LEXICO EXTENSION AND A CUT COMPLETION OF A HALF l-GROUP

Štefan Černák
Department of Mathematics, Faculty of Civil Engineering Technical University Vysokoškolská 4, SK-042 02 Košice, Slovakia
e-mail: svfkm@tuke.sk
AND
Milan Demko
Department of Mathematics, FHPV PU
17 Novembra 1, SK-081 16 Prešov, Slovakia
e-mail: demko@unipo.sk

Abstract

The cut completi on of an $h l$-group G with the abelian increasing part is investigated under the assumption that G is a lexico extension of its $h l$-subgroup.

Keywords: half lattice ordered group, l-group, cut completion, lexico extension.
2000 AMS Mathematics Subject Classification: Primary 06F15; Secondary 06F20.

0. Introduction

The notion of a half l-group as a generalization of the notion of an l-group was introduced and studied by M. Giraudet and F. Lucas [4].
R.N. Ball [1] has defined the notion of a cut completion of an l-group.

In this paper we define the notions of a cut completion and a lexico extension of a half l-group. We prove a theorem on a cut completion of a half l-group having an abelian increasing part which can be expressed as a nontrivial lexico extension. A particular case of this theorem is a result of J. Jakubík [5] dealing with a cut completion of an abelian l-group.

1. Preliminaries

Let G be an abelian l-group. G is called a lexico extension of its l-subgroup $A \neq\{0\}$ if
(i) A is a convex l-subgroup of G,
(ii) if $0<g \in G, g \notin A$, then $g>a$ for each $a \in A$.

If G is a lexico extension of A, we shall write $G=\langle A\rangle$. If $G=\langle A\rangle$, then A is an l-ideal of G and (cf. [3] and [2])
(a) A is comparable to all convex l-subgroups of G (i.e., if A^{\prime} is a convex l-subgroup of G then either $A^{\prime} \subseteq A$ or $A \subseteq A^{\prime}$).
(b) G / A is a linearly ordered group.

Let G be a group and a partially ordered set. Set

$$
\begin{aligned}
& G \uparrow=\{g \in G: x \leq y \Rightarrow g+x \leq g+y \text { for all } x, y \in G\}, \\
& G \downarrow=\{g \in G: x \leq y \Rightarrow g+x \geq g+y \text { for all } x, y \in G\}
\end{aligned}
$$

$G \uparrow(G \downarrow)$ is called the increasing (decreasing) part of G.
G is said to be a halfl-group (abbreviated to an hl-group) if the following conditions are satisfied (cf. [4]):
(i) the partial order \leq on G is non-trivial,
(ii) if $x, y, g \in G$ and $x \leq y$, then $x+g \leq y+g$,
(iii) $G=G \uparrow \cup G \downarrow$,
(iv) $G \uparrow$ is an l-group.

If $G \uparrow$ is a linearly ordered group, then $h l$-group G will be called a half linearly ordered group.

Every l-group $G \neq\{0\}$ is a special case of an $h l$-group with $G \downarrow=\emptyset$. We denote by $\mathcal{H} \mathcal{L}$ the class of all $h l$-groups that fail to be l-groups. The following results will be applied in the next.

Proposition 1.1 (cf. [4]). Let $G \in \mathcal{H} \mathcal{L}$. Then
(i) $G \uparrow$ is a subgroup of the group G and $G \uparrow$ has index 2 ,
(ii) $G \uparrow$ and $G \downarrow$ are isomorphic groups and also dually isomorphic lattices,
(iii) if $x \in G \uparrow$ and $y \in G \downarrow$, then x and y are incomparable,
(iv) the set $\{g \in G: g \neq 0,2 g=0\}$ is nonempty.

Let G be an $h l$-group. A subgroup $A \neq\{0\}$ of G is called a half l-subgroup (abbreviated to an $h l$-subgroup) if $A \uparrow=A \cap G \uparrow$ is an l-subgroup of $G \uparrow$. If A is an $h l$-subgroup (proper $h l$-subgroup) of G we use the notation $A \leq G$ $(A<G)$. We say that an $h l$-subgroup A of G is convex in G if $A \uparrow$ is convex in $G \uparrow$. A convex $h l$-subgroup A of G is said to be an $h l$-ideal of G if $A \uparrow$ is a normal subgroup of G. According to $1.1 G \uparrow$ is an $h l$-ideal of G.

Let G be an $h l$-group, $G \in \mathcal{H} \mathcal{L}$ and $A \uparrow$ an hl-ideal of $G, A \in \mathcal{H} \mathcal{L}$. We can form the factor group $\bar{G}=G / A \uparrow$. For elements $g_{1}+A \uparrow, g_{2}+A \uparrow \in \bar{G}$, we put $g_{1}+A \uparrow \leq g_{2}+A \uparrow$ if and only if there exist $g_{1}^{\prime} \in g_{1}+A \uparrow$ and $g_{2}^{\prime} \in g_{2}+A \uparrow$ with $g_{1}^{\prime} \leq g_{2}^{\prime}$. Then \bar{G} is a partially ordered set and to each $g_{1}^{\prime} \in g_{1}+A \uparrow$ there exists $g_{2}^{\prime} \in g_{2}+A \uparrow$ such that $g_{1}^{\prime} \leq g_{2}^{\prime}$. It can be easily verified that if $A<G$, then \bar{G} is an $h l$-group with the increasing part $\bar{G} \uparrow=\{g+A \uparrow: g \in G \uparrow\}$ and decreasing part $\bar{G} \downarrow=\{g+A \uparrow: g \in G \downarrow\}$.

