LEXICO EXTENSION AND A CUT COMPLETION OF A HALF l-GROUP

ŠTEFAN ČERNÁK

Department of Mathematics, Faculty of Civil Engineering Technical University Vysokoškolská 4, SK-042 02 Košice, Slovakia e-mail: svfkm@tuke.sk

AND

Milan Demko

Department of Mathematics, FHPV PU 17 Novembra 1, SK-081 16 Prešov, Slovakia e-mail: demko@unipo.sk

Abstract

The cut completi on of an hl-group G with the abelian increasing part is investigated under the assumption that G is a lexico extension of its hl-subgroup.

Keywords: half lattice ordered group, *l*-group, cut completion, lexico extension.

2000 AMS Mathematics Subject Classification: Primary 06F15; Secondary 06F20.

0. Introduction

The notion of a half l-group as a generalization of the notion of an l-group was introduced and studied by M. Giraudet and F. Lucas [4].

R.N. Ball [1] has defined the notion of a cut completion of an *l*-group.

In this paper we define the notions of a cut completion and a lexico extension of a half l-group. We prove a theorem on a cut completion of a half l-group having an abelian increasing part which can be expressed as a nontrivial lexico extension. A particular case of this theorem is a result of J. Jakubík [5] dealing with a cut completion of an abelian l-group.

1. Preliminaries

Let G be an abelian l-group. G is called a lexico extension of its l-subgroup $A \neq \{0\}$ if

- (i) A is a convex l-subgroup of G,
- (ii) if $0 < g \in G$, $g \notin A$, then g > a for each $a \in A$.

If G is a lexico extension of A, we shall write $G = \langle A \rangle$. If $G = \langle A \rangle$, then A is an l-ideal of G and (cf. [3] and [2])

- (a) A is comparable to all convex l-subgroups of G (i.e., if A' is a convex l-subgroup of G then either $A' \subseteq A$ or $A \subseteq A'$).
- (b) G/A is a linearly ordered group.

Let G be a group and a partially ordered set. Set

$$G \uparrow = \{ q \in G : x \le y \Rightarrow q + x \le q + y \text{ for all } x, y \in G \},$$

$$G \downarrow = \{g \in G : x \le y \Rightarrow g + x \ge g + y \text{ for all } x, y \in G\}.$$

 $G \uparrow (G \downarrow)$ is called the *increasing* (decreasing) part of G.

G is said to be a half l-group (abbreviated to an hl-group) if the following conditions are satisfied (cf. [4]):

- (i) the partial order \leq on G is non-trivial,
- (ii) if $x, y, g \in G$ and $x \le y$, then $x + g \le y + g$,
- (iii) $G = G \uparrow \cup G \downarrow$,
- (iv) $G \uparrow$ is an l-group.

If $G \uparrow$ is a linearly ordered group, then hl-group G will be called a half linearly ordered group.

Every l-group $G \neq \{0\}$ is a special case of an hl-group with $G \downarrow = \emptyset$.

We denote by \mathcal{HL} the class of all hl-groups that fail to be l-groups.

The following results will be applied in the next.

Proposition 1.1 (cf. [4]). Let $G \in \mathcal{HL}$. Then

- (i) $G \uparrow is a subgroup of the group G and <math>G \uparrow has index 2$,
- (ii) $G \uparrow and G \downarrow are isomorphic groups and also dually isomorphic lattices,$
- (iii) if $x \in G \uparrow$ and $y \in G \downarrow$, then x and y are incomparable,
- (iv) the set $\{g \in G : g \neq 0, 2g = 0\}$ is nonempty.

Let G be an hl-group. A subgroup $A \neq \{0\}$ of G is called a half l-subgroup (abbreviated to an hl-subgroup) if $A \uparrow = A \cap G \uparrow$ is an l-subgroup of $G \uparrow$. If A is an hl-subgroup (proper hl-subgroup) of G we use the notation $A \leq G$ (A < G). We say that an hl-subgroup A of G is convex in $G \uparrow$. A convex hl-subgroup A of G is said to be an hl-ideal of G if $A \uparrow$ is a normal subgroup of G. According to 1.1 $G \uparrow$ is an hl-ideal of G.

