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Abstract

A quasi-implication algebra is introduced as an algebraic
counterpart of an implication reduct of propositional logic having non-
involutory negation (e.g. intuitionistic logic). We show that every
pseudocomplemented semilattice induces a quasi-implication algebra
(but not conversely). On the other hand, a more general algebra, a
so-called pseudocomplemented q-semilattice is introduced and a
mutual correspondence between this algebra and a quasi-implication
algebra is shown.
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1. Introduction

Various motivations can be found in the historical background of intuition-
istic calculi. Intuitionistic propositional logic does not accept the indirect
proofs so frequently used in classical logic. From the intuitionistic stand-
point, a contradiction shows that the negation of the statement is false and
nothing more. Thus the laws of double negation and of excluded middle are
rejected.
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The algebraic semantics adequate for a treatment of intuitionistic proposi-
tional logic is usually provided by the class of relatively pseudocomplemented
lattices. The lattice operations ∨ (join) and ∧ (meet) are interpreted as the
propositional connectives disjunction and conjunction, respectively, and the
connective implication x ⇒ y is interpreted by means of the relative
pseudocomplement x ∗ y.

Let us mention that this algebraic semantic has several paradoxical
properties:

(a) from one point of view, it is a calculus which is too weak, because none
of the connectives negation, conjunction, disjunction and implication
can be derived by the remaining (e.g. in the classical logic, we have
x ⇒ y is equivalent to ¬x ∨ y);

(b) on the other hand, it is too strong because every relative pseudocom-
plemented lattice is distributive (see, e.g., [2], [4]);

(c) on the contrary to (b), when the implication reduct of intuitionis-
tic propositional logic is axiomatized, we obtain the so-called Hilbert
algebra which can be algebraically characterized only as an ordered
set with the greatest element.

To avoid such rather strange properties, we introduce another algebraic se-
mantic for intuitionistic implication which is based on pseudocomplemented
lattices. It enables us to characterize these so-called quasi-implication
algebras by means of so-called pseudocomplemented q-semilattices
(introduced by the first author in [3]).

2. The concept of a quasi-implication algebra

The concept of an implication algebra was introduced by J.C. Abbott [1] for
studying the implication reduct of classical propositional calculus. Having
a Boolean algebra (A;∨,∧,¬,0,1), the connective implication is introduced
as x ⇒ y := ¬x ∨ y = ¬(x ∧ ¬y). Writing x · y instead of x ⇒ y (for the
sake of brevity), this connective can be characterized by three simple axioms
(see [1]):

(I1) (x · y) · x = x,

(I2) (x · y) · y = (y · x) · x,

(I3) x · (y · z) = y · (x · z).
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Hence, by an implication algebra is understood as a groupoid A = (A; ·)
satisfying the identities (I1), (I2), (I3). It was shown by J.C. Abbott that
every implication algebra satisfies also the identity x · x = y · y and hence
there exists a constant (denoted by the symbol 1) such that x·x = 1 for each
x ∈ A. Moreover, one can introduce an induced relation ≤ by the setting

(1) x ≤ y if and only if x · y = 1

which is an order relation on A and 1 is the greatest element. With respect
to this order, (A;≤) is a ∨-semilattice, where

x ∨ y := (x · y) · y.

Similarly, a logical connective implication in intuitionistic logic was
described by A. Diego [5] as follows:

By a Hilbert algebra is meant an algebra A = (A; ·,1) of type (2, 1)
satisfying the axioms

(H1) x · (y · x) = 1,

(H2) (x · (y · z)) · ((x · y) · (x · z)) = 1,

(H3) x · y = 1 and y · x = 1 imply x = y.

Thus x · y satisfying (H1), (H2), (H3) is the intuitionistic implication. It
was shown in [5] that:

(a) every implication algebra is a Hilbert algebra;

(b) the axiom (H2) can be replaced by two more simple axioms:

x · (y · z) = y · (x · z),

x · (y · z) = (x · y) · (x · z);

(c) the axiom (H3) can be replaced by identities and hence the class of
all Hilbert algebras forms a variety;

(d) the induced relation ≤ on A by (1) is also an order on A with the
greatest element 1 but (A;≤) need not be a semilattice.
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In fact, if (A;≤) is an arbitrary ordered set with the greatest element 1,
then for ”·” introduced by the rule

x · y = 1 if x ≤ y and x · y = y otherwise

we obtain a Hilbert algebra.
Our aim is to set up another description of the logical connective impli-

cation which is very close to that of a Hilbert algebra but based on another
algebraic structure. This implication is more similar to that of classical
logic. As accepted in intuitionistic logic, we will have ¬¬¬x = ¬x (but not
necessarily ¬¬x = x).