If $A=G$ then \bar{G} is trivially ordered. Hence \bar{G} fails to be an $h l$-group.
A 1-1 mapping φ from an $h l$-group G onto an $h l$-group G^{\prime} is called an $h l$-isomorphism if φ is a group homomorphism and if $\varphi \mid G \uparrow$ is a lattice homomorphism of $G \uparrow$ onto $G^{\prime} \uparrow$.

2. Lexico extension of an $h l$-subgroup

Let G be an $h l$-group, $G \in \mathcal{H} \mathcal{L}$ with the abelian increasing part $G \uparrow$. Let A be an $h l$-subgroup of $G, A \in \mathcal{H} \mathcal{L}$. If $G \uparrow$ is a lexico extension of $A \uparrow$, then we say that G is a lexico extension of A and we express this situation by writing $G=\langle A\rangle_{h}$.

Lemma 2.1. Let $G=\langle A\rangle_{h}$. Then
(i) A is an hl-ideal of G,
(ii) if $A<G$, then $\bar{G}=G / A \uparrow$ is a half linearly ordered group.

Proof. (i) We have to show that $A \uparrow$ is normal in G. Since $A \uparrow$ is a convex l-subgroup of $G \uparrow,-g+A \uparrow+g(g \in G)$ is a convex subset of $G \uparrow$. It is a routine to verify that $-g+A \uparrow+g$ is a subgroup of $G \uparrow$. Let $-g+a_{1}+g,-g+a_{2}+g \in-g+A \uparrow+g, g \in G$, and $a_{1}, a_{2} \in A \uparrow$. It is easy to verify that in $G \uparrow$ we have $\left(-g+a_{1}+g\right) \vee\left(-g+a_{2}+g\right)=-g+\left(a_{1} \vee a_{2}\right)+g$ for each $g \in G \uparrow,\left(-g+a_{1}+g\right) \vee\left(-g+a_{2}+g\right)=-g+\left(a_{1} \wedge a_{2}\right)+g$ for each $g \in G \downarrow$ and dually. Hence $-g+A \uparrow+g$ is a sublattice of $G \uparrow$ for each $g \in G$. By summarizing we have that $-g+A \uparrow+g$ is a convex l-subgroup of $G \uparrow$ for each $g \in G$. By (a), $A \uparrow$ and $-g+A \uparrow+g$ are comparable. The fact that $G \uparrow$ is abelian implies $-g+A \uparrow+g=A \uparrow$ for all $g \in G \uparrow$. Suppose that $g \in G \downarrow$ and $A \uparrow \subseteq-g+A \uparrow+g$. Let $a \in A \uparrow$. Then $a=-g+a_{0}+g$, where $a_{0} \in A \uparrow$ and hence $-g+a+g=-2 g+a_{0}+2 g$. Since $2 g \in G \uparrow$, we get $-g+a+g \in A \uparrow$. Thus $-g+A \uparrow+g \subseteq A \uparrow$ for all $g \in G$. Therefore, $A \uparrow$ is normal in G.
(ii) follows from the property (b) of a lexico extension.

If $G=\langle A\rangle_{h}$, then Lemma 2.1 yields that $A \uparrow$ is a normal subgroup of G, but A need not be normal in G.

Examples. Let M be the set of all functions $f: R \rightarrow R ; f(x)= \pm x+k, k \in$ R. If a binary operation on M is defined as a composition (i.e., $f g(x)=$ $f(g(x))$ for all $x \in R$) and a binary relation \leq on M is defined pointwise, then M is a half linearly ordered group, with $M \uparrow=\{f: f(x)=x+k\}$ and $M \downarrow=\{f: f(x)=-x+k\}$. Now, let $H=\left\{\left(f_{1}, f_{2}\right): f_{1}, f_{2} \in M \uparrow\right\}$. For each $\left(f_{1}, f_{2}\right),\left(f_{1}^{\prime}, f_{2}^{\prime}\right) \in H$ we put $\left(f_{1}, f_{2}\right) \leq\left(f_{1}^{\prime}, f_{2}^{\prime}\right)$ if and only if either $f_{1}<f_{1}^{\prime}$ or $f_{1}=f_{1}^{\prime}$ and $f_{2} \leq f_{2}^{\prime}$. Then H is a linearly ordered set that is called the lexicographic product of the two linearly ordered sets $M \uparrow$ and we use the denotation $H=M \uparrow \circ M \uparrow$. Analogously we can construct $K=M \downarrow \circ M \downarrow$. If a binary operation on H is defined componentwise, then H is a linearly ordered group. Therefore, $G=H \cup K$ is a half linearly ordered group with $G \uparrow=H, G \downarrow=K$. Let $A_{1}=\{(i d, g) \in G: g \in M \uparrow\}$ (id is an identity function) and $A_{2}=\left\{\left(g_{1}, g\right): g_{1}\right.$ is a fixed element of $\left.M \downarrow, g \in M \downarrow\right\}$. Then $A=A_{1} \cup A_{2}$ is a half linearly ordered group, $A \uparrow=A_{1}, A \downarrow=A_{2}$. We have $G=\langle A\rangle_{h}$, but A fails to be normal in G. In fact, for all $f \in M, f \neq i d, g_{1}$ we have $f^{-1} g_{1} f \neq g_{1}$, thus $(f, f)^{-1}\left(g_{1}, g\right)(f, f) \notin A_{2}$ for each $\left(g_{1}, g\right) \in A_{2}$.