Let G be an hl-group, $G \in \mathcal{HL}$ and $A \uparrow$ an hl-ideal of G, $A \in \mathcal{HL}$. We can form the factor group $\overline{G} = G/A \uparrow$. For elements $g_1 + A \uparrow$, $g_2 + A \uparrow \in \overline{G}$, we put $g_1 + A \uparrow \leq g_2 + A \uparrow$ if and only if there exist $g'_1 \in g_1 + A \uparrow$ and $g'_2 \in g_2 + A \uparrow$ with $g'_1 \leq g'_2$. Then \overline{G} is a partially ordered set and to each $g'_1 \in g_1 + A \uparrow$ there exists $g'_2 \in g_2 + A \uparrow$ such that $g'_1 \leq g'_2$. It can be easily verified that if A < G, then \overline{G} is an hl-group with the increasing part $\overline{G} \uparrow = \{g + A \uparrow : g \in G \uparrow\}$ and decreasing part $\overline{G} \downarrow = \{g + A \uparrow : g \in G \downarrow\}$.

If A = G then \overline{G} is trivially ordered. Hence \overline{G} fails to be an hl-group.

A 1-1 mapping φ from an hl-group G onto an hl-group G' is called an hl-isomorphism if φ is a group homomorphism and if $\varphi|G\uparrow$ is a lattice homomorphism of $G\uparrow$ onto $G'\uparrow$.

2. Lexico extension of an hl-subgroup

Let G be an hl-group, $G \in \mathcal{HL}$ with the abelian increasing part $G \uparrow$. Let A be an hl-subgroup of G, $A \in \mathcal{HL}$. If $G \uparrow$ is a lexico extension of $A \uparrow$, then we say that G is a lexico extension of A and we express this situation by writing $G = \langle A \rangle_h$.

Lemma 2.1. Let $G = \langle A \rangle_h$. Then

- (i) A is an hl-ideal of G,
- (ii) if A < G, then $\overline{G} = G/A \uparrow$ is a half linearly ordered group.

Proof. (i) We have to show that $A \uparrow$ is normal in G. Since $A \uparrow$ is a convex l-subgroup of $G \uparrow$, $-g + A \uparrow +g$ ($g \in G$) is a convex subset of $G \uparrow$. It is a routine to verify that $-g + A \uparrow +g$ is a subgroup of $G \uparrow$. Let $-g + a_1 + g$, $-g + a_2 + g \in -g + A \uparrow +g$, $g \in G$, and $a_1, a_2 \in A \uparrow$. It is easy to verify that in $G \uparrow$ we have $(-g + a_1 + g) \lor (-g + a_2 + g) = -g + (a_1 \lor a_2) + g$ for each $g \in G \uparrow$, $(-g + a_1 + g) \lor (-g + a_2 + g) = -g + (a_1 \land a_2) + g$ for each $g \in G \downarrow$ and dually. Hence $-g + A \uparrow +g$ is a sublattice of $G \uparrow$ for each $g \in G$. By summarizing we have that $-g + A \uparrow +g$ is a convex l-subgroup of $G \uparrow$ for each $g \in G$. By (a), $A \uparrow$ and $-g + A \uparrow +g$ are comparable. The fact that $G \uparrow$ is abelian implies $-g + A \uparrow +g = A \uparrow$ for all $g \in G \uparrow$. Suppose that $g \in G \downarrow$ and $A \uparrow \subseteq -g + A \uparrow +g$. Let $a \in A \uparrow$. Then $a = -g + a_0 + g$, where $a_0 \in A \uparrow$ and hence $-g + a + g = -2g + a_0 + 2g$. Since $2g \in G \uparrow$, we get $-g + a + g \in A \uparrow$. Thus $-g + A \uparrow +g \subseteq A \uparrow$ for all $g \in G$. Therefore, $A \uparrow$ is normal in G.

(ii) follows from the property (b) of a lexico extension.

If $G = \langle A \rangle_h$, then Lemma 2.1 yields that $A \uparrow$ is a normal subgroup of G, but A need not be normal in G.

