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1. Introduction

As in [5], we say that the ideals of the ring R are detachable if one can decide
effectively whether or not a given element of the ring is in a given finitely
generated ideal of R. Using the fact that ideals of Z [x] are detachable we
give an effective procedure to find a minimal basis for an ideal A of Z [x],
from a given finite set of generators for A. Moreover, given a minimal basis
for the ideal A of Z [x] , it is very easy to determine effectively and efficiently
whether or not an arbitrary polynomial f(x) of Z [x] belongs to A. Indeed, all
the computational difficulty of determining membership in A is completed
upon finding its minimal basis.

This problem was solved by Hurd in [3]. In his Ph.D. dissertation he
developed an algorithm for determining the minimal basis for an ideal in
Z [x] with a given set of generators, actually he worked with primitive ide-
als, but his results can be generalized to other ideals. However, as is pointed
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out by his adviser in [1], his method is complicated. We give a solution
of the problem using basic properties of the minimal basis of an ideal and
the fact that ideals in Z [x] are detachable. The fact that ideals of Z [x] are
detachable has been proved by several authors, in fact in [6] is given an easy
description of an effective procedure which given a finite subset B of Z [x]
and f (x) ∈ Z [x] decides whether or not f(x) belongs to the ideal generated
by B. Detachability of ideals in Z [x] is also proved in [5] using the concept
of Tennenbaum rings.

2. Minimal basis for ideals of Z [x]

We define a minimal basis of an ideal A of the ring of polynomials Z [x]
as in [7] . If A is a principal ideal 〈f(x)〉 , then we call {f(x)} the min-
imal basis for A if the leading coefficient of f(x) is positive, otherwise
we say that {−f(x)} is the minimal basis for A. If A = 〈f(x)〉B, where
the leading coefficient of f(x) is positive and B has the minimal basis
{h1(x), h2(x), . . . , hn(x)} , then the minimal basis for A is defined by
{f(x)h1(x), f(x)h2(x), . . . , f(x)hn(x)} .

Let A be a primitive proper ideal of Z [x]. By Theorem 2.1.2 of [2], A
contains a nonzero constant, hence it contains polynomials of an arbitrary
degree k. As in [7] for each k ≥ 0 we call the polynomials

gk(x) = akx
k +

k−1∑

i=0

akix
i

minimal, where ak is the smallest positive number which is the leading coeffi-
cient of a polynomial of degree k in A. In [7] it is proved that given a primitive
proper ideal A of Z [x] , it possesses a minimal basis {gm(x), . . . , g1(x), g0(x)}
with the following properties

(2.1)

g0 = q1q2 . . . qm,

qkgk (x) = xgk−1 (x) +
k−1∑
i=0

bkigi (x) ,

(2.2) qk > 0, 0 ≤ bki < qk, 0 < k ≤ m, 0 ≤ i < k.
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In some cases it’s useful to represent the system of invariants (2.2) with a
matrix notation as follows

0 ≤




b10

b20 b21
...

...
. . .

bm0 bm1 · · · bm(m−1)


 <




q1

q2
...

qm




The number m is called the degree of A. Moreover, in [7] the following
theorem is proved.

Theorem 1 . There is a one to one correspondence between the primitive
proper ideals of Z [x] and the system of invariants (2.2).

Proposition 1 . Suppose A is a primitive proper ideal of Z [x] with minimal
basis given by {gm(x), . . . , g1(x), g0(x)}. Every element of A is of the form
f(x)gm(x) + cm−1gm−1(x) + . . . + c0g0(x), for some unique f(x) ∈ Z [x] and
some unique cm−1, . . . , c1, c0 ∈ Z.

Proof. Follows from the proof of Theorem 1, see [7].

The following result shows that if A is a primitive proper ideal of Z [x], then
the degree of A is less or equal than the degree of any primitive polynomial
in A. It’s easy to find examples to show that we can obtain either equality
or strictly inequality.

Lemma 1 . Let A be a primitive proper ideal of Z [x] with minimal basis
given by {gm(x), . . . , g1(x), g0(x)}. If f(x) is a primitive polynomial of Z [x]
with deg f(x) = k and

hi(x) =

{
gi(x), for i = 0, 1, . . . , m,

xi−mgm(x), for i = m + 1, . . . ,

then f(x) ∈ A implies hk(x) is monic, i.e., the degree of the ideal A is less
or equal than k.
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Proof. Suppose A is a primitive proper ideal of Z [x] with minimal basis

{gm(x), . . . , g1(x), g0(x)} .

Let f(x) be a primitive polynomial of Z [x] with deg f(x) = k. If f(x) ∈
A, then, by Proposition 1, there exist b0, b1, . . . , bk ∈ Z such that f(x) =
bkhk(x) + . . . + b1h1(x) + b0h0(x). Let ak be the leading coefficient of hk(x),
then ak | hj(x) for j = 0, 1, . . . , k, hence ak | f(x). Since f(x) is primitive
we obtain ak = 1, so hk(x) is monic.

The following lemma shows how to obtain a bound in the degree of an ideal,
knowing a set of generators.

Lemma 2 . If A is a primitive proper ideal of Z [x] with minimal basis
given by {gm(x), . . . , g1(x), g0(x)} and {f1(x), f2(x), . . . , fn(x)} is a set of
generators of A, then

m ≤ max {deg fi(x) : i = 1, 2, . . . , n} .

Proof. Suppose A is a primitive proper ideal of Z [x] with minimal basis

(2.3) {gm(x), . . . , g1(x), g0(x)}

and {f1(x), f2(x), . . . , fn(x)} is a set of generators of A. If

m > max {deg fi(x) : i = 1, 2, . . . , n} ,

then

A = 〈f1(x), f2(x), . . . , fn(x)〉 ⊆ 〈gm−1(x), . . . , g1(x), g0(x)〉 ⊆ A.

