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Abstract

We present a countable infinite chain of conditions which are
essentially weaker then congruence modularity (with exception of
first two). For varieties of algebras, the third of these conditions, the
so called 4-submodularity, is equivalent to congruence modularity.
This is not true for single algebras in general. These conditions are
characterized by Maltsev type conditions.
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A lattice L is modular if it satisfies the equality

(avb)ANc=aV (bAc)

for all a,b,c € L with a < ¢. Of course, the inequality

(avb)ANc>aV (bAc)

is valid trivially in every lattice whenever a < ¢; thus we are interested in
the converse one only.

Let A # () and L be a lattice of equivalence relations on A, i.e. L is a
sublattice of the equivalence lattice Eq (A).
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It is well-known that for ©,® € L,

(A) OVE=(0-P)UO-3-0)UO--0-D)U---

where © - ® denotes the relational product. It motivates us to introduce the
following concepts:

Definition 1. A lattice L of equivalence relations on a set A # () is called
k-submodular (k > 2) if for all ©,®,¥ € L with © C ¥ the condition

(B) ©-0-0---)NTCOV (VD)

k factors

is satisfied. An algebra A is k-submodular if Con (A) is k-submodular. A
variety V is k-submodular if each A € V has this property.

Remark 1. (a) Due to (A), an algebra A is congruence modular (i.e.
Con (A) is modular) if and only if A is k-submodular for each integer k > 2.

(b) Evidently, if 2 <m < k and A is congruence k-submodular then A is
also m-submodular.

(¢) The converse inclusion of (B) is valid in any lattice of equivalence
relations.

(d) The product © - ® -0 - --- (k factors) need not to be an equivalence
(or congruence for O, € Con (A)). It is an equivalence if and only
if

(C) ©-0-0----=0-0-9..-. (with k factors in both sides).

(e) If an algebra A is k-permutable (i.e. (C) is valid for all ©,® €
Con (A)), then A is congruence modular if and only if A is k-submodular.

Lemma 1. Every lattice L of equivalences on a set A # () is 3-submodular
(and hence also 2-submodular).
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Proof.Let ©,9, ¥ € L with © C . Suppose (x,y) € (©-®-0©)NV. Then
(z,y) € ¥ and there are elements b, c € A with

xrObPcOy.

Since © C U, we have (b,z) € ¥, (y,c) € ¥ and, together with (z,y) € ¥,
also (b,c) € . Thus (b,c) € ® N ¥ and hence

xOb(PNY)cOy

which yields (z,y) € © - (2N¥Y)-0 C OV (PNW¥). We have shown that L
is 3-submodular. By (b) of Remark 1, L is also 2-submodular. |

It is worth saying that the proof of Lemma 1 is in fact the same as the proof
of the well-known result by B. Jénsson [3] that every 3-permutable algebra
is congruence modular.

Theorem 1. Let V be a variety of algebras and k > 2 an integer. The
following conditions are equivalent:

(1) V is congruence k-submodular;

(2) there exist an integer n > 0 and (k+1)-ary terms po, . . ., pn satisfying
the following identities:

po(l‘, 21y .- -yzkflay) =z, pn(%zla .- -,Zkfl,y) =Y,

pi(T, 2, 22, 22, 24, 24, - . .) = Pis1(T, T, 22, 22, 24, 24, - - ) for i even,

pi(x, 21,21, 23,23, .. ., Y) = Pi+1(x, 21, 21, 23, 23, . . ., y) for i odd,
pi(x, 2z, 29,29, ..., 2k_3, Zk—3, T, T) =

= pit1(z,x, 29,29, . .., 2k—3, 2k—3, %, ) for i odd and k odd,
pi(x,z, 29,29, ..., 2k—2, Zk—2,T) =

= pir1(x,z, 29,29, ..., 2p—2, 2k—2,x) for i odd and k even.
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Proof. (1)=(2): Consider the free algebra F,(x,y,z21,...,25-1) of V
generated by k + 1 free generators x,y,21,...,2;_1. Further, let ©,® ¥
be the following congruences on this free algebra:

6 = O((x,21), (22, 23), - ),

® = O((21, 22), (23, 24), - . .),

U = O6((z,y), (x,21), (22,23) - . ).
Clearly © C ¥ and

(r,y) € (O-P-O--- )N V.

k factors

Due to k-submodularity, we have also (z,y) € OV (®PNWY) and, by (C), there
exist an integer n > 0 and elements pg,pi,...,pn of Fy(x,y,21, -, 2k—-1)
such that pg = 2z, p, =y and (p;, pi+1) € O for i even

(D) <pi,pi+1> € (®NW) foriodd.

Of course, p; = pi(x, z1,...,2k-1,y) for (k + 1)-ary terms p; (i =0,...,n).
Since the factor algebras of F,(z,y,z1, -+, 2k—1) by © or ® N ¥ are again
free algebras of V, the relations (D) give (2) immediately.

(2)=(1): Let V satisfy the identities of (2), let A € V and ©,®, ¥ €
Con (A), © C ¥. Suppose

(a,b)e(©-®-0.-..)NU.

k factors

Then (a,b) € ¥ and there exist c1,...,cx—1 € A such that

a®©ci1 PcyBOcy...b.
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We have
a :p0(a7cla te ack—lvb)7
b=npn(a,c1,...,ck_1,b).