Examples. Let M be the set of all functions $f: R \to R$; $f(x) = \pm x + k$, $k \in$ R. If a binary operation on M is defined as a composition (i.e., fg(x) =f(g(x)) for all $x \in R$) and a binary relation \leq on M is defined pointwise, then M is a half linearly ordered group, with $M \uparrow = \{f : f(x) = x + k\}$ and $M \downarrow = \{f : f(x) = -x + k\}.$ Now, let $H = \{(f_1, f_2) : f_1, f_2 \in M \uparrow\}.$ For each $(f_1, f_2), (f'_1, f'_2) \in H$ we put $(f_1, f_2) \leq (f'_1, f'_2)$ if and only if either $f_1 < f'_1$ or $f_1 = f'_1$ and $f_2 \leq f'_2$. Then H is a linearly ordered set that is called the lexicographic product of the two linearly ordered sets $M \uparrow$ and we use the denotation $H = M \uparrow \circ M \uparrow$. Analogously we can construct $K = M \downarrow \circ M \downarrow$. If a binary operation on H is defined componentwise, then H is a linearly ordered group. Therefore, $G = H \cup K$ is a half linearly ordered group with $G \uparrow = H, G \downarrow = K$. Let $A_1 = \{(id, g) \in G : g \in M \uparrow\}$ (id is an identity function) and $A_2 = \{(g_1, g) : g_1 \text{ is a fixed element of } M \downarrow, g \in M \downarrow \}$. Then $A = A_1 \cup A_2$ is a half linearly ordered group, $A \uparrow = A_1$, $A \downarrow = A_2$. We have $G = \langle A \rangle_h$, but A fails to be normal in G. In fact, for all $f \in M, f \neq id, g_1$ we have $f^{-1}g_1f \neq g_1$, thus $(f, f)^{-1}(g_1, g)(f, f) \notin A_2$ for each $(g_1, g) \in A_2$.

Assume that G is an hl-group, $G \in \mathcal{HL}$ and that $A \in \mathcal{HL}$ is an hl-ideal of G such that A is a normal subgroup of G. Define a partial order on the factor group G/A (and also on the factor group $G \uparrow A \uparrow$) analogously

as above on $G/A \uparrow$. Then G/A is a lattice ordered group. The mapping $f: G \uparrow /A \uparrow \to G/A$ defined by $f(g+A \uparrow) = g+A, g \in G \uparrow$ is an isomorphism of the lattice ordered group $G \uparrow /A \uparrow$ onto G/A.

Suppose that $G = \langle A \rangle_h$ and that A is normal in G. Then, by the property (b) of a lexico extension, we have that G/A is a linearly ordered group.

Lemma 2.2. Let $G = \langle A \rangle_h$, $g_1 + A \uparrow$, $g_2 + A \uparrow \in \overline{G}$, and let $g_1 + A \uparrow < g_2 + A \uparrow$ Then $g_1 < g_2$.

Proof. From $g_1 + A \uparrow < g_2 + A \uparrow$ it follows that either $g_1, g_2 \in G \uparrow$ or $g_1, g_2 \in G \downarrow$. Now, let $g_1, g_2 \in G \uparrow$. There exists $g_2' \in g_2 + A \uparrow$ such that $g_1 < g_2'$. Hence $g_2' \in G \uparrow$ and $g_2' - g_1 > 0$. Since $g_2' - g_1 \notin A \uparrow$ and $g_2' - g_2 \in A \uparrow$, we get $g_2' - g_1 > g_2' - g_2$. Hence $-g_1 > -g_2$ and $g_1 < g_2$. Suppose that $g_1, g_2 \in G \downarrow$. There exists $g_2'' \in g_2 + A \uparrow$ with $g_1 < g_2''$. Hence $g_2'' \in G \downarrow$, $g_2'' - g_1 \in G \uparrow$, $g_2'' - g_1 \notin A \uparrow$ and $g_2'' - g_1 > 0$. Further, we have $g_2'' - g_2 \in A \uparrow$. Then $g_2'' - g_1 > g_2'' - g_2$ implies that $-g_1 < -g_2$ and so $g_1 < g_2$.

Corollary. Let $G = \langle A \rangle_h$. Then G is a half linearly ordered group if and only if A is a half linearly ordered group.

For the remaining part of this section, we assume that G, A and B are hl-groups from \mathcal{HL} such that

- (I) $G \uparrow$ and $B \uparrow$ are abelian l-groups,
- (II) $G = \langle A \rangle_h$, A < G,
- (III) A is an hl-subgroup of B,
- (IV) $G \cap B = A$.

According to Proposition 1.1, there exists an element $a \in A \downarrow$ of order 2. Form the set

$$H_0 = \{(g, b) : \text{ either } g \in G \uparrow, b \in B \uparrow \text{ or } g \in G \downarrow, b \in B \downarrow \}.$$

For elements $(g_1, b_1), (g_2, b_2) \in H_0$, we set

$$(g_1, b_1) \equiv (g_2, b_2)$$

if $g_1 - g_2 \in A \uparrow$, $b_1 - b_2 \in A \uparrow$, $g_1 - g_2 = b_2 - b_1$ and if either $g_1, g_2 \in G \uparrow$, $b_1, b_2 \in B \uparrow$ or $g_1, g_2 \in G \downarrow$, $b_1, b_2 \in B \downarrow$.

