ArticleOriginal scientific text

Title

Free Abelian extensions in the congruence-permutable varieties

Authors 1

Affiliations

  1. Volgograd State Pedagogical University, Russia

Abstract

We obtain the construction of free abelian extensions in a congurence-permutable variety V using the construction of a free abelian extension in a variety of algebras with one ternary Mal'cevoperation and a monoid of unary operations. We also use this construction to obtain a free solvable V-algebra.

Keywords

abelian extension, solvable algebra, congurence-permutable variety

Bibliography

  1. V.A. Artamonov, Magnus representation in congruence modular varieties (Russian), Sibir. Mat. Zh. 38 (1997), 978-995 (English transl. in Siberian Math. J. 38 (1997), 842-859.
  2. V.A. Artamonov and S. Chakrabarti, Free solvable algebra in a general congruence modular variety, Comm. Algebra 24 (1996), 1723-1735.
  3. S. Chakrabarti, Homomorphisms of free solvable algebras with one ternary Mal'cev operation (Russian), Uspehi Mat. Nauk 48 (1993), no. 3, 207-208.
  4. R. Freese and R. McKenzie, Commutator theory for congruence modular varieties, Cambridge Univ. Press, Cambridge 1987.
  5. G. Grätzer, Universal Algebra (2nd ed.) Springer-Verlag, New York 1979.
  6. A.G. Pinus, Congruence Modular Varieties (Russian), Irkutsk State University, Irkutsk 1986.
  7. A.P. Zamyatin, Varieties with Restrictions on the Congruence Lattice (Russian), Ural State University, Sverdlovsk 1987.
  8. P.B. Zhdanovich, Free Abelian extensions of ⟨p,S⟩-algebras, 'Universal Algebra and its Applications', Proceedings of the Skornyakov Conference (Volgograd Ped. Univ., 1999), Izdat. 'Peremena', Volgograd 2000, 73-80.
  9. P.B. Zhdanovich, Free Abelian extensions of Sₚ-permutable algebras (Russian), Chebyshevski Sbornik 3 (2002), No. 1 (3), 49-71.
Main language of publication
English
Received
2002-12-23
Accepted
2003-01-13
Published
2002
Exact and natural sciences