Assume that G is an $h l$-group, $G \in \mathcal{H} \mathcal{L}$ and that $A \in \mathcal{H} \mathcal{L}$ is an $h l$-ideal of G such that A is a normal subgroup of G. Define a partial order on the factor group G / A (and also on the factor group $G \uparrow / A \uparrow$) analogously
as above on $G / A \uparrow$. Then G / A is a lattice ordered group. The mapping $f: G \uparrow / A \uparrow \rightarrow G / A$ defined by $f(g+A \uparrow)=g+A, g \in G \uparrow$ is an isomorphism of the lattice ordered group $G \uparrow / A \uparrow$ onto G / A.

Suppose that $G=\langle A\rangle_{h}$ and that A is normal in G. Then, by the property (b) of a lexico extension, we have that G / A is a linearly ordered group.

Lemma 2.2. Let $G=\langle A\rangle_{h}, g_{1}+A \uparrow, g_{2}+A \uparrow \in \bar{G}$, and let $g_{1}+A \uparrow<g_{2}+A \uparrow$ Then $g_{1}<g_{2}$.
Proof. From $g_{1}+A \uparrow<g_{2}+A \uparrow$ it follows that either $g_{1}, g_{2} \in G \uparrow$ or $g_{1}, g_{2} \in G \downarrow$. Now, let $g_{1}, g_{2} \in G \uparrow$. There exists $g_{2}^{\prime} \in g_{2}+A \uparrow$ such that $g_{1}<g_{2}^{\prime}$. Hence $g_{2}^{\prime} \in G \uparrow$ and $g_{2}^{\prime}-g_{1}>0$. Since $g_{2}^{\prime}-g_{1} \notin A \uparrow$ and $g_{2}^{\prime}-g_{2} \in A \uparrow$, we get $g_{2}^{\prime}-g_{1}>g_{2}^{\prime}-g_{2}$. Hence $-g_{1}>-g_{2}$ and $g_{1}<g_{2}$. Suppose that $g_{1}, g_{2} \in G \downarrow$. There exists $g_{2}^{\prime \prime} \in g_{2}+A \uparrow$ with $g_{1}<g_{2}^{\prime \prime}$. Hence $g_{2}^{\prime \prime} \in G \downarrow, g_{2}^{\prime \prime}-g_{1} \in G \uparrow, g_{2}^{\prime \prime}-g_{1} \notin A \uparrow$ and $g_{2}^{\prime \prime}-g_{1}>0$. Further, we have $g_{2}^{\prime \prime}-g_{2} \in A \uparrow$. Then $g_{2}^{\prime \prime}-g_{1}>g_{2}^{\prime \prime}-g_{2}$ implies that $-g_{1}<-g_{2}$ and so $g_{1}<g_{2}$.

Corollary. Let $G=\langle A\rangle_{h}$. Then G is a half linearly ordered group if and only if A is a half linearly ordered group.

For the remaining part of this section, we assume that G, A and B are hl-groups from $\mathcal{H} \mathcal{L}$ such that
(I) $G \uparrow$ and $B \uparrow$ are abelian l-groups,
(II) $G=\langle A\rangle_{h}, A<G$,
(III) A is an $h l$-subgroup of B,
(IV) $G \cap B=A$.

According to Proposition 1.1, there exists an element $a \in A \downarrow$ of order 2.
Form the set

$$
H_{0}=\{(g, b): \text { either } g \in G \uparrow, b \in B \uparrow \text { or } g \in G \downarrow, b \in B \downarrow\} .
$$

For elements $\left(g_{1}, b_{1}\right),\left(g_{2}, b_{2}\right) \in H_{0}$, we set

$$
\left(g_{1}, b_{1}\right) \equiv\left(g_{2}, b_{2}\right)
$$

if $g_{1}-g_{2} \in A \uparrow, b_{1}-b_{2} \in A \uparrow, g_{1}-g_{2}=b_{2}-b_{1}$ and if either $g_{1}, g_{2} \in$ $G \uparrow, b_{1}, b_{2} \in B \uparrow$ or $g_{1}, g_{2} \in G \downarrow, b_{1}, b_{2} \in B \downarrow$.