The relation \equiv is an equivalence. It is clear that the relation \equiv is reflexive and symmetric. To establish the transitivity, suppose that $(g_1,b_1)\equiv (g_2,b_2),\ (g_2,b_2)\equiv (g_3,b_3)$. We will consider only the following case. Let $g_1,g_2\in G\downarrow$, and $b_1,b_2\in B\downarrow$. Then $g_3\in G\downarrow$, and $b_3\in B\downarrow$. We have $g_1-g_2\in A\uparrow$, $b_2-b_1\in A\uparrow$, $g_1-g_2=b_2-b_1$, $g_2-g_3\in A\uparrow$, $b_3-b_2\in A\uparrow$, and $g_2-g_3=b_3-b_2$. By (I) and (II), $A\uparrow$ is abelian. Then $g_1-g_3=(g_1-g_2)+(g_2-g_3)=(b_2-b_1)+(b_3-b_2)=(b_3-b_2)+(b_2-b_1)=b_3-b_1$. Hence $g_1-g_3\in A\uparrow$ and $g_3-g_3\in A\uparrow$. Therefore $(g_1,b_1)\equiv (g_3,b_3)$

Denote

$$\overline{(g,b)} = \{ (g',b') \in H_0 : (g,b) \equiv (g',b') \},$$

$$H = \{ \overline{(g,b)} : (g,b) \in H_0 \}.$$

Let $\overline{(g_1,b_1)},\overline{(g_2,b_2)}\in H$. We put

$$\overline{(g_1,b_1)} + \overline{(g_2,b_2)} = \overline{(g_1+g_2,b_1+b_2)}.$$

The binary operation + on H is correctly defined; $\overline{(0,0)}$ is a neutral element and $\overline{(-g,-b)}$ is an inverse to $\overline{(g,b)}$.

We have

Lemma 2.3. (H,+) is a group.

Let $\overline{(g_1,b_1)},\overline{(g_2,b_2)}\in H$. We put

$$\overline{(g_1,b_1)} \le \overline{(g_2,b_2)}$$

if either $g_1 < g_2$ and $g_1 - g_2 \notin A \uparrow$ or $g_1 - g_2 \in A \uparrow$ and $g_1 - g_2 \leq b_2 - b_1$.

The definition implies that either $g_1, g_2 \in G \uparrow$ or $g_1, g_2 \in G \downarrow$. Now we verify that the relation \leq is correctly defined. Let $\overline{(g'_1, b'_1)} = \overline{(g_1, b_1)}, \overline{(g'_2, b'_2)} = \overline{(g_2, b_2)}$.

Assume that $g_1 < g_2$, $g_1 - g_2 \notin A \uparrow$. Then $g_1 + A \uparrow < g_2 + A \uparrow$ and $g_1, g_2 \in G \uparrow$ or $g_1, g_2 \in G \downarrow$. Since $g_1 - g_1' \in A \uparrow$ and $g_2 - g_2' \in A \uparrow$, we get $g_1 + A \uparrow = g_1' + A \uparrow$ and $g_2 + A \uparrow = g_2' + A \uparrow$. With respect to Lemma 2.2, we get $g_1' < g_2'$. Suppose that $g_1' - g_2' \in A \uparrow$. Then $g_1 - g_2 = (g_1 - g_1') + (g_1' - g_2') + (g_2' - g_2) \in A \uparrow$, a contradiction. Hence $g_1' - g_2' \notin A \uparrow$.

Assume that $g_1 - g_2 \in A \uparrow$, $g_1 - g_2 \leq b_2 - b_1$. Then $g_1' - g_2' = (g_1' - g_1) + (g_1 - g_2) + (g_2 - g_2') \leq (b_1 - b_1') + (b_2 - b_1) + (b_2' - b_2) = (b_1 - b_1') + (b_2' - b_2) + (b_2 - b_1) = (b_1 - b_1') + (b_2' - b_1) = (b_2' - b_1) + (b_1 - b_1') = b_2' - b_1'$. We also have shown that $g_1' - g_2' \in A \uparrow$.

It is evident that the relation \leq is reflexive.

Let $\overline{(g_1,b_1)} \leq \overline{(g_2,b_2)}$, $\overline{(g_2,b_2)} \leq \overline{(g_1,b_1)}$. Then $g_1 - g_2 \in A \uparrow$, $g_1 - g_2 \leq b_2 - b_1$ and $g_2 - g_1 \leq b_1 - b_2$. Hence $g_1 - g_2 = b_2 - b_1$ and so $\overline{(g_1,b_1)} = \overline{(g_2,b_2)}$. The antisymmetry is satisfied.