Definition 1. By a quasi-implication algebra is meant an algebra A =
(A; ·,0) of type (2, 0) satisfying the following identities:

(q1) (x · y) · x = (x · 0) · 0,

(q2) (x · y) · y = (y · x) · x,

(q3) x · (y · z) = y · (x · z),

(q4) ((x · y) · 0) · 0 = ((x · 0) · 0) · ((y · 0) · 0) = x · y.

Theorem 1. Let A = (A; ·,0) be a quasi-implication algebra. The relation
Θg introduced on A by the setting

(2) 〈x, y〉 ∈ Θg if and only if x · 0 = y · 0

is a congruence on A and the factor algebra (A/Θg; ·) is an implication
algebra.

Proof. It is clear that Θg is an equivalence on A. We prove the substitution
property with respect to the binary operation: let 〈x, y〉 ∈ Θg and 〈u, v〉 ∈
Θg. Then x · 0 = y · 0 and u · 0 = v · 0 . Applying axiom (q4), we have
(x · u) · 0 = (((x · u) · 0) · 0) · 0 = (((x · 0) · 0) · ((u · 0) · 0)) · 0 = (((y · 0) · 0) ·
((v · 0) · 0)) · 0 = (((y · v) · 0) · 0) · 0 = (y · v) · 0; thus 〈x · u, y · v〉 ∈ Θg.

Since (I2) coincides with (q2) and (I3) with (q3), we need only to prove
(I1). Let a, b ∈ A/Θg. By (q4), we have ((z · 0) · 0) · 0 = z · 0; thus
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〈z, (z · 0) · 0〉 ∈ Θg for each z ∈ A. It means that there exists an x ∈ A
such that a = [x · 0]Θg . Applying (q1) and (q4), we obtain (a · b) · a =
(a · [0]Θg) · [0]Θg = ([x ·0]Θg · [0]Θg) · [0]Θg = [((x ·0) ·0) ·0]Θg = [x ·0]Θg = a.

Let A=(A; ·,0) be a quasi-implication algebra. Denote by A0 :={x·0 : x∈A}
the so-called skeleton of A. The following result follows directly by
Theorem 1:

Corollary 1. Let A = (A; ·, 0) be a quasi-implication algebra. Then

(i) A0 = (A0; ·) is an implication algebra

(ii) A0 ' (A; ·)/Θg.

We can prove the following

Lemma 1. Let A = (A; ·,0) be a quasi-implication algebra. Then, for each
x, y ∈ A, we have

(i) x · y ∈ A0,

(ii) x · x = y · y.

Proof. Accoroding to (q4), xy = ((xy)0)0 ∈ A0 for all x, y ∈ A; thus we
obtain (i). Taking into account (q4) and (i) of Corollary 1, we have

xx = ((xx)0)0 = ((x0)0)((x0)0) = ((y 0)0)((y 0)0) = ((yy)0)0 = yy
for all x, y ∈ A proving (ii).

Remark. By (ii) of Lemma 1, we know that every quasi-implication al-
gebra A = (A; ·,0) has a constant 1 such that x · x = 1. Hence, also
0·0 = 1, i.e. 1 is an algebraic constant (i.e. a nullary term operation). In the
interpretation of propositional logic, 0 corresponds to the value ”FALSE”
and 1 to the value ”TRUE”.

