AN EFFECTIVE PROCEDURE FOR MINIMAL BASES OF IDEALS IN $\mathbb{Z}[x]$

Luis F. Cáceres-Duque
Mathematics Department, University of Puerto Rico at Mayagüez, PO BOX 9018 Mayagüez, PR 00681, USA
e-mail: lcaceres@math.uprm.edu

Abstract

We give an effective procedure to find minimal bases for ideals of the ring of polynomials over the integers.

Keywords: ideals, minimal bases for ideals, polynomials over integers.
2000 Mathematics Subject Classification: 11C08, 13F20, 11A07, 11Y99.

1. Introduction

As in [5], we say that the ideals of the ring R are detachable if one can decide effectively whether or not a given element of the ring is in a given finitely generated ideal of R. Using the fact that ideals of $\mathbb{Z}[x]$ are detachable we give an effective procedure to find a minimal basis for an ideal A of $\mathbb{Z}[x]$, from a given finite set of generators for A. Moreover, given a minimal basis for the ideal A of $\mathbb{Z}[x]$, it is very easy to determine effectively and efficiently whether or not an arbitrary polynomial $f(x)$ of $\mathbb{Z}[x]$ belongs to A. Indeed, all the computational difficulty of determining membership in A is completed upon finding its minimal basis.

This problem was solved by Hurd in [3]. In his Ph.D. dissertation he developed an algorithm for determining the minimal basis for an ideal in $\mathbb{Z}[x]$ with a given set of generators, actually he worked with primitive ideals, but his results can be generalized to other ideals. However, as is pointed
out by his adviser in [1], his method is complicated. We give a solution of the problem using basic properties of the minimal basis of an ideal and the fact that ideals in $\mathbb{Z}[x]$ are detachable. The fact that ideals of $\mathbb{Z}[x]$ are detachable has been proved by several authors, in fact in [6] is given an easy description of an effective procedure which given a finite subset B of $\mathbb{Z}[x]$ and $f(x) \in \mathbb{Z}[x]$ decides whether or not $f(x)$ belongs to the ideal generated by B. Detachability of ideals in $\mathbb{Z}[x]$ is also proved in [5] using the concept of Tennenbaum rings.

2. Minimal basis for ideals of $\mathbb{Z}[x]$

We define a minimal basis of an ideal A of the ring of polynomials $\mathbb{Z}[x]$ as in [7]. If A is a principal ideal $\langle f(x)\rangle$, then we call $\{f(x)\}$ the minimal basis for A if the leading coefficient of $f(x)$ is positive, otherwise we say that $\{-f(x)\}$ is the minimal basis for A. If $A=\langle f(x)\rangle B$, where the leading coefficient of $f(x)$ is positive and B has the minimal basis $\left\{h_{1}(x), h_{2}(x), \ldots, h_{n}(x)\right\}$, then the minimal basis for A is defined by $\left\{f(x) h_{1}(x), f(x) h_{2}(x), \ldots, f(x) h_{n}(x)\right\}$.

Let A be a primitive proper ideal of $\mathbb{Z}[x]$. By Theorem 2.1.2 of $[2], A$ contains a nonzero constant, hence it contains polynomials of an arbitrary degree k. As in [7] for each $k \geq 0$ we call the polynomials

$$
g_{k}(x)=a_{k} x^{k}+\sum_{i=0}^{k-1} a_{k i} x^{i}
$$

minimal, where a_{k} is the smallest positive number which is the leading coefficient of a polynomial of degree k in A. In $[7]$ it is proved that given a primitive proper ideal A of $\mathbb{Z}[x]$, it possesses a minimal basis $\left\{g_{m}(x), \ldots, g_{1}(x), g_{0}(x)\right\}$ with the following properties

$$
\begin{gather*}
g_{0}=q_{1} q_{2} \ldots q_{m}, \\
q_{k} g_{k}(x)=x g_{k-1}(x)+\sum_{i=0}^{k-1} b_{k i} g_{i}(x), \tag{2.1}\\
q_{k}>0,0 \leq b_{k i}<q_{k}, 0<k \leq m, 0 \leq i<k . \tag{2.2}
\end{gather*}
$$

In some cases it's useful to represent the system of invariants (2.2) with a matrix notation as follows

$$
0 \leq\left[\begin{array}{cccc}
b_{10} & & & \\
b_{20} & b_{21} & & \\
\vdots & \vdots & \ddots & \\
b_{m 0} & b_{m 1} & \cdots & b_{m(m-1)}
\end{array}\right]<\left[\begin{array}{c}
q_{1} \\
q_{2} \\
\vdots \\
q_{m}
\end{array}\right]
$$

The number m is called the degree of A. Moreover, in [7] the following theorem is proved.