Let
$$\overline{(g_1,b_1)} \leq \overline{(g_2,b_2)}, \overline{(g_2,b_2)} \leq \overline{(g_3,b_3)}.$$

- (α) Assume that $g_1 < g_2$, $g_1 g_2 \notin A \uparrow$, $g_2 < g_3$, and $g_2 g_3 \notin A \uparrow$. We will consider only the case that $g_1, g_2 \in G \downarrow$. Then also $g_3 \in G \downarrow$ and $g_1 < g_3$. Assume that $g_1 g_3 \in A \uparrow$. Then $g_1 + A \uparrow = g_3 + A \uparrow$. Since $g_1 + A \uparrow$ is a convex subset of $G \downarrow$ and $g_1 < g_2 < g_3$, we obtain $g_2 \in g_1 + A \uparrow$. Hence $g_1 g_2 \in A \uparrow$, a contradiction.
- $(\beta) \text{ Assume that } g_1-g_2 \in A \uparrow, \ g_1-g_2 \leq b_2-b_1, \ g_2-g_3 \in A \uparrow, \text{ and } g_2-g_3 \leq b_3-b_2. \text{ Then } g_1-g_3=(g_1-g_2)+(g_2-g_3) \in A \uparrow, \text{ and } g_1-g_3=(g_1-g_2)+(g_2-g_3) \leq (b_2-b_1)+(b_3-b_2)=(b_3-b_2)+(b_2-b_1)=b_3-b_1.$
- (γ) Assume that $g_1 < g_2$, $g_1 g_2 \notin A \uparrow$, $g_2 g_3 \in A \uparrow$, and $g_2 g_3 \leq b_3 b_2$. We will consider only the case $g_1, g_2 \in G \downarrow$. Hence $g_3 \in G \downarrow$, $g_2 g_1 > 0$ and $g_2 g_1 \notin A \uparrow$. From this it follows that $g_2 g_1 > g_2 g_3$, $-g_1 < -g_3$ and $g_1 < g_3$. Suppose that $g_1 g_3 \in A \uparrow$. Then $g_1 g_2 = (g_1 g_3) + (g_3 g_2) \in A \uparrow$, a contradiction.
- (δ) Suppose that $g_1 g_2 \in A \uparrow$, $g_1 g_2 \leq b_2 b_1$, $g_2 < g_3$, and $g_2 g_3 \notin A \uparrow$. The case is analogous to (γ) .

In all cases (α) - (δ) we get $\overline{(g_1,b_1)} \leq \overline{(g_3,b_3)}$, i.e the relation \leq is transitive.

We have shown that the following lemma is valid.

Lemma 2.4. (H, \leq) is a partially ordered set.

Lemma 2.5. Let
$$\overline{(g_1,b_1)}, \overline{(g_2,b_2)}, \overline{(g_3,b_3)} \in H$$
, $\overline{(g_1,b_1)} \leq \overline{(g_2,b_2)}$. Then $\overline{(g_1,b_1)} + \overline{(g_3,b_3)} \leq \overline{(g_2,b_2)} + \overline{(g_3,b_3)}$.

Proof. We will consider only the case that $g_1, g_2, g_3 \in G \downarrow$.

Suppose that $g_1 < g_2$ and $g_1 - g_2 \notin A \uparrow$. Then $g_1 + g_3 < g_2 + g_3$ and $(g_1 + g_3) - (g_2 + g_3) = g_1 - g_2 \notin A \uparrow$.

Assume that $g_1 - g_2 \in A \uparrow$ and $g_1 - g_2 \leq b_2 - b_1$. Then $(g_1 + g_3) - (g_2 + g_3) \in A \uparrow$ and $(g_1 + g_3) - (g_2 + g_3) = g_1 - g_2 \leq b_2 - b_1 = (b_2 + b_3) - (b_1 + b_3)$.

Therefore $\overline{(g_1, b_1)} + \overline{(g_3, b_3)} \leq \overline{(g_2, b_2)} + \overline{(g_3, b_3)}$.

Form the sets

$$H \uparrow = \{\overline{(g,b)}: g \in G \uparrow, b \in B \uparrow\}, H \downarrow = \{\overline{(g,b)}: g \in G \downarrow, b \in B \downarrow\}.$$

Then we have

Lemma 2.6.
$$H = (H \uparrow) \cup (H \downarrow)$$
.