3. Algebraic properties of quasi-implication algebras

By Theorem 1 and Lemma 1, for any quasi-implication algebra A = (A; ·,0)
and every x, y ∈ A, we have x · y ∈ A0, where (A0; ·), the skeleton of A, is
an implication algebra. Hence, applying the results of J.C. Abbott, we can
prove:
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Theorem 2. Every quasi-implication algebra satisfies the following
identities:

(a) x · (y · z) = (x · y) · (x · z),

(b) x · (x · y) = x · y,

(c) x · ((y · 0) · 0) = x · y,

(d) x · 1 = 1, x · x = 1, 1 · (x · y) = x · y, x · (1 · y) = x · y,

(e) x · y = (y · 0) · (x · 0),

(f) x · (y · x) = 1.

Proof. As mentioned above, we have immediately the conditions (a), (b),
(d) and (f). For (e), we apply (a), (f), (d) and (q3), (q1) to show (y · 0) ·
(x · 0) = x · ((y · 0) · 0) = x · ((y · x) · y) = (x · (y · x)) · (x · y) = 1 · (x · y) =
x · y. Now, x · ((y · 0) · 0) = (y · 0) · (x · 0) = x · y by (q3) and (e); thus also
(c) is proved.

Remark. By (f) of Theorem 2, every quasi-implication algebra satisfies the
axiom (H1) and, by (a) and (d), also (H2). However, a quasi-implication
algebra is not a Hilbert algebra in general as one can check by the following:

Example. Let A = {0, y,1} and the binary operation be given by the table

· 0 y 1
0 1 1 1
y 0 1 1
1 0 1 1

Then clearly (A; ·,0) is a quasi-implication algebra but it is not a Hilbert
algebra since axiom (H3) does not hold; namely, y ·1 = 1 = 1 ·y but y 6= 1.

Since quasi-implication algebras do not satisfy axiom (H3), we
cannot expect that the induced relation will be an order. However, we are
able to prove:
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Lemma 2. Let A = (A; ·,0) be a quasi-implication algebra and Q be a
binary relation on A defined by the setting

〈x, y〉 ∈ Q if and only if x · y = 1.

Then Q is a quasi-order (i.e. a reflexive and transitive relation) on A and
〈0, x〉 ∈ Q, 〈x,1〉 ∈ Q for each x ∈ A.

Proof. Reflexivity of Q follows directly by x · x = 1 and x · 1 = 1 yields
〈x,1〉 ∈ Q immediately. Prove transitivity of Q: Let 〈x, y〉 ∈ Q and 〈y, z〉 ∈
Q. Then x·y = 1 = y·z. Applying (d) of Theorem 2 and axioms (q2), (q3), we
obtain x·z = x·(1·z) = x·((y·z)·z) = x·((z·y)·y) = (z·y)·(x·y) = (z·y)·1 = 1;
thus also 〈x, z〉 ∈ Q. It remains to show 〈0, x〉 ∈ Q. Applying (e) and (d) of
Theorem 2, we derive 0 ·x = (x ·0) ·(0 ·0) = (x ·0) ·1 = 1 proving 〈0, x〉 ∈ Q
for each x ∈ A.

4. Quasi-implication algebras induced

by pseudocomplemented semilattices

By a pseudocomplemented semilattice is meant an algebra S = (S;∧,∗ ,0) of
type (2,1,0) such that (S;∧) is a meet-semilattice with the least element 0
and for each a ∈ S, a∗ is its pseudocomplement , i.e. the greatest element of
S satysfying a ∧ a∗ = 0; in other words,

(3) a ∧ b = 0 if and only if b ≤ a∗.

Pseudocomplemented semilattices were treated, e.g., by R. Balbes ([2]) and
O. Frink ([6]).

Let S = (S;∧,∗ ,0) be a pseudocomplemented semilattice. Denote by
≤ its induced order, i.e. x ≤ y if and only if x∧ y = x. At first we list some
useful properties of these algebras:

Lemma 3. Let S = (S;∧,∗ ,0) be a pseudocomplemented semilattice. Then
S has the greatest element 1 with respect to the induced order and for every
a, b ∈ S the following identities are satisfied:
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(i) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗,

(ii) (a ∧ b∗)∗ ∧ b∗ = (b ∧ a∗)∗ ∧ a∗ = a∗ ∧ b∗.

Proof. Immediately by (3), 0∗ is the greatest element of S, i.e. 0∗ = 1.