Theorem 1. There is a one to one correspondence between the primitive proper ideals of $\mathbb{Z}[x]$ and the system of invariants (2.2).

Proposition 1. Suppose A is a primitive proper ideal of $\mathbb{Z}[x]$ with minimal basis given by $\left\{g_{m}(x), \ldots, g_{1}(x), g_{0}(x)\right\}$. Every element of A is of the form $f(x) g_{m}(x)+c_{m-1} g_{m-1}(x)+\ldots+c_{0} g_{0}(x)$, for some unique $f(x) \in \mathbb{Z}[x]$ and some unique $c_{m-1}, \ldots, c_{1}, c_{0} \in \mathbb{Z}$.

Proof. Follows from the proof of Theorem 1, see [7].
The following result shows that if A is a primitive proper ideal of $\mathbb{Z}[x]$, then the degree of A is less or equal than the degree of any primitive polynomial in A. It's easy to find examples to show that we can obtain either equality or strictly inequality.

Lemma 1. Let A be a primitive proper ideal of $\mathbb{Z}[x]$ with minimal basis given by $\left\{g_{m}(x), \ldots, g_{1}(x), g_{0}(x)\right\}$. If $f(x)$ is a primitive polynomial of $\mathbb{Z}[x]$ with $\operatorname{deg} f(x)=k$ and

$$
h_{i}(x)= \begin{cases}g_{i}(x), & \text { for } \quad i=0,1, \ldots, m, \\ x^{i-m} g_{m}(x), & \text { for } \quad i=m+1, \ldots,\end{cases}
$$

then $f(x) \in A$ implies $h_{k}(x)$ is monic, i.e., the degree of the ideal A is less or equal than k.

Proof. Suppose A is a primitive proper ideal of $\mathbb{Z}[x]$ with minimal basis

$$
\left\{g_{m}(x), \ldots, g_{1}(x), g_{0}(x)\right\}
$$

Let $f(x)$ be a primitive polynomial of $\mathbb{Z}[x]$ with $\operatorname{deg} f(x)=k$. If $f(x) \in$ A, then, by Proposition 1, there exist $b_{0}, b_{1}, \ldots, b_{k} \in \mathbb{Z}$ such that $f(x)=$ $b_{k} h_{k}(x)+\ldots+b_{1} h_{1}(x)+b_{0} h_{0}(x)$. Let a_{k} be the leading coefficient of $h_{k}(x)$, then $a_{k} \mid h_{j}(x)$ for $j=0,1, \ldots, k$, hence $a_{k} \mid f(x)$. Since $f(x)$ is primitive we obtain $a_{k}=1$, so $h_{k}(x)$ is monic.

The following lemma shows how to obtain a bound in the degree of an ideal, knowing a set of generators.

Lemma 2. If A is a primitive proper ideal of $\mathbb{Z}[x]$ with minimal basis given by $\left\{g_{m}(x), \ldots, g_{1}(x), g_{0}(x)\right\}$ and $\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$ is a set of generators of A, then

$$
m \leq \max \left\{\operatorname{deg} f_{i}(x): i=1,2, \ldots, n\right\}
$$

Proof. Suppose A is a primitive proper ideal of $\mathbb{Z}[x]$ with minimal basis

$$
\begin{equation*}
\left\{g_{m}(x), \ldots, g_{1}(x), g_{0}(x)\right\} \tag{2.3}
\end{equation*}
$$

and $\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$ is a set of generators of A. If

$$
m>\max \left\{\operatorname{deg} f_{i}(x): i=1,2, \ldots, n\right\}
$$

then

$$
A=\left\langle f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\rangle \subseteq\left\langle g_{m-1}(x), \ldots, g_{1}(x), g_{0}(x)\right\rangle \subseteq A
$$

Therefore $A=\left\langle g_{m-1}(x), \ldots, g_{1}(x), g_{0}(x)\right\rangle$. This contradicts the definition of minimal basis.