Lemma 2.7. $H \uparrow is$ an increasing part and $H \downarrow is$ a decreasing part of H.

Proof. Assume that $\overline{(g_1,b_1)}$, $\overline{(g_2,b_2)} \in H$, $\overline{(g_1,b_1)} \leq \overline{(g_2,b_2)}$ and $\overline{(g_3,b_3)} \in H \downarrow$. We intend to show that $H \downarrow$ is a decreasing part of H, i.e., that $\overline{(g_3,b_3)} + \overline{(g_2,b_2)} \leq \overline{(g_3,b_3)} + \overline{(g_1,b_1)}$ is valid.

Let $g_1 < g_2, \ g_1 - g_2 \notin A \uparrow$. Then $g_3 + g_1 > g_3 + g_2$. Suppose that $(g_3 + g_2) - (g_3 + g_1) \in A \uparrow$. With respect to Lemma 2.1, $A \uparrow$ is normal in G. Thus $g_2 - g_1 \in -g_3 + A \uparrow + g_3 \subseteq A \uparrow$. Hence $g_1 - g_2 \in A \uparrow$, a contradiction.

Let $g_1 - g_2 \in A \uparrow$ and $g_1 - g_2 \leq b_2 - b_1$. By using the normality of $A \uparrow$ in G, we obtain $g_3 + g_2 - (g_3 + g_1) = g_3 + (g_2 - g_1) - g_3 \in A \uparrow$. There exist elements $g_3' \in G \uparrow$ and $b_3' \in B \uparrow$ such that $g_3 = a + g_3'$, $b_3 = a + b_3'$. From $g_2 - g_1 \geq b_1 - b_2$, it follows $a + g_3' - g_3' + g_2 - g_1 + a \leq a + b_3' - b_3' + b_1 - b_2 + a$, $(a+g_3'+g_2)-(a+g_3'+g_1) \leq (a+b_3'+b_1)-(a+b_3'+b_2)$ and $(g_3+g_2)-(g_3+g_1) \leq (b_3+b_1)-(b_3+b_2)$.

In an analogous way, we show that $H \uparrow$ is an increasing part of H.

 $H \uparrow$ is a group (subgroup of H) and a partially ordered set (a partial order is inherited from H). Then according to Lemmas 2.5 and 2.7, $H \uparrow$ is a partially ordered group.

Lemma 2.8. $H \uparrow is an l$ -group.

Proof. It is sufficient to prove that there exists $\sup\{\overline{(0,0)},\overline{(g,b)}\}$ for each $\overline{(g,b)} \in H \uparrow$. If $g \notin A \uparrow$ then g > 0 or g < 0. Hence $\overline{(g,b)}$ and $\overline{(0,0)}$ are comparable. If $g \in A \uparrow$ then $g + b \in B \uparrow$ and $\overline{(g,b)} = \overline{(0,g+b)}$. Let

 $b' = \sup\{0, g + b\}$ in $B \uparrow$. By using the same procedure as in the proof of Lemma 2.4 in [5], we obtain $\overline{(0, b')} = \sup\{\overline{(0, 0)}, \overline{(g, b)}\}$.

From Lemmas 2.3–2.8 it follows

Lemma 2.9. H is an hl-group, $H \in \mathcal{HL}$.

Recall that there is $a \in A \downarrow$, an element of order 2 (by Proposition 1.1), and that, by (IV), $A \subseteq B$. Define the mapping φ of G into H by $\varphi(g) = \overline{(g,0)}$ if $g \in G \uparrow$ and $\varphi(g) = \overline{(g,a)}$ if $g \in G \downarrow$. Then φ is an hl-isomorphism of the hl-group G into H.

If we put $\psi(b) = \overline{(0,b)}$ for each $b \in B \uparrow$ and $\psi(b) = \overline{(a,b)}$ for each $b \in B \downarrow$, then ψ is an hl-isomorphism of the hl-group B into H.

If
$$x \in G \cap B$$
 then $\varphi(x) = \psi(x)$. In fact, if $x \in (G \cap B) \uparrow = (G \uparrow) \cap (B \uparrow)$, then $\varphi(x) = \overline{(x,0)} = \overline{(0,x)} = \psi(x)$; and if $x \in (G \cap B) \downarrow = (G \downarrow) \cap (B \downarrow)$, then $\varphi(x) = \overline{(x,a)} = \overline{(a,x)} = \psi(x)$.