Therefore A = 〈gm−1(x), . . . , g1(x), g0(x)〉 . This contradicts the definition
of minimal basis.

In [4] there is a generalization of minimal basis for ideals of Z [x] in the
sense that we have studied here, for ideals of a ring of polynomials over an
arbitrary PID. In fact, in [4] is only considered primitive ideals but results
can easily be generalized to other ideals.

Lemma 3 . Given a primitive ideal A in Z [x] generated by f1(x),
f2(x), . . . , fn(x), there exists an effective procedure to find a nonzero
constant in A.
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Proof. We know the existence of such a constant by Theorem 2.1.2 of
[2]. Polynomials f1(x), f2(x), . . . , fn(x) are elements of Q [x] , the PID of
polynomials with coefficients in the field of rational numbers. Therefore
there is an effective procedure to find u1(x), u2(x), . . . , un(x) ∈ Q [x] such
that 1 = u1(x)f1(x) + u2(x)f2(x) + . . . + un(x)fn(x). Find common de-
nominator in the right hand side and multiply by it both sides to obtain
c = u′1(x)f1(x) + u′2(x)f2(x) + . . . + u′n(x)fn(x), where u′i(x) ∈ Z [x] for
i = 1, 2, . . . , n, and c ∈ A− {0} .

Lemma 4 . Let A be a primitive proper ideal of Z [x] with minimal ba-
sis given by {gm(x), . . . , g1(x), g0(x)}. If f(x) is an arbitrary polynomial of
Z [x] , there is a feasible procedure to decide whether or not f(x) ∈ A.

Proof. Suppose A is a primitive proper ideal of Z [x] with minimal basis
given by {gm(x), . . . , g1(x), g0(x)}. Let f(x) ∈ Z [x] .

If deg f(x) = n ≤ m, then using Proposition 1, f(x) ∈ A if and only if
there exist a0, a1, . . . , an such that f(x) = angn(x) + . . . + a0g0(x).

If deg f(x) = n > m, then, by Proposition 1, f(x) ∈ A if and only
if there exist a0, a1, . . . , am, . . . , an such that f(x) = anxn−mgm(x) + . . . +
amgm(x) + . . . + a0g0(x).

In any case we can decide effectively whether or not a system of n
equations with n variables has solution.

Theorem 2 . Given a set of generators f1(x), f2(x), . . . , fn(x) of an
ideal B in Z [x] , there exists an effective procedure to find a minimal
basis for B.

Proof. Let B be an ideal of Z [x] with B = 〈f1(x), f2(x), . . . , fn(x)〉
and assume B is nonprincipal, otherwise the proof is trivial. Given
f1(x), f2(x), . . . , fn(x) ∈ Z [x] , there exists an effective procedure to
find gcd(f1(x), f2(x), . . . , fn(x)). To show this, given f1(x), f2(x) ∈ Z [x] , we
give an effective procedure to find gcd(f1(x), f2(x)). If deg f1(x) =
deg f2(x) = 0, use the Euclidean Algorithm in Z. If deg f1(x) = 0 and
deg f2(x) ≥ 1, then f2(x) = C(f2(x))f ′2(x), with f ′2(x) primitive. Then
gcd(f1(x), f2(x)) = gcd (f1 (x) , C (f2 (x))) and we can use the Euclidean
Algorithm in Z. If deg f1(x), deg f2(x) ≥ 1, then f1(x) = C(f1(x))f ′1(x)
and f2(x) = C(f2(x))f ′2(x), with f ′1(x), f ′2(x) primitive. Therefore

gcd(f1(x), f2(x)) = gcd(C(f1(x)), C(f2(x))) gcd(f ′1(x), f ′2(x)).
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To find gcd(C(f1(x)), C(f2(x))) we can use the Euclidean algorithm in Z
and to find the gcd(f ′1(x), f ′2(x)) we can use a modification of the Euclidean
algorithm in Q [x] . Since gcd(a, b, c) = gcd (gcd (a, b) , c) , then the claim is
proved. Therefore we can write B = gcd(f1(x), f2(x), . . . , fn(x))A, where
A is a primitive proper ideal. Then we reduce the problem to find a minimal
basis for the primitive proper ideal A. Suppose A = 〈h1(x), h2(x), . . . , hn(x)〉
with gcd (h1(x), h2(x), . . . , hn(x)) = 1. By Lemma 3, there is an effective
procedure to find c ∈ A− {0} . Therefore

A = 〈h1(x), h2(x), . . . , hn(x), c〉 .
By Theorem 1, there are finitely many ideals 〈C〉 that contain c of a given
finite degree and we can enumerate them. In fact, by Lemma 2 there is a
bound in the degree of the ideals 〈C〉 that we have to consider. Suppose 〈C〉
is an ideal, with minimal basis C, that contains c. Using the fact that ideals
of Z [x] are detachable, or even better using Lemma 4, we can decide effec-
tively whether or not h1(x), h2(x), . . . , hn(x) ∈ 〈C〉. Since A is detachable,
we can decide effectively whether or not 〈C〉 ⊆ 〈h1(x), h2(x), . . . , hn(x)〉 .
If we obtain positive answer in both containments, the proof is complete,
otherwise pick a different minimal basis C such that 〈C〉 contains c and note
that in finitely many steps we obtain the desired minimal basis.

Note that in order to verify 〈C〉 ⊆ 〈h1(x), h2(x), . . . , hn(x)〉 in the previous
theorem, it is not necessary to use an algorithm for detachability of ideals
of Z [x] . Since there are finitely many ideals 〈C〉 that we have to consider,
it is enough to have a list of the elements of Z [x]× Z [x]× . . .× Z [x]︸ ︷︷ ︸

n times

.
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