Prove (i): Since a ∧ b ≤ a, a ∧ b ≤ b, we have (a ∧ b)∗∗ ≤ a∗∗ and
(a ∧ b)∗∗ ≤ b∗∗, whence (a ∧ b)∗∗ ≤ a∗∗ ∧ b∗∗. Further, a ∧ b ∧ (a ∧ b)∗ = 0;
thus, by (2), a ∧ (a ∧ b)∗ ≤ b∗ = b∗∗∗ whence a ∧ b∗∗ ∧ (a ∧ b)∗ = 0. Hence,
b∗∗∧ (a∧ b)∗ ≤ a∗ = a∗∗∗, i.e. a∗∗∧ b∗∗∧ (a∧ b)∗ = 0 which yields a∗∗∧ b∗∗ ≤
(a ∧ b)∗∗ proving the converse inequality.

Prove (ii): Since a∧ b∗ ≤ a, also (a∧ b∗)∗ ≥ a∗ and thus (a∧ b∗)∗ ∧ b∗ ≥
a∗ ∧ b∗.

Conversely, we have (a ∧ b∗)∗ ∧ (a ∧ b∗) = 0, i.e. (a ∧ b∗)∗ ∧ b∗ ≤ a∗ and
hence (a ∧ b∗)∗ ∧ b∗ ≤ a∗ ∧ b∗.

We have shown (a ∧ b∗)∗ ∧ b∗ = a∗ ∧ b∗. The second equality follows by
symmetry.

Theorem 3. Let S = (S;∧,∗ ,0) be a pseudocomplemented semilattice.
Introduce a term operation

x · y := (x ∧ y∗)∗.

Then A = (S; ·,0) is a quasi-implication algebra.

Proof. It is clear by the definition that, for each a ∈ S, we have a · 0 =
(a ∧ 0∗)∗ = (a ∧ 1)∗ = a∗. Prove the axioms of quasi-implication algebra:

(q1): Clearly (x ∧ y∗)∗ ≥ x∗; thus (x · y) · x = ((x ∧ y∗)∗ ∧ x∗)∗ = x∗∗ =
(x · 0) · 0.

(q2): (x · y) · y = ((x ∧ y∗)∗ ∧ y∗)∗ = ((y ∧ x∗)∗ ∧ x∗)∗ = (y · x) · x by (ii)
of Lemma 3.

(q3): x · (y · z) = (x ∧ (y ∧ z∗)∗∗)∗ = (x∗∗ ∧ (y∗∗ ∧ z∗∗∗))∗ = (y∗∗ ∧ (x∗∗ ∧
z∗∗∗))∗ = (y ∧ (x ∧ z∗)∗∗)∗ = y · (x · z) by (i) of Lemma 3.

(q4): ((x · y) · 0) · 0 = (x ∧ y∗)∗∗∗ = (x ∧ y∗)∗ = x · y = (x∗∗ ∧ y∗∗∗)∗ =
((x · 0) · 0) · ((y · 0) · 0) by (i) of Lemma 3 again.
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Remark. The quasi-implication algebra A = (S; ·,0) obtained from S =
(S;∧,∗ ,0) as given in Theorem 3 will be called induced by the pseudocom-
plemented semilattice S.

Theorem 3 shows that every pseudocomplemented semilattice induces
a quasi-implication algebra, but the converse is not true. Namely, we have
seen in Lemma 2 that a quasi-implication algebra induces only a quasiorder
but a pseudocomplemented semilattice has an induced order.

The relation Θ on a pseudocomplemented semilattice S = (S;∧,∗ ,0),
defined by

(4) 〈x, y〉 ∈ Θ if and only if x∗ = y∗,

is the so-called Glivenko congruence; and it is well-known that S/Θ is a
Boolean algebra with respect to the induced order. Consider the quasi-
implication algebra A = (S; ·,0) induced by S and the relation Θg on S
defined by (2) of Theorem 1. Then (S/Θg, ·) is an implication algebra which
is clearly induced by S/Θ, i.e. Θ = Θg on the set S. Hence, our relation Θg

from Theorem 1 is in fact the Glivenko congruence whenever A = (S; ·,0)
is induced by a pseudocomplemented semilattice S = (S;∧,∗ ,0). Unfortu-
nately, not every quasi-implication algebra is induced by a pseudocomple-
mented semilattice. We will improve this in the following section.