In the next, we shall identify elements g and $\varphi(g)$ for each $g \in G$ and also b and $\psi(b)$ for each $b \in B$. Then G and B are hl-subgroups of H.

Lemma 2.10. $H = \langle B \rangle_h$.

Proof. B is an hl-subgroup of H. We have to prove that $H \uparrow = \langle B \uparrow \rangle$. Assume that $\overline{(g,b)} \in H \uparrow$, $\overline{(0,b')} \in B \uparrow$, $\overline{(0,0)} \leq \overline{(g,b)} \leq \overline{(0,b')}$. Then $g \in A \uparrow \subseteq B \uparrow$ and so $g+b \in B \uparrow$, $\overline{(g,b)} = \overline{(0,g+b)} \in B \uparrow$. Hence $B \uparrow$ is a convex l-subgroup of $H \uparrow$. Let $\overline{(0,0)} < \overline{(g,b)} \in H \uparrow$, $\overline{(g,b)} \notin B \uparrow$. Then $g \notin A \uparrow$. Therefore, g > 0 and thus $\overline{(0,b')} < \overline{(g,b)}$ for each $\overline{(0,b')} \in B \uparrow$.

By using Lemmas 2.10 and 2.1, B is an hl-ideal of H. Therefore, we can form the factor hl-group $\overline{H} = H/B \uparrow$.

Lemma 2.11. Half l-groups \overline{G} and \overline{H} are hl-isomorphic.

Proof. Define the mapping $f: \overline{G} \to \overline{H}$ by $f(g+A\uparrow) = g+B\uparrow$. Let $g+A\uparrow = g'+A\uparrow$. Then $g-g'\in A\uparrow \subset B\uparrow$. Thus $g+B\uparrow = g'+B\uparrow$. Therefore the mapping f is correctly defined.

Let $g_1 + A \uparrow$, $g_2 + A \uparrow \in \overline{G}$. Then $f((g_1 + A \uparrow) + (g_2 + A \uparrow)) = f((g_1 + g_2) + A \uparrow) = (g_1 + g_2) + B \uparrow = (g_1 + B \uparrow) + (g_2 + B \uparrow) = f(g_1 + A \uparrow) + f(g_2 + A \uparrow)$.

Assume that $g_1, g_2 \in G$ and $f(g_1 + A \uparrow) = f(g_2 + A \uparrow)$. From $g_1 + B \uparrow = g_2 + B \uparrow$, we infer that either $g_1, g_2 \in G \uparrow$ or $g_1, g_2 \in G \downarrow$. Hence $g_1 - g_2 \in G \uparrow \cap B \uparrow = A \uparrow$ and so $g_1 + A \uparrow = g_2 + A \uparrow$.

Let $\overline{(g,b)}+B\uparrow\in\overline{H}$. Assume that $\overline{(g,b)}\in H\downarrow$. Hence $g\in G\downarrow$. Recall that g is identified with $\overline{(g,a)}$. As for $\overline{(g,a)}-\overline{(g,b)}=\overline{(0,a-b)}\in B\uparrow$, we have $\overline{(g,a)}+B\uparrow=\overline{(g,b)}+B\uparrow$. Therefore $f(g+A\uparrow)=\overline{(g,b)}+B\uparrow$. If $\overline{(g,b)}\in H\uparrow$, the proof is similar.

We have shown that f is a group isomorphism of \overline{G} onto \overline{H} .

Assume that $g_1 + A \uparrow$, $g_2 + A \uparrow \in \overline{G}$ and $g_1 + A \uparrow \leq g_2 + A \uparrow$. If $g_1 + A \uparrow = g_2 + A \uparrow$, then $f(g_1 + A \uparrow) = f(g_2 + A \uparrow)$. Let $g_1 + A \uparrow < g_2 + A \uparrow$. By Lemma 2.2, $g_1 < g_2$. Hence $f(g_1 + A \uparrow) = g_1 + B \uparrow < g_2 + B \uparrow = f(g_2 + A \uparrow)$. The converse is similar.

Summarizing the previous results, we have

Theorem 2.12. Let A, B and G be hl-groups from \mathcal{HL} satisfying (I)–(IV). Then there exists an hl-group $H \in \mathcal{HL}$ such that

- (i) $H = \langle B \rangle_h$,
- (ii) G is an hl-subgroup of H,
- (iii) hl-groups $G/A \uparrow and H/B \uparrow are hl$ -isomorphic.