The relation \equiv is an equivalence. It is clear that the relation \equiv is reflexive and symmetric. To establish the transitivity, suppose that $\left(g_{1}, b_{1}\right) \equiv$ $\left(g_{2}, b_{2}\right),\left(g_{2}, b_{2}\right) \equiv\left(g_{3}, b_{3}\right)$. We will consider only the following case. Let $g_{1}, g_{2} \in G \downarrow$, and $b_{1}, b_{2} \in B \downarrow$. Then $g_{3} \in G \downarrow$, and $b_{3} \in B \downarrow$. We have $g_{1}-g_{2} \in A \uparrow, b_{2}-b_{1} \in A \uparrow, g_{1}-g_{2}=b_{2}-b_{1}, g_{2}-g_{3} \in A \uparrow, b_{3}-b_{2} \in A \uparrow$, and $g_{2}-g_{3}=b_{3}-b_{2}$. By (I) and (II), $A \uparrow$ is abelian. Then $g_{1}-g_{3}=$ $\left(g_{1}-g_{2}\right)+\left(g_{2}-g_{3}\right)=\left(b_{2}-b_{1}\right)+\left(b_{3}-b_{2}\right)=\left(b_{3}-b_{2}\right)+\left(b_{2}-b_{1}\right)=b_{3}-b_{1}$. Hence $g_{1}-g_{3} \in A \uparrow$ and $b_{3}-b_{1} \in A \uparrow$. Therefore $\left(g_{1}, b_{1}\right) \equiv\left(g_{3}, b_{3}\right)$

Denote

$$
\begin{gathered}
\overline{(g, b)}=\left\{\left(g^{\prime}, b^{\prime}\right) \in H_{0}:(g, b) \equiv\left(g^{\prime}, b^{\prime}\right)\right\}, \\
H=\left\{\overline{(g, b)}:(g, b) \in H_{0}\right\} .
\end{gathered}
$$

Let $\overline{\left(g_{1}, b_{1}\right)}, \overline{\left(g_{2}, b_{2}\right)} \in H$. We put

$$
\overline{\left(g_{1}, b_{1}\right)}+\overline{\left(g_{2}, b_{2}\right)}=\overline{\left(g_{1}+g_{2}, b_{1}+b_{2}\right)} .
$$

The binary operation + on H is correctly defined; $\overline{(0,0)}$ is a neutral element and $\overline{(-g,-b)}$ is an inverse to $\overline{(g, b)}$.

We have

Lemma 2.3. $(H,+)$ is a group.
Let $\overline{\left(g_{1}, b_{1}\right)}, \overline{\left(g_{2}, b_{2}\right)} \in H$. We put

$$
\overline{\left(g_{1}, b_{1}\right)} \leq \overline{\left(g_{2}, b_{2}\right)}
$$

if either $g_{1}<g_{2}$ and $g_{1}-g_{2} \notin A \uparrow$ or $g_{1}-g_{2} \in A \uparrow$ and $g_{1}-g_{2} \leq b_{2}-b_{1}$.
The definition implies that either $g_{1}, g_{2} \in G \uparrow$ or $g_{1}, g_{2} \in G \downarrow$. Now we verify that the relation \leq is correctly defined. Let $\overline{\left(g_{1}^{\prime}, b_{1}^{\prime}\right)}=\overline{\left(g_{1}, b_{1}\right)}, \overline{\left(g_{2}^{\prime}, b_{2}^{\prime}\right)}=$ $\overline{\left(g_{2}, b_{2}\right)}$.

Assume that $g_{1}<g_{2}, g_{1}-g_{2} \notin A \uparrow$. Then $g_{1}+A \uparrow<g_{2}+A \uparrow$ and $g_{1}, g_{2} \in G \uparrow$ or $g_{1}, g_{2} \in G \downarrow$. Since $g_{1}-g_{1}^{\prime} \in A \uparrow$ and $g_{2}-g_{2}^{\prime} \in A \uparrow$, we get $g_{1}+A \uparrow=g_{1}^{\prime}+A \uparrow$ and $g_{2}+A \uparrow=g_{2}^{\prime}+A \uparrow$. With respect to Lemma 2.2, we get $g_{1}^{\prime}<g_{2}^{\prime}$. Suppose that $g_{1}^{\prime}-g_{2}^{\prime} \in A \uparrow$. Then $g_{1}-g_{2}=$ $\left(g_{1}-g_{1}^{\prime}\right)+\left(g_{1}^{\prime}-g_{2}^{\prime}\right)+\left(g_{2}^{\prime}-g_{2}\right) \in A \uparrow$, a contradiction. Hence $g_{1}^{\prime}-g_{2}^{\prime} \notin A \uparrow$.

Assume that $g_{1}-g_{2} \in A \uparrow, g_{1}-g_{2} \leq b_{2}-b_{1}$. Then $g_{1}^{\prime}-g_{2}^{\prime}=\left(g_{1}^{\prime}-g_{1}\right)+$ $\left(g_{1}-g_{2}\right)+\left(g_{2}-g_{2}^{\prime}\right) \leq\left(b_{1}-b_{1}^{\prime}\right)+\left(b_{2}-b_{1}\right)+\left(b_{2}^{\prime}-b_{2}\right)=\left(b_{1}-b_{1}^{\prime}\right)+\left(b_{2}^{\prime}-b_{2}\right)+$ $\left(b_{2}-b_{1}\right)=\left(b_{1}-b_{1}^{\prime}\right)+\left(b_{2}^{\prime}-b_{1}\right)=\left(b_{2}^{\prime}-b_{1}\right)+\left(b_{1}-b_{1}^{\prime}\right)=b_{2}^{\prime}-b_{1}^{\prime}$. We also have shown that $g_{1}^{\prime}-g_{2}^{\prime} \in A \uparrow$.