5. Representation of quasi-implication algebras

The concept of q-semilattice was introduced by the first author in [3]:
By a q-semilattice is meant an algebra S = (S;∧) of type (2) satisfying the
axioms

(P1) x ∧ y = y ∧ x,

(P2) x ∧ (y ∧ z) = (x ∧ y) ∧ z,

(P3) x ∧ y = (x ∧ x) ∧ y.

For our reasons, we need a q-semilattice equipped with a unary operation
having similar properties as the pseudocomplementation in semilattices:

Definition 2. A pseudocomplemented q-semilattice is an algebra P =
(A;∧,∗ ,0) of type (2,1,0) such that (A;∧) is a q-semilattice and the
following axioms are satisfied:
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(K1) x∗ ∧ x∗ = x∗,

(K2) x∗∗∗ = x∗,

(K3) x ∧ y = 0 if and only if y ∧ x∗ = y ∧ y.

Having a pseudocomplemented q-semilattice, one can introduce the induced
relation ≤ as follows:

(5) x ≤ y if and only if x ∧ y = x ∧ x.

Of course, ≤ is reflexive. Prove transitivity of ≤: Let x ≤ y and y ≤ z.
Then x ∧ y = x ∧ x and y ∧ z = y ∧ y. Hence,

x ∧ z = (x ∧ x) ∧ z = (x ∧ y) ∧ z = x ∧ (y ∧ z) =

= x ∧ (y ∧ y) = (y ∧ y) ∧ x = y ∧ x = x ∧ y = x ∧ x;

thus also x ≤ z.

The quasiorder ≤ given by (5) will be called an induced quasiorder of
the pseudocomplemented q-semilattice.

Further, for each x, y ∈ A, we have

(x ∧ y) ∧ x = (x ∧ y) ∧ (x ∧ y), i.e. x ∧ y ≤ x,

and
(x ∧ y) ∧ y = (x ∧ y) ∧ (x ∧ y), i.e. x ∧ y ≤ y;

thus x ∧ y is a lower bound of x, y with respect to ≤ . Moreover, if c ∈ A
and c ≤ x, c ≤ y, then x ∧ c = c ∧ c, y ∧ c = c ∧ c and

(x ∧ y) ∧ c = (x ∧ y) ∧ (c ∧ c) = (x ∧ c) ∧ (y ∧ c) = (c ∧ c) ∧ (c ∧ c) = c ∧ c,

showing c ≤ x∧y. Thus x∧y is a greatest lower bound, i.e. x∧y = inf≤(x, y).
What concerns the unary operation ∗ in a pseudocomplemented

q-semilattice P = (A;∧,∗ ,0), we can show that it has similar properties
as the pseudocomplementation in a semilattice (and hence it will be called
a pseudocomplementation of P):
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Lemma 4. Let x, y ∈ A. Then

(a) x ∧ x∗ = 0,

(b) x ≤ x∗∗,

(c) if x ≤ y then y∗ ≤ x∗.

Proof. Since x∗ ∧ x∗ = x∗ ∧ x∗, (K3) yields (a) immediately. However, if
x∧ x∗ = 0, then (K3) yields also x∧ x∗∗ = x∧ x, whence x ≤ x∗∗. To prove
(c), suppose x ≤ y. Then x ∧ y = x ∧ x. Further y ≤ y∗∗; thus, applying
transitivity of ≤, x ≤ y∗∗ which gives x ∧ y∗∗ = x ∧ x. By (K3), we have
x ∧ y∗ = 0 and y∗ ∧ x∗ = y∗ ∧ y∗, whence y∗ ≤ x∗.

Lemma 5. Let P = (A;∧,∗ ,0) be a pseudocomplemented q-semilattice and
a, b ∈ A. Then

(a ∧ b)∗∗ ≤ a∗∗ ∧ b∗∗ and a∗∗ ∧ b∗∗ ≤ (a ∧ b)∗∗.

