ArticleOriginal scientific text
Title
Free Abelian extensions in the congruence-permutable varieties
Authors 1
Affiliations
- Volgograd State Pedagogical University, Russia
Abstract
We obtain the construction of free abelian extensions in a congurence-permutable variety V using the construction of a free abelian extension in a variety of algebras with one ternary Mal'cevoperation and a monoid of unary operations. We also use this construction to obtain a free solvable V-algebra.
Keywords
abelian extension, solvable algebra, congurence-permutable variety
Bibliography
- V.A. Artamonov, Magnus representation in congruence modular varieties (Russian), Sibir. Mat. Zh. 38 (1997), 978-995 (English transl. in Siberian Math. J. 38 (1997), 842-859.
- V.A. Artamonov and S. Chakrabarti, Free solvable algebra in a general congruence modular variety, Comm. Algebra 24 (1996), 1723-1735.
- S. Chakrabarti, Homomorphisms of free solvable algebras with one ternary Mal'cev operation (Russian), Uspehi Mat. Nauk 48 (1993), no. 3, 207-208.
- R. Freese and R. McKenzie, Commutator theory for congruence modular varieties, Cambridge Univ. Press, Cambridge 1987.
- G. Grätzer, Universal Algebra (2nd ed.) Springer-Verlag, New York 1979.
- A.G. Pinus, Congruence Modular Varieties (Russian), Irkutsk State University, Irkutsk 1986.
- A.P. Zamyatin, Varieties with Restrictions on the Congruence Lattice (Russian), Ural State University, Sverdlovsk 1987.
- P.B. Zhdanovich, Free Abelian extensions of ⟨p,S⟩-algebras, 'Universal Algebra and its Applications', Proceedings of the Skornyakov Conference (Volgograd Ped. Univ., 1999), Izdat. 'Peremena', Volgograd 2000, 73-80.
- P.B. Zhdanovich, Free Abelian extensions of Sₚ-permutable algebras (Russian), Chebyshevski Sbornik 3 (2002), No. 1 (3), 49-71.