ArticleOriginal scientific text
Title
An inverse matrix of an upper triangular matrix can be lower triangular
Authors 1
Affiliations
- Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-101 Gliwice, Poland
Abstract
In this note we explain why the group of n×n upper triangular matrices is defined usually over commutative ring while the full general linear group is defined over any associative ring.
Keywords
upper tringular invertible matrix, group of matrices, Dedekind-finite ring
Bibliography
- H. Anton and C. Rorres, Elementary Linear algebra. Applications version, 8-th edition, J. Wiley, New York 2000.
- C.M. Bang, A condition for two matrices to be inverses of each other, Amer. Math. Monthly (1974), 764-767.
- I.D. Ion and M. Constantinescu, Sur les anneaux Dedekind-finis, Italian J. Pure Appl. Math. 7 (2000), 19-25.
- N. Jacobson, Structure of rings, Amer. Math. Soc., RI, Providence 1956.
- M.I. Kargapolov and Yu. I. Merzlakov, Fundamentals of the theory of groups, Springer-Verlag, New York 1979.
- D.J.S. Robinson, A course in the theory of groups, Springer-Verlag, New York 1982.
- A. Stepanov and N. Vavilov, Decomposition of transvections: a theme with variations, K- Theory 19 (2000), 109-153.