CONGRUENCE SUBMODULARITY

Ivan Chajda and Radomír Halaš
Palacký University of Olomouc
Department of Algebra and Geometry
Tomkova 40, CZ-77900 Olomouc
e-mail: chajda@risc.upol.cz
e-mail: halas@aix.upol.cz

Abstract

We present a countable infinite chain of conditions which are essentially weaker then congruence modularity (with exception of first two). For varieties of algebras, the third of these conditions, the so called 4-submodularity, is equivalent to congruence modularity. This is not true for single algebras in general. These conditions are characterized by Maltsev type conditions.

Keywords: congruence lattice, modularity, congruence k-submodularity.

2000 Mathematics Subject Classification: 08A30, 08B05, 08B10.

A lattice L is modular if it satisfies the equality

$$
(a \vee b) \wedge c=a \vee(b \wedge c)
$$

for all $a, b, c \in L$ with $a \leq c$. Of course, the inequality

$$
(a \vee b) \wedge c \geq a \vee(b \wedge c)
$$

is valid trivially in every lattice whenever $a \leq c$; thus we are interested in the converse one only.

Let $A \neq \emptyset$ and L be a lattice of equivalence relations on A, i.e. L is a sublattice of the equivalence lattice $E q(A)$.

It is well-known that for $\Theta, \Phi \in L$,

$$
\begin{equation*}
\Theta \vee \Phi=(\Theta \cdot \Phi) \cup(\Theta \cdot \Phi \cdot \Theta) \cup(\Theta \cdot \Phi \cdot \Theta \cdot \Phi) \cup \cdots \tag{A}
\end{equation*}
$$

where $\Theta \cdot \Phi$ denotes the relational product. It motivates us to introduce the following concepts:

Definition 1. A lattice L of equivalence relations on a set $A \neq \emptyset$ is called k-submodular ($k \geq 2$) if for all $\Theta, \Phi, \Psi \in L$ with $\Theta \subseteq \Psi$ the condition

$$
\begin{equation*}
(\underbrace{\Theta \cdot \Phi \cdot \Theta \cdots}_{k \text { factors }}) \cap \Psi \subseteq \Theta \vee(\Phi \vee \Psi) \tag{B}
\end{equation*}
$$

is satisfied. An algebra \mathcal{A} is k-submodular if $\operatorname{Con}(\mathcal{A})$ is k-submodular. A variety \mathcal{V} is k-submodular if each $\mathcal{A} \in \mathcal{V}$ has this property.

Remark 1. (a) Due to (A), an algebra \mathcal{A} is congruence modular (i.e. $\operatorname{Con}(\mathcal{A})$ is modular) if and only if \mathcal{A} is k-submodular for each integer $k \geq 2$.
(b) Evidently, if $2 \leq m \leq k$ and \mathcal{A} is congruence k-submodular then \mathcal{A} is also m-submodular.
(c) The converse inclusion of (B) is valid in any lattice of equivalence relations.
(d) The product $\Theta \cdot \Phi \cdot \Theta \cdots(k$ factors $)$ need not to be an equivalence (or congruence for $\Theta, \Phi \in \operatorname{Con}(\mathcal{A})$). It is an equivalence if and only if
(C) $\Theta \cdot \Phi \cdot \Theta \cdots=\Phi \cdot \Theta \cdot \Phi \cdots$ (with k factors in both sides).
(e) If an algebra \mathcal{A} is k-permutable (i.e. (C) is valid for all $\Theta, \Phi \in$ $\operatorname{Con}(\mathcal{A})$), then \mathcal{A} is congruence modular if and only if \mathcal{A} is k-submodular.

Lemma 1. Every lattice L of equivalences on a set $A \neq \emptyset$ is 3 -submodular (and hence also 2-submodular).

Proof. Let $\Theta, \Phi, \Psi \in L$ with $\Theta \subseteq \Psi$. Suppose $\langle x, y\rangle \in(\