Proof. Since a ∧ b ≤ a and a ∧ b ≤ b, we have (a ∧ b)∗∗ ≤ a∗∗ and
(a∧ b)∗∗ ≤ b∗∗ by (c) of Lemma 4; thus (a∧ b)∗∗ ≤ a∗∗ ∧ b∗∗. Conversely, by
(a) of Lemma 4, we have b ∧ (a ∧ (a ∧ b)∗) = (a ∧ b) ∧ (a ∧ b)∗ = 0; thus, by
(K3), b∗∧a∧(a∧b)∗ = (a∧(a∧b)∗)∧(a∧(a∧b)∗), i.e. a∧(a∧b)∗ ≤ b∗ = b∗∗∗.
Applying (K3) once more, a∧b∗∗∧(a∧b)∗ = 0; thus b∗∗∧(a∧b)∗ ≤ a∗ = a∗∗∗.
We obtain a∗∗ ∧ b∗∗ ∧ (a ∧ b)∗ = 0 which yields a∗∗ ∧ b∗∗ ≤ (a ∧ b)∗∗.

Let P = (A;∧,∗ ,0) be a pseudocomplemented q-semilattice. Denote by
A∗ := {a∗ : a ∈ A} the so-called skeleton of P.

Theorem 4. Let P = (A;∧,∗ ,0) be a pseudocomplemented q-semilattice
and A∗ its skeleton. Then the restriction of the induced quasiorder ≤ to
A∗ is an order and P∗ = (A∗;∧,∗ ,0) is a pseudocomplemented semilattice
(which is a subalgebra of P).

Proof. To prove that ≤ is an order on A∗, we need only to show the
antisymmetry. Suppose x∗, y∗ ∈ A∗ with x∗ ≤ y∗ and y∗ ≤ x∗. Then, by
(5), (K1), and (P1), x∗ = x∗ ∧ x∗ = x∗ ∧ y∗ = y∗ ∧ x∗ = y∗.

The fact that (A∗;∧) is a semilattice follows immediately by (P1), (P2)
and (K1). By (K3), x∗∗ is a pseudocomplement of x∗ for each x ∈ A, because
of (K) and (5). By Lemma 5, A∗ is closed with respect to ∧, since
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a∗ ∧ b∗ = a∗∗∗ ∧ b∗∗∗ = (a∗ ∧ b∗)∗∗,

due to the fact that ≤ is an order on A∗. By Lemma 4, x∗ ∧ x∗∗ = 0; thus
also 0 ∈ A∗, i.e. P∗ = (A∗;∧,∗ ,0) is a pseudocomplemented semilattice
which is a subalgebra of P.

Lemma 6. Let P = (A;∧,∗ ,0) be a pseudocomplemented q-semilattice.
Denote 0∗ by 1. Then

0 ≤ x and x ≤ 1

for each x ∈ A.

Proof. By Theorem 4, 0 ∈ A∗ and, by (K3), 0 ∧ 0 = 0. Thus x ∧ 0 =
x∧ (x∗∧x) = x∧x∗ = 0 = 0∧0, i.e. 0 ≤ x directly by (5). Since x∧0 = 0,
(K3) yields

x ∧ 1 = x ∧ 0∗ = x ∧ x;

thus x ≤ 1 for each x ∈ A.

Theorem 5. Let P = (A;∧,∗ ,0) be a pseudocomplemented q-semilattice.
Introduce the term operation xt y := (x∗ ∧ y∗)∗. Then B = (A∗;∧,t,∗ ,0,1)
is a Boolean algebra.

Proof. By Theorem 4, (A∗;∧) is a semilattice with the least element 0.
We prove that (A∗;t) is also a semilattice.

Suppose a∗, b∗, c∗ ∈ A∗. Then a∗ t a∗ = (a∗∗ ∧ a∗∗)∗ = (a∗∗)∗ = a∗ (by
(K1) and (K2)).

Further, a∗ t (b∗ t c∗) = (a∗∗ ∧ (b∗∗ ∧ c∗∗)∗∗)∗ = (a∗∗ ∧ (b∗∗ ∧ c∗∗))∗ =
((a∗∗ ∧ b∗∗) ∧ c∗∗)∗ = (a∗ t b∗) t c∗; thus t is associative. Commutativity of
t is evident. Thus (A∗;t) is a semilattice.