In [4] there is a generalization of minimal basis for ideals of $\mathbb{Z}[x]$ in the sense that we have studied here, for ideals of a ring of polynomials over an arbitrary PID. In fact, in [4] is only considered primitive ideals but results can easily be generalized to other ideals.

Lemma 3. Given a primitive ideal A in $\mathbb{Z}[x]$ generated by $f_{1}(x)$, $f_{2}(x), \ldots, f_{n}(x)$, there exists an effective procedure to find a nonzero constant in A.

Proof. We know the existence of such a constant by Theorem 2.1.2 of [2]. Polynomials $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are elements of $\mathbb{Q}[x]$, the PID of polynomials with coefficients in the field of rational numbers. Therefore there is an effective procedure to find $u_{1}(x), u_{2}(x), \ldots, u_{n}(x) \in \mathbb{Q}[x]$ such that $1=u_{1}(x) f_{1}(x)+u_{2}(x) f_{2}(x)+\ldots+u_{n}(x) f_{n}(x)$. Find common denominator in the right hand side and multiply by it both sides to obtain $c=u_{1}^{\prime}(x) f_{1}(x)+u_{2}^{\prime}(x) f_{2}(x)+\ldots+u_{n}^{\prime}(x) f_{n}(x)$, where $u_{i}^{\prime}(x) \in \mathbb{Z}[x]$ for $i=1,2, \ldots, n$, and $c \in A-\{0\}$.

Lemma 4. Let A be a primitive proper ideal of $\mathbb{Z}[x]$ with minimal basis given by $\left\{g_{m}(x), \ldots, g_{1}(x), g_{0}(x)\right\}$. If $f(x)$ is an arbitrary polynomial of $\mathbb{Z}[x]$, there is a feasible procedure to decide whether or not $f(x) \in A$.

Proof. Suppose A is a primitive proper ideal of $\mathbb{Z}[x]$ with minimal basis given by $\left\{g_{m}(x), \ldots, g_{1}(x), g_{0}(x)\right\}$. Let $f(x) \in \mathbb{Z}[x]$.

If $\operatorname{deg} f(x)=n \leq m$, then using Proposition $1, f(x) \in A$ if and only if there exist $a_{0}, a_{1}, \ldots, a_{n}$ such that $f(x)=a_{n} g_{n}(x)+\ldots+a_{0} g_{0}(x)$.

If $\operatorname{deg} f(x)=n>m$, then, by Proposition $1, f(x) \in A$ if and only if there exist $a_{0}, a_{1}, \ldots, a_{m}, \ldots, a_{n}$ such that $f(x)=a_{n} x^{n-m} g_{m}(x)+\ldots+$ $a_{m} g_{m}(x)+\ldots+a_{0} g_{0}(x)$.

In any case we can decide effectively whether or not a system of n equations with n variables has solution.

Theorem 2. Given a set of generators $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ of an ideal B in $\mathbb{Z}[x]$, there exists an effective procedure to find a minimal basis for B.

Proof. Let B be an ideal of $\mathbb{Z}[x]$ with $B=\left\langle f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\rangle$ and assume B is nonprincipal, otherwise the proof is trivial. Given $f_{1}(x), f_{2}(x), \ldots, f_{n}(x) \in \mathbb{Z}[x]$, there exists an effective procedure to find $\operatorname{gcd}\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)$. To show this, given $f_{1}(x), f_{2}(x) \in \mathbb{Z}[x]$, we give an effective procedure to find $\operatorname{gcd}\left(f_{1}(x), f_{2}(x)\right)$. If $\operatorname{deg} f_{1}(x)=$ $\operatorname{deg} f_{2}(x)=0$, use the Euclidean Algorithm in \mathbb{Z}. If $\operatorname{deg} f_{1}(x)=0$ and $\operatorname{deg} f_{2}(x) \geq 1$, then $f_{2}(x)=C\left(f_{2}(x)\right) f_{2}^{\prime}(x)$, with $f_{2}^{\prime}(x)$ primitive. Then $\operatorname{gcd}\left(f_{1}(x), f_{2}(x)\right)=\operatorname{gcd}\left(f_{1}(x), C\left(f_{2}(x)\right)\right)$ and we can use the Euclidean Algorithm in \mathbb{Z}. If $\operatorname{deg} f_{1}(x), \operatorname{deg} f_{2}(x) \geq 1$, then $f_{1}(x)=C\left(f_{1}(x)\right) f_{1}^{\prime}(x)$ and $f_{2}(x)=C\left(f_{2}(x)\right) f_{2}^{\prime}(x)$, with $f_{1}^{\prime}(x), f_{2}^{\prime}(x)$ primitive. Therefore

$$
\operatorname{gcd}\left(f_{1}(x), f_{2}(x)\right)=\operatorname{gcd}\left(C\left(f_{1}(x)\right), C\left(f_{2}(x)\right)\right) \operatorname{gcd}\left(f_{1}^{\prime}(x), f_{2}^{\prime}(x)\right)
$$