3. Cut completion of a lexico extension

Let G be an hl-group. A subset X of G
 is said to be a <math>cut of G
 if <math>X is an order closed (i.e., $g = \bigvee S$ for $S \subseteq X$ implies $g \in X$) lattice ideal of G such that $g + X \ne X \ne X + g$ for any $0 < g \in G$. A cut of $G \downarrow$ is defined in the same way. If X is a cut either of G
 if <math>G or of $G \downarrow$, then X is called a cut of G.

 $G \uparrow (G \downarrow)$ is said to be *cut complete* if every cut of $G \uparrow (G \downarrow)$ has a supremum in $G \uparrow (G \downarrow)$.

Remark that if $Z \subseteq G \uparrow (Z \subseteq G \downarrow)$, then $\sup(Z)$ exists in $G \uparrow (G \downarrow)$ if and only if $\sup(Z)$ exists in G, and $\sup(Z)$ in G is equal to $\sup(Z)$ in $G \uparrow (G \downarrow)$.

G is called *cut complete* provided that every cut of G has a supremum in G. An hl-subgroup G' of G will be said to be order dense in G if for every element $0 < g \in G$ there exists $g' \in G'$ with $0 < g' \le g$.

An hl-group G^C is said to be a cut completion of G if the following conditions are satisfied:

- (i) G^C is cut complete;
- (ii) G is an order dense hl-subgroup of G^C ;
- (iii) if K is an hl-subgroup of G^C such that $G \leq K < G^C$, then K is not cut complete.

Since $G \uparrow$ and $G \downarrow$ are dually isomorphic lattices, we have

Lemma 3.1. For any hl-group G, $G \in \mathcal{HL}$ is cut complete if and only if $G \uparrow is$ cut complete.

Lemma 3.2 ([5], Lemma 3.1). Let G be an abelian l-group, $G = \langle A \rangle$, $A \neq \{0\}$. If A is cut complete, then G is cut complete.

Lemma 3.3. Let H and B be hl-groups from \mathcal{HL} such that $H \uparrow$ is abelian and $H = \langle B \rangle_h$. If B is cut complete, then H is cut complete.

Proof. The assumption that B is cut complete and Lemma 3.1 yield that $B \uparrow$ is cut complete. From $H \uparrow = \langle B \uparrow \rangle, B \uparrow \neq \{0\}$ and Lemma 3.2, we obtain that $H \uparrow$ is cut complete. Hence H is cut complete.

Lemma 3.4. Let A, B, G satisfy the conditions (I)–(IV) and H be such as in Theorem 2.12. Suppose that $B = A^C$. Then $H = G^C$.

Proof. In view of Lemma 2.10, we have $H = \langle B \rangle_h$. A is order dense in B and B is order dense in H. This yields that A is order dense in H. Thus G is order dense in H. From Lemma 3.3, it follows that H is cut complete. Assume that K is an hl-subgroup of H such that $G \leq K < H$. Then $K \uparrow$ is an l-subgroup of $H \uparrow$ with $G \uparrow \leq K \uparrow < H \uparrow$. In the same way as in the proof of Lemma 3.2 in [5], it can be shown that $K \uparrow$ fails to be cut complete. Then, by Lemma 3.1, K is not cut complete. Therefore $H = G^C$.

Theorem 3.5. Let $G = \langle A \rangle_h$, and A < G. Then

- (i) $G^C = \langle A^C \rangle_h$,
- (ii) hl-groups $G/A \uparrow and G^C/A^C \uparrow are <math>hl$ -isomorphic.

Proof. (i): Put $B = A^C$. Let H be as in Theorem 2.12. Then $H = \langle B \rangle_h$ holds. Applying Lemma 3.4, we get that $G^C = \langle A^C \rangle_h$ is valid.

(ii): Immediately follows from Theorem 2.12.

References

- [1] R.N. Ball, The structure of the α -completion of a lattice ordered group, Houston J. Math. **15** (1989), 481–515.
- [2] P. Conrad, Lattice Ordered Groups, Tulane University, New Orleans, LA, 1970.
- [3] M.R. Darnel, *Theory of Lattice Ordered Groups*, M. Dekker, Inc., New York 1995.
- [4] M. Giraudet and F. Lucas, *Groupes à moitié ordonnés*, Fund. Math. **139** (1991), 75–89.
- [5] J. Jakubík, On cut completions of abelian lattice ordered groups, Czechoslovak Math. J. **50** (125) (2000), 587–602.

Received 27 May 2002 Revised 27 November 2002