We have to check the absorption laws: a∗ ∧ b∗ ≤ a∗, yields a∗∗ ≤
(a∗ ∧ b∗)∗; thus

a∗ t (a∗ ∧ b∗) = (a∗∗ ∧ (a∗ ∧ b∗)∗)∗ = (a∗∗ ∧ a∗∗)∗ = a∗∗∗ = a∗.

Analogously, a∗∗ ∧ b∗∗ ≤ a∗∗ yields a∗∗∗ = a∗ ≤ (a∗∗ ∧ b∗∗)∗; thus

a∗ ∧ (a∗ t b∗) = a∗ ∧ (a∗∗ ∧ b∗∗)∗ = a∗ ∧ a∗ = a∗.
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Hence, (A∗;∧,t) is a lattice with the least element 0 and the greatest
element 1 (see Lemma 6). By Lemma 4, a∗ ∧ a∗∗ = 0. Further,

a∗ t a∗∗ = (a∗∗ ∧ a∗∗∗)∗ = (a∗∗ ∧ a∗)∗ = 0∗ = 1;

thus this lattice is complemented and a∗∗ is a complement of a∗ ∈ A∗. It
remains to prove distributivity. We easily verify

(a∗ ∧ b∗)∗ ∧ (a∗ ∧ c∗)∗ ∧ (a∗ ∧ b∗) = 0, (a∗ ∧ b∗)∗ ∧ (a∗ ∧ c∗)∗ ∧ (a∗ ∧ c∗) = 0.

Applying (K3) we obtain

(a∗ ∧ b∗)∗ ∧ (a∗ ∧ c∗)∗ ∧ a∗ ≤ b∗∗, (a∗ ∧ b∗)∗ ∧ (a∗ ∧ c∗)∗ ∧ a∗ ≤ c∗∗,

whence

(a∗ ∧ b∗)∗ ∧ (a∗ ∧ c∗)∗ ∧ a∗ ≤ b∗∗ ∧ c∗∗ = (b∗∗ ∧ c∗∗)∗∗.

Thus
(a∗ ∧ b∗)∗ ∧ (a∗ ∧ c∗)∗ ∧ (b∗∗ ∧ c∗∗)∗ ∧ a∗ = 0,

which gives

a∗∧(b∗tc∗) = a∗∧(b∗∗∧c∗∗)∗ ≤ ((a∗∧b∗)∗∧(a∗∧c∗)∗)∗ = (a∗∧b∗)t(a∗∧c∗).

The converse inequality is trivial. Thus the lattice is distributive and hence
B = (A∗;∧,t,∗ ,0,1) is a Boolean algebra.

Now, we are ready to set up a characterization of quasi-implication algebras
by means of the pseudocomplemented q-semilattices.

Theorem 6. Let P = (A;∧,∗ ,0) be a pseudocomplemented q-semilattice.
Define x · y := (x ∧ y∗)∗. Then A = (A; ·,0) is a quasi-implication algebra.

Proof. By definition of the binary operation · , we have immediately a ·0 =
(a ∧ 0∗)∗ = (a ∧ 1)∗ = a∗. The verification of (q1), (q2), (q3) and (q4) is
practically the same as in the proof of Theorem 3, only Theorem 4, Lemma
4 and Lemma 5 are used instead of Lemma 3. Hence, the rest of proof is
left to the reader as an easy exercise.
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The quasi-implication algebra, derived from a pseudocomplemented
q-semilattice P as shown by Theorem 6, will be called “the induced quasi-
implication algebra” and be denoted by A(P).

Lemma 7. Let P = (A;∧,∗ ,0) be a pseudocomplemented q-semilattice and
let A(P) be the induced quasi-implication algebra. If x ≤ y in P, then
x · y = 1 in A(P).

Proof. Suppose x ≤ y in P. Then x∧y = x∧x and hence x·y = (x∧y∗)∗ =
((x∧x)∧y∗)∗ = ((x∧y)∧y∗)∗ = (x∧(y∧y∗))∗ = (x∧0)∗ = (0∧0)∗ = 0∗ = 1.

We are going to show that also, conversely, every quasi-implication algebra
induces a pseudocomplemented q-semilattice:

Theorem 7. Let A = (A; ·,0) be a quasi-implication algebra. Define x∧y =
(x · (y ·0)) ·0 and x∗ = x ·0. Then P = (A;∧,∗ ,0) is a pseudocomplemented
q-semilattice.