It is evident that the relation \leq is reflexive.
Let $\overline{\left(g_{1}, b_{1}\right)} \leq \overline{\left(g_{2}, b_{2}\right)}, \overline{\left(g_{2}, b_{2}\right)} \leq \overline{\left(g_{1}, b_{1}\right)}$. Then $g_{1}-g_{2} \in A \uparrow, g_{1}-g_{2} \leq$ $b_{2}-b_{1}$ and $g_{2}-g_{1} \leq b_{1}-b_{2}$. Hence $g_{1}-g_{2}=b_{2}-b_{1}$ and so $\overline{\left(g_{1}, b_{1}\right)}=\overline{\left(g_{2}, b_{2}\right)}$. The antisymmetry is satisfied.

$$
\text { Let } \overline{\left(g_{1}, b_{1}\right)} \leq \overline{\left(g_{2}, b_{2}\right)}, \overline{\left(g_{2}, b_{2}\right)} \leq \overline{\left(g_{3}, b_{3}\right)}
$$

(α) Assume that $g_{1}<g_{2}, g_{1}-g_{2} \notin A \uparrow, g_{2}<g_{3}$, and $g_{2}-g_{3} \notin A \uparrow$. We will consider only the case that $g_{1}, g_{2} \in G \downarrow$. Then also $g_{3} \in G \downarrow$ and $g_{1}<g_{3}$. Assume that $g_{1}-g_{3} \in A \uparrow$. Then $g_{1}+A \uparrow=g_{3}+A \uparrow$. Since $g_{1}+A \uparrow$ is a convex subset of $G \downarrow$ and $g_{1}<g_{2}<g_{3}$, we obtain $g_{2} \in g_{1}+A \uparrow$. Hence $g_{1}-g_{2} \in A \uparrow$, a contradiction.
(β) Assume that $g_{1}-g_{2} \in A \uparrow, g_{1}-g_{2} \leq b_{2}-b_{1}, g_{2}-g_{3} \in A \uparrow$, and $g_{2}-g_{3} \leq b_{3}-b_{2}$. Then $g_{1}-g_{3}=\left(g_{1}-g_{2}\right)+\left(g_{2}-g_{3}\right) \in A \uparrow$, and $g_{1}-g_{3}=$ $\left(g_{1}-g_{2}\right)+\left(g_{2}-g_{3}\right) \leq\left(b_{2}-b_{1}\right)+\left(b_{3}-b_{2}\right)=\left(b_{3}-b_{2}\right)+\left(b_{2}-b_{1}\right)=b_{3}-b_{1}$.
(γ) Assume that $g_{1}<g_{2}, g_{1}-g_{2} \notin A \uparrow, g_{2}-g_{3} \in A \uparrow$, and $g_{2}-g_{3} \leq b_{3}-$ b_{2}. We will consider only the case $g_{1}, g_{2} \in G \downarrow$. Hence $g_{3} \in G \downarrow, g_{2}-g_{1}>0$ and $g_{2}-g_{1} \notin A \uparrow$. From this it follows that $g_{2}-g_{1}>g_{2}-g_{3},-g_{1}<-g_{3}$ and $g_{1}<g_{3}$. Suppose that $g_{1}-g_{3} \in A \uparrow$. Then $g_{1}-g_{2}=\left(g_{1}-g_{3}\right)+\left(g_{3}-g_{2}\right) \in A \uparrow$, a contradiction.
(δ) Suppose that $g_{1}-g_{2} \in A \uparrow, g_{1}-g_{2} \leq b_{2}-b_{1}, g_{2}<g_{3}$, and $g_{2}-g_{3} \notin A \uparrow$. The case is analogous to (γ).

In all cases $(\alpha)-(\delta)$ we get $\overline{\left(g_{1}, b_{1}\right)} \leq \overline{\left(g_{3}, b_{3}\right)}$, i.e the relation \leq is transitive.

We have shown that the following lemma is valid.
Lemma 2.4. (H, \leq) is a partially ordered set.

Lemma 2.5. Let $\overline{\left(g_{1}, b_{1}\right)}, \overline{\left(g_{2}, b_{2}\right)}, \overline{\left(g_{3}, b_{3}\right)} \in H, \overline{\left(g_{1}, b_{1}\right)} \leq \overline{\left(g_{2}, b_{2}\right)}$. Then $\overline{\left(g_{1}, b_{1}\right)}+\overline{\left(g_{3}, b_{3}\right)} \leq \overline{\left(g_{2}, b_{2}\right)}+\overline{\left(g_{3}, b_{3}\right)}$.

Proof. We will consider only the case that $g_{1}, g_{2}, g_{3} \in G \downarrow$.
Suppose that $g_{1}<g_{2}$ and $g_{1}-g_{2} \notin A \uparrow$. Then $g_{1}+g_{3}<g_{2}+g_{3}$ and $\left(g_{1}+g_{3}\right)-\left(g_{2}+g_{3}\right)=g_{1}-g_{2} \notin A \uparrow$.