To find $\operatorname{gcd}\left(C\left(f_{1}(x)\right), C\left(f_{2}(x)\right)\right)$ we can use the Euclidean algorithm in \mathbb{Z} and to find the $\operatorname{gcd}\left(f_{1}^{\prime}(x), f_{2}^{\prime}(x)\right)$ we can use a modification of the Euclidean algorithm in $\mathbb{Q}[x]$. Since $\operatorname{gcd}(a, b, c)=\operatorname{gcd}(\operatorname{gcd}(a, b), c)$, then the claim is proved. Therefore we can write $B=\operatorname{gcd}\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right) A$, where A is a primitive proper ideal. Then we reduce the problem to find a minimal basis for the primitive proper ideal A. Suppose $A=\left\langle h_{1}(x), h_{2}(x), \ldots, h_{n}(x)\right\rangle$ with $\operatorname{gcd}\left(h_{1}(x), h_{2}(x), \ldots, h_{n}(x)\right)=1$. By Lemma 3 , there is an effective procedure to find $c \in A-\{0\}$. Therefore

$$
A=\left\langle h_{1}(x), h_{2}(x), \ldots, h_{n}(x), c\right\rangle .
$$

By Theorem 1, there are finitely many ideals $\langle C\rangle$ that contain c of a given finite degree and we can enumerate them. In fact, by Lemma 2 there is a bound in the degree of the ideals $\langle C\rangle$ that we have to consider. Suppose $\langle C\rangle$ is an ideal, with minimal basis C, that contains c. Using the fact that ideals of $\mathbb{Z}[x]$ are detachable, or even better using Lemma 4 , we can decide effectively whether or not $h_{1}(x), h_{2}(x), \ldots, h_{n}(x) \in\langle C\rangle$. Since A is detachable, we can decide effectively whether or not $\langle C\rangle \subseteq\left\langle h_{1}(x), h_{2}(x), \ldots, h_{n}(x)\right\rangle$. If we obtain positive answer in both containments, the proof is complete, otherwise pick a different minimal basis C such that $\langle C\rangle$ contains c and note that in finitely many steps we obtain the desired minimal basis.
Note that in order to verify $\langle C\rangle \subseteq\left\langle h_{1}(x), h_{2}(x), \ldots, h_{n}(x)\right\rangle$ in the previous theorem, it is not necessary to use an algorithm for detachability of ideals of $\mathbb{Z}[x]$. Since there are finitely many ideals $\langle C\rangle$ that we have to consider, it is enough to have a list of the elements of $\underbrace{\mathbb{Z}[x] \times \mathbb{Z}[x] \times \ldots \times \mathbb{Z}[x]}_{n \text { times }}$.

References

[1] C.W. Ayoub, On Constructing Bases for Ideals in Polynomial Rings over the Integers, J. Number Theory 17 (1983), 204-225.
[2] L.F. Cáceres-Duque, Ultraproduct of Sets and Ideal Theories of Commutative Rings, Ph.D. dissertation, University of Iowa, Iowa City, IA, 1998.
[3] C.B. Hurd, Concerning Ideals in $\mathbb{Z}[x]$ and $\mathbb{Z}_{p^{n}}[x]$, Ph.D. dissertation, Pennsylvania State University, University Park, PA, 1970.
[4] L. Redei, Algebra, Vol 1, Pergamon Press, London 1967.
[5] F. Richman, Constructive Aspects of Noetherian Rings, Proc. Amer. Math. Soc. 44 (1974), 436-441.
[6] H. Simmons, The Solution of a Decision Problem for Several Classes of Rings, Pacific J. Math. 34 (1970), 547-557.
[7] G. Szekeres, A canonical basis for the ideals of a polynomial domain, Amer. Math. Monthly 59 (1952), 379-386.

Received 18 April 2002
Revised 12 February 2003