Proof. We check the corresponding axioms.

(P1): By (q3), we derive

x ∧ y = (x · (y · 0)) · 0 = (y · (x · 0)) · 0 = y ∧ x.

(P2): Using of (P1), (q3) and (c) of Theorem 2, we compute (x∧ y)∧ z =
z ∧ (x ∧ y) = (z · (((x · (y · 0)) · 0) · 0)) · 0 = (z · (x · (y · 0))) · 0 =
(x·(z ·(y ·0)))·0 = (x·(((z ·(y ·0))·0)·0))·0 = x∧(z∧y) = x∧(y∧z).

(P3): By (b) of Theorem 2, x · (x · 0) = x · 0 and, by (c) of Theorem 2,
y ∧ (x ∧ x) = (y · (((x · (x · 0)) · 0) · 0)) · 0 = (y · (x · (x · 0))) · 0 =
(y · (x · 0)) · 0 = y ∧ x.

(K2): By (q4) and (q1), we have

x∗ = x · 0 = ((x · 0) · 0) · ((0 · 0) · 0) = ((x · 0) · 0) · 0 = x∗∗∗.

(K1): By (b) of Theorem 2, we get x∗ ∧ x∗ = ((x · 0) · ((x · 0) · 0))) · 0 =
((x · 0) · 0) · 0 = x∗∗∗ = x∗.

(K3): Suppose x∧y = 0. By (P1) also y∧x = 0 which gives (y·(x·0))·0 = 0
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and, by (c) and (d) of Theorem 2, ((y · (x · 0)) · 0) · 0 = 0 · 0 = 1. Applying
this, we compute y ∧ x∗ = (y · ((x · 0) · 0)) · 0 = ((y · (x · 0)) · (y · 0)) · 0 =
(1 · (y · 0)) · 0 = (y · 0) · 0 = (y · (y · 0)) · 0 = y ∧ y by (a), (b) and (d) of
Theorem 2.

Conversely, suppose y ∧ x∗ = y ∧ y. Then, by (d) of Theorem 2, (P1),
(P2), (P3) and (a) of Lemma 4, x ∧ y = x ∧ (y ∧ y) = x ∧ (x∗ ∧ y) =
(x ∧ x∗) ∧ y = 0 ∧ y = y ∧ 0 = (y · (0 · 0)) · 0 = (y · 1) · 0 = 1 · 0 = 0.

The pseudocomplemented q-semilattice derived from a quasi-implication
algebra A, as shown by Theorem 7, will be called “the induced pseudo-
complemented q-semilattice” and be denoted by P(A).

Lemma 8. Let A = (A; ·,0) be a quasi-implication algebra and P(A) =
(A;∧,∗ ,0) the induced pseudocomplemented q-semilattice. If x, y ∈ A satisfy
x · y = 1 in A, then x ≤ y in P(A).

Proof. Suppose x · y = 1. Then, by (a), (d) and (b) of Theorem 2, x∧ y =
(x·(y·0))·0 = ((x·y)·(x·0))·0 = (1·(x·0))·0 = (x·0)·0 = (x·(x·0))·0 = x∧x.
By (5), we conclude x ≤ y.

Corollary 2. Let A be a quasi-implication algebra. Then A(P(A)) = A.

Proof. Denote by ¯ the binary operation in A(P(A)). Applying (c) of
Theorem 2 two times, we have x¯y = (x∧y∗)∗ = ((x·((y ·0)·0))·0)·0 = x·y.

Remark. The converse deduction is not true in general, i.e. if P is a
pseudocomplemented q-semilattice, then P(A(P)) need not coincide with
P. Namely, x · y = (x ∧ y∗)∗ in A(P) and hence, for x ∧ y in P(A(P)), we
have x ∧ y = (x ∧ y∗∗)∗∗. However, this identity does not hold even if P is
a pseudocomplemented semilattice: Consider a chain 0 < x < y < 1. Then
x ∧ y = x, but (x ∧ y∗∗)∗∗ = (x ∧ 1)∗∗ = x∗∗ = 1 6= x.
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