Assume that $g_{1}-g_{2} \in A \uparrow$ and $g_{1}-g_{2} \leq b_{2}-b_{1}$. Then $\left(g_{1}+g_{3}\right)-\left(g_{2}+\right.$ $\left.g_{3}\right) \in A \uparrow$ and $\left(g_{1}+g_{3}\right)-\left(g_{2}+g_{3}\right)=g_{1}-g_{2} \leq b_{2}-b_{1}=\left(b_{2}+b_{3}\right)-\left(b_{1}+b_{3}\right)$. Therefore $\overline{\left(g_{1}, b_{1}\right)}+\overline{\left(g_{3}, b_{3}\right)} \leq \overline{\left(g_{2}, b_{2}\right)}+\overline{\left(g_{3}, b_{3}\right)}$.

Form the sets

$$
H \uparrow=\{\overline{(g, b)}: g \in G \uparrow, b \in B \uparrow\}, H \downarrow=\{\overline{(g, b)}: g \in G \downarrow, b \in B \downarrow\}
$$

Then we have

Lemma 2.6. $H=(H \uparrow) \cup(H \downarrow)$.

Lemma 2.7. $H \uparrow$ is an increasing part and $H \downarrow$ is a decreasing part of H.
Proof. Assume that $\overline{\left(g_{1}, b_{1}\right)}, \overline{\left(g_{2}, b_{2}\right)} \in H, \overline{\left(g_{1}, b_{1}\right)} \leq \overline{\left(g_{2}, b_{2}\right)}$ and $\overline{\left(g_{3}, b_{3}\right)} \in$ $H \downarrow$. We intend to show that $H \downarrow$ is a decreasing part of H, i.e., that $\overline{\left(g_{3}, b_{3}\right)}+\overline{\left(g_{2}, b_{2}\right)} \leq \overline{\left(g_{3}, b_{3}\right)}+\overline{\left(g_{1}, b_{1}\right)}$ is valid.

Let $g_{1}<g_{2}, g_{1}-g_{2} \notin A \uparrow$. Then $g_{3}+g_{1}>g_{3}+g_{2}$. Suppose that $\left(g_{3}+g_{2}\right)-\left(g_{3}+g_{1}\right) \in A \uparrow$. With respect to Lemma 2.1, $A \uparrow$ is normal in G. Thus $g_{2}-g_{1} \in-g_{3}+A \uparrow+g_{3} \subseteq A \uparrow$. Hence $g_{1}-g_{2} \in A \uparrow$, a contradiction.

Let $g_{1}-g_{2} \in A \uparrow$ and $g_{1}-g_{2} \leq b_{2}-b_{1}$. By using the normality of $A \uparrow$ in G, we obtain $g_{3}+g_{2}-\left(g_{3}+g_{1}\right)=g_{3}+\left(g_{2}-g_{1}\right)-g_{3} \in A \uparrow$. There exist elements $g_{3}^{\prime} \in G \uparrow$ and $b_{3}^{\prime} \in B \uparrow$ such that $g_{3}=a+g_{3}^{\prime}, b_{3}=a+b_{3}^{\prime}$. From $g_{2}-g_{1} \geq b_{1}-b_{2}$, it follows $a+g_{3}^{\prime}-g_{3}^{\prime}+g_{2}-g_{1}+a \leq a+b_{3}^{\prime}-b_{3}^{\prime}+b_{1}-b_{2}+a$, $\left(a+g_{3}^{\prime}+g_{2}\right)-\left(a+g_{3}^{\prime}+g_{1}\right) \leq\left(a+b_{3}^{\prime}+b_{1}\right)-\left(a+b_{3}^{\prime}+b_{2}\right)$ and $\left(g_{3}+g_{2}\right)-\left(g_{3}+g_{1}\right) \leq$ $\left(b_{3}+b_{1}\right)-\left(b_{3}+b_{2}\right)$.

In an analogous way, we show that $H \uparrow$ is an increasing part of H.
$H \uparrow$ is a group (subgroup of H) and a partially ordered set (a partial order is inherited from H). Then according to Lemmas 2.5 and 2.7, $H \uparrow$ is a partially ordered group.

Lemma 2.8. $H \uparrow$ is an l-group.
Proof. It is sufficient to prove that there exists $\sup \{\overline{(0,0)}, \overline{(g, b)}\}$ for each $\overline{(g, b)} \in H \uparrow$. If $g \notin A \uparrow$ then $g>0$ or $g<0$. Hence $\overline{(g, b)}$ and $\overline{(0,0)}$ are comparable. If $g \in A \uparrow$ then $g+b \in B \uparrow$ and $\overline{(g, b)}=\overline{(0, g+b)}$. Let
$b^{\prime}=\sup \{0, g+b\}$ in $B \uparrow$. By using the same procedure as in the proof of Lemma 2.4 in [5], we obtain $\overline{\left(0, b^{\prime}\right)}=\sup \{\overline{(0,0)}, \overline{(g, b)}\}$.

From Lemmas 2.3-2.8 it follows

Lemma 2.9. H is an hl-group, $H \in \mathcal{H} \mathcal{L}$.

Recall that there is $a \in A \downarrow$, an element of order 2 (by Proposition 1.1), and that, by (IV), $A \subseteq B$. Define the mapping φ of G into H by $\varphi(g)=\overline{(g, 0)}$ if $g \in G \uparrow$ and $\varphi(g)=\overline{(g, a)}$ if $g \in G \downarrow$. Then φ is an $h l$-isomorphism of the $h l$-group G into H.

