_i + a(A'_i),
\]

thus by applying (i),

\[
h(a) = h(a_i) + h(a(A'_i)),
\]

\[
a^1_i = h_i(a_i) + h_i(a(A'_i)).
\]

Since \(h_i(a_i) = a_i \) and because \((a(A'_i))_i = 0 \), according to Lemma 4.1, we obtain

\[
a^1_i = a_i \quad \text{for each } i \in I,
\]

thus \(a^1 = a \).

Corollary 4.3. Let the assumptions of Lemma 4.2 be valid. Then \(A \) is a retract of \(B \).

From Corollary 4.3 we immediately conclude

Proposition 4.4. Assume that \(\mathcal{C} \) is a class of \(\ell \)-groups which is closed with respect to direct products. Let \(A_i \) \((i \in I) \) be absolute retracts in \(\mathcal{C} \) and let (1) be valid. Then \(A \) is an absolute retract in \(\mathcal{C} \).

Proposition 4.5. Assume that \(\mathcal{C} \) is a class of \(\ell \)-groups which is closed with respect to direct products. Let \(A_i \) \((i \in I) \) be absolute convex retracts in \(\mathcal{C} \) and let (1) be valid. Then \(A \) is an absolute convex retract in \(\mathcal{C} \).

Proof. Let \(B \in \mathcal{C} \) and suppose that \(A \) is a convex \(\ell \)-subgroup of \(B \). Then all \(A_i \) are convex \(\ell \)-subgroups of \(B \). Hence in view of the assumption, all \(A_i \) are retracts of \(B \). Thus according to Corollary 4.3, \(A \) is a retract of \(B \). Therefore \(A \) is an absolute convex retract in the class \(\mathcal{C} \).
5. An example

The assertions of the following two lemmas are easy to verify; the proofs will be omitted.

Lemma 5.1. Let A be an ℓ-group which is complete and divisible. Then

(i) we can define (in a unique way) a multiplication of elements of A with reals such that A turns out to be a vector lattice;

(ii) if $r > 0$ is a real, $0 < a \in A$, $X = \{ q_1 \in Q : 0 < q_1 \leq r \}$, $Y = \{ q_2 \in R : r \leq q_2 \}$, then the relations

$$\sup(q_1 a) = ra = \inf(q_2 a)$$

are valid in A;

(iii) if A_1 is an ℓ-subgroup of A such that A_1 is complete and divisible, and $a_1 \in A$, then for each real r the multiplication ra_1 in A_1 gives the same result as the multiplication ra_1 in A.

Lemma 5.2. Let A be as in Lemma 5.1 and suppose that $A = \prod_{i \in I} A_i$. Then all A_i are complete and divisible; moreover, for each real r, each $a \in A$ and each $i \in I$ we have

$$(ra)_i = ra_i.$$
$A = \varphi(R)$.

A is an ℓ-subgroup of B; if I has more than one element, then A fails to be convex in B.

Let B be as above; suppose that A is an ℓ-group isomorphic to R and that A is an ℓ-subgroup of B. Let $0 < a \in A$. Then $a_i = a(B_i) \geq 0$ for each $i \in I$ and there exists $i(0) \in I$ with $a_{i(0)} > 0$. Thus, in view of Lemma 5.1, we have $(ra)_{i(0)} > 0$ for each $r \in R$ with $r \neq 0$. Further, for each $a_1 \in A$ there exists a uniquely determined element $r \in R$ with $a_1 = ra$. This yields that the mapping

$$\varphi_{i(0)} : a_1 \mapsto (a_1)_{i(0)}$$

is an isomorphism of A into $B_{i(0)}$.

Let $b \in B_{i(0)}$. There exists a unique $r \in R$ such that

$$b = ra_{i(0)}.$$

Then, in view of Lemma 5.2, $b = (ra)_{i(0)}$ and hence the mapping $\varphi_{i(0)}$ is an isomorphism of A onto $B_{i(0)}$.

For each $b \in B$ we put

$$h(b) = \varphi^{-1}_{i(0)}(b_{i(0)}).$$

Then h is a homomorphism of B into A. For $a_1 \in A$ the definition of $\varphi_{i(0)}$ yields

$$h(a_1) = a_1.$$

Thus we obtain

Lemma 5.3. Let $B \in \mathcal{C}_R$ and let A be an ℓ-subgroup of B such that A is isomorphic to R. Then A is a retract of B.

Corollary 5.4. Let A be an ℓ-group isomorphic to R. Then A is an absolute retract in the class \mathcal{C}_R.

From Lemma 5.4 and Corollary 4.5 we conclude

Proposition 5.5. Each element of \mathcal{C}_R is an absolute retract in the class \mathcal{C}_R.

References

Received 21 October 2002