Denote by v; = pi(a,c1,...,ck—1,b).

For i odd, we have

v; = pila,c1,y ... ck—1,0) Upi(a,a,co,co,. .. a) =
=piti(a,a,co,c2,...,a) Ypiri(a,ci,... cp—1,b)

(since © C W), ie. (vj,viq1) € V.

Further,
a=wvy=po(a,cy,...,ck—1,0)Opola,a,co,ca...)=
=pi(a,a,ca,¢2,...)Opi(a,ci,...,c—1,b) =v1 ®pi(a,ci,c1,c3,¢3...) =
ZPQ(CL,CLCLCS?C&--~)(I)p2(aaclw--ack—lab) —
= vy Opa(a,a,ca,co,...)=...=b.

Altogether, we have a = v9 @ v (P N ¥) v Ouvz (PN W)---b; thus (a,b) €
OV (® N ¥) proving k-submodularity of V. ]

Remark 2. By Lemma 1, the identities (2) of Theorem 1 should be easily
(trivially) satisfied for £k = 2 or k = 3. Really, one can check that for k = 2,
we can take n = 3 and

po(z,z,y) =z,
pl(xvzuy) =z,
pa(z, z,y) =y

are terms which satisfy (2) of Theorem 1.
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Analogously, for £k = 3 we can take n = 4 and
po(z, 21, 22,y) =y,
p1(z, 21, 22,9) = 21,
p2(x, 21, 22,Y) = 22,
p3(w,21,22,y) = y.

Congruence modular varieties were characterized by A. Day in [2]. Analysing
his proof, we can find out that he properly proved the following assertion:

Proposition (A. Day). A variety V is congruence modular if and only if
the free algebra F,(x, z1, z2,y) of V satisfies
(P-0-2)NTCOV(PNY)
for each ©,®, ¥ € Con (A) with © C V.
This result enables us to state

Theorem 2. A wvariety V is congruence modular if and only if it is
congruence 4-submodular.

Proof. Of course, if V is congruence modular then, by Remark 1, V is
also 4-submodular. Conversely, let V be 4-submodular and F,(z, z1, 22, y)
be the free algebra of V generated by the free generators x, 21, z0,y. Let
0,0,V € Con (Fy(x,21,22,y)) with© C V. Then ®-0- ¢ CO--0-P
thus also

(®-0-)NVC(O-2-0-P)NYCOV(PNVY).
Applying the Proposition, V is congruence modular. [
As a corollary of Theorem 1 and Theorem 2, we can derive a Maltsev

condition for congruence modularity different from that of A. Day [2]:

Corollary A variety V is congruence modular if and only if there exist an
integer n > 0 and 5-ary terms py, ..., pn such that )V satisfies the following
identities:
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p0($7Z17z27z37y) =7, pn(l',Zl,ZQ,Z:g,y) =Y,
pi(xa Ty 2,2, y) = pi-l—l(xa T,z, 2, y) fO?" i even,
pi(xu Z,2,Y, y) = pi+1(x7 Z,2,Y, y) fOT l Odd;
pi(x,z,2,2,x) = pig1(z,x, 2, z,2) for alli=0,1,...,n— 1.
One can mention that our terms occuring in the Corollary are more
complex then that of A. Day [2], because they are 5-ary but Day’s terms
are only 4-ary. However, they can become very simple in particular cases as

shown in the following:

Example 1. For a variety of groups, one can take n = 2 and
po(z, 21,22, 23,y) = ,
pi(@, 21,22, 23,y) = 21+ 25 - 23,
p2(x, 21, 22,23, y) = y.
More generally, if V is a congruence permutable variety and t(x,y, z) its

Maltsev term (i.e. t(z,z,z) = x and t(z,z, z) = z), then we can take n = 2

and
po(z, 21, 22, 23,y) = ,
p1(z, 21, 22, 23, y) = t(z,9, 2),
p2(T, 21, 22,23,9) =y

which is a bit more simple than for Day’s terms.

Now, we show that our Theorem 2 cannot be stated for a single algebra

instead of a variety:

Example 2. Let A = (A, F') be a unary algebra with A = {a,b,c,d, e, f, g}
and with 3 unary operations si, so, s3 defined as follows:
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S1 | S2 | 83

dlel| fla
el e| gl a
flelgl|hb
gld|[]ec

It is an easy excercise to verify that A has just five congruences, i.e. the
identity congruence w, the full square A2 and ©,®, ¥ determined by their
partitions as follows

O........ {a,b},{c,d},{e, f},{g};
D....... {b,c}, {d, e}, {f, g} {a};
U {a,b,9},{c,d},{e, f}.
Of course, © C ¥ and one can check easily
ONdP=w=vNd, OVIP=A2=TVJ

thus Con (A) ~ Nj (the non-modular five element lattice).

Moreover, © - ® - © - ® is not a congruence on A since, e.g., (a,e) €
©-¢-0-Pbut (e,a) gO0-P-0- .
On the contrary, one can check

(©-¢-0-2)NT=0COV(PNVY).

The checking for other combinations of congruences is trivial; thus A is
congruence 4-submodular.
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