If we put $\psi(b)=\overline{(0, b)}$ for each $b \in B \uparrow$ and $\psi(b)=\overline{(a, b)}$ for each $b \in B \downarrow$, then ψ is an $h l$-isomorphism of the $h l$-group B into H.

If $x \in G \cap B$ then $\varphi(x)=\psi(x)$. In fact, if $x \in(G \cap B) \uparrow=(G \uparrow) \cap(B \uparrow)$, then $\varphi(x)=\overline{(x, 0)}=\overline{(0, x)}=\psi(x)$; and if $x \in(G \cap B) \downarrow=(G \downarrow) \cap(B \downarrow)$, then $\varphi(x)=\overline{(x, a)}=\overline{(a, x)}=\psi(x)$.

In the next, we shall identify elements g and $\varphi(g)$ for each $g \in G$ and also b and $\psi(b)$ for each $b \in B$. Then G and B are $h l$-subgroups of H.

Lemma 2.10. $H=\langle B\rangle_{h}$.
Proof. B is an $h l$-subgroup of H. We have to prove that $H \uparrow=\langle B \uparrow\rangle$. Assume that $\overline{(g, b)} \in H \uparrow, \overline{\left(0, b^{\prime}\right)} \in B \uparrow, \overline{(0,0)} \leq \overline{(g, b)} \leq \overline{\left(0, b^{\prime}\right)}$. Then $g \in A \uparrow \subseteq B \uparrow$ and so $g+b \in B \uparrow, \overline{(g, b)}=\overline{(0, g+b)} \in B \uparrow$. Hence $B \uparrow$ is a convex l-subgroup of $H \uparrow$. Let $\overline{(0,0)}<\overline{(g, b)} \in H \uparrow, \overline{(g, b)} \notin B \uparrow$. Then $g \notin A \uparrow$. Therefore, $g>0$ and thus $\overline{\left(0, b^{\prime}\right)}<\overline{(g, b)}$ for each $\overline{\left(0, b^{\prime}\right)} \in B \uparrow$.

By using Lemmas 2.10 and $2.1, B$ is an $h l$-ideal of H. Therefore, we can form the factor $h l$-group $\bar{H}=H / B \uparrow$.

Lemma 2.11. Half l-groups \bar{G} and \bar{H} are hl-isomorphic.

Proof. Define the mapping $f: \bar{G} \rightarrow \bar{H}$ by $f(g+A \uparrow)=g+B \uparrow$. Let $g+A \uparrow=g^{\prime}+A \uparrow$. Then $g-g^{\prime} \in A \uparrow \subset B \uparrow$. Thus $g+B \uparrow=g^{\prime}+B \uparrow$. Therefore the mapping f is correctly defined.

Let $g_{1}+A \uparrow, g_{2}+A \uparrow \in \bar{G}$. Then $f\left(\left(g_{1}+A \uparrow\right)+\left(g_{2}+A \uparrow\right)\right)=f\left(\left(g_{1}+g_{2}\right)+\right.$ $A \uparrow)=\left(g_{1}+g_{2}\right)+B \uparrow=\left(g_{1}+B \uparrow\right)+\left(g_{2}+B \uparrow\right)=f\left(g_{1}+A \uparrow\right)+f\left(g_{2}+A \uparrow\right)$.

Assume that $g_{1}, g_{2} \in G$ and $f\left(g_{1}+A \uparrow\right)=f\left(g_{2}+A \uparrow\right)$. From $g_{1}+$ $B \uparrow=g_{2}+B \uparrow$, we infer that either $g_{1}, g_{2} \in G \uparrow$ or $g_{1}, g_{2} \in G \downarrow$. Hence $g_{1}-g_{2} \in G \uparrow \cap B \uparrow=A \uparrow$ and so $g_{1}+A \uparrow=g_{2}+A \uparrow$.

Let $\overline{(g, b)}+B \uparrow \in \bar{H}$. Assume that $\overline{(g, b)} \in H \downarrow$. Hence $g \in G \downarrow$. Recall that g is identified with $\overline{(g, a)}$. As for $\overline{(g, a)}-\overline{(g, b)}=\overline{(0, a-b)} \in B \uparrow$, we have $\overline{(g, a)}+B \uparrow=\overline{(g, b)}+B \uparrow$. Therefore $f(g+A \uparrow)=\overline{(g, b)}+B \uparrow$. If $\overline{(g, b)} \in H \uparrow$, the proof is similar.

We have shown that f is a group isomorphism of \bar{G} onto \bar{H}.
Assume that $g_{1}+A \uparrow, g_{2}+A \uparrow \in \bar{G}$ and $g_{1}+A \uparrow \leq g_{2}+A \uparrow$. If $g_{1}+A \uparrow=g_{2}+A \uparrow$, then $f\left(g_{1}+A \uparrow\right)=f\left(g_{2}+A \uparrow\right)$. Let $g_{1}+A \uparrow<g_{2}+A \uparrow$. By Lemma 2.2, $g_{1}<g_{2}$. Hence $f\left(g_{1}+A \uparrow\right)=g_{1}+B \uparrow<g_{2}+B \uparrow=f\left(g_{2}+A \uparrow\right)$. The converse is similar.

Summarizing the previous results, we have
Theorem 2.12. Let A, B and G be hl-groups from $\mathcal{H} \mathcal{L}$ satisfying (I)-(IV). Then there exists an hl-group $H \in \mathcal{H} \mathcal{L}$ such that
(i) $H=\langle B\rangle_{h}$,
(ii) G is an hl-subgroup of H,
(iii) hl-groups $G / A \uparrow$ and $H / B \uparrow$ are hl-isomorphic.

3. Cut completion of a lexico extension

Let G be an $h l$-group. A subset X of $G \uparrow$ is said to be a cut of $G \uparrow$ if X is an order closed (i.e., $g=\bigvee S$ for $S \subseteq X$ implies $g \in X$) lattice ideal of G such that $g+X \neq X \neq X+g$ for any $0<g \in G$. A cut of $G \downarrow$ is defined in the same way. If X is a cut either of $G \uparrow$ or of $G \downarrow$, then X is called a cut of G.
$G \uparrow(G \downarrow)$ is said to be cut complete if every cut of $G \uparrow(G \downarrow)$ has a supremum in $G \uparrow(G \downarrow)$.

Remark that if $Z \subseteq G \uparrow(Z \subseteq G \downarrow)$, then $\sup (Z)$ exists in $G \uparrow(G \downarrow)$ if and only if $\sup (Z)$ exists in G, and $\sup (Z)$ in G is equal to $\sup (Z)$ in $G \uparrow$ $(G \downarrow)$.
G is called cut complete provided that every cut of G has a supremum in G.
An $h l$-subgroup G^{\prime} of G will be said to be order dense in G if for every element $0<g \in G$ there exists $g^{\prime} \in G^{\prime}$ with $0<g^{\prime} \leq g$.

An hl-group G^{C} is said to be a cut completion of G if the following conditions are satisfied:
(i) G^{C} is cut complete;
(ii) G is an order dense $h l$-subgroup of G^{C};
(iii) if K is an $h l$-subgroup of G^{C} such that $G \leq K<G^{C}$, then K is not cut complete.

Since $G \uparrow$ and $G \downarrow$ are dually isomorphic lattices, we have
Lemma 3.1. For any hl-group $G, G \in \mathcal{H} \mathcal{L}$ is cut complete if and only if $G \uparrow$ is cut complete.

Lemma 3.2 ([5], Lemma 3.1). Let G be an abelian l-group, $G=\langle A\rangle$, $A \neq\{0\}$. If A is cut complete, then G is cut complete.

Lemma 3.3. Let H and B be hl-groups from $\mathcal{H} \mathcal{L}$ such that $H \uparrow$ is abelian and $H=\langle B\rangle_{h}$. If B is cut complete, then H is cut complete.
Proof. The assumption that B is cut complete and Lemma 3.1 yield that $B \uparrow$ is cut complete. From $H \uparrow=\langle B \uparrow\rangle, B \uparrow \neq\{0\}$ and Lemma 3.2, we obtain that $H \uparrow$ is cut complete. Hence H is cut complete.

Lemma 3.4. Let A, B, G satisfy the conditions (I)-(IV) and H be such as in Theorem 2.12. Suppose that $B=A^{C}$. Then $H=G^{C}$.

Proof. In view of Lemma 2.10, we have $H=\langle B\rangle_{h}$. A is order dense in B and B is order dense in H. This yields that A is order dense in H. Thus G is order dense in H. From Lemma 3.3, it follows that H is cut complete. Assume that K is an $h l$-subgroup of H such that $G \leq K<H$. Then $K \uparrow$ is an l-subgroup of $H \uparrow$ with $G \uparrow \leq K \uparrow<H \uparrow$. In the same way as in the proof of Lemma 3.2 in [5], it can be shown that $K \uparrow$ fails to be cut complete. Then, by Lemma 3.1, K is not cut complete. Therefore $H=G^{C}$.

Theorem 3.5. Let $G=\langle A\rangle_{h}$, and $A<G$. Then
(i) $G^{C}=\left\langle A^{C}\right\rangle_{h}$,
(ii) hl-groups $G / A \uparrow$ and $G^{C} / A^{C} \uparrow$ are hl-isomorphic.

Proof. (i): Put $B=A^{C}$. Let H be as in Theorem 2.12. Then $H=\langle B\rangle_{h}$ holds. Applying Lemma 3.4, we get that $G^{C}=\left\langle A^{C}\right\rangle_{h}$ is valid.
(ii): Immediately follows from Theorem 2.12.

References

[1] R.N. Ball, The structure of the α-completion of a lattice ordered group, Houston J. Math. 15 (1989), 481-515.
[2] P. Conrad, Lattice Ordered Groups, Tulane University, New Orleans, LA, 1970.
[3] M.R. Darnel, Theory of Lattice Ordered Groups, M. Dekker, Inc., New York 1995.
[4] M. Giraudet and F. Lucas, Groupes à moitié ordonnés, Fund. Math. 139 (1991), 75-89.
[5] J. Jakubík, On cut completions of abelian lattice ordered groups, Czechoslovak Math. J. 50 (125) (2000), 587-602.

Received 27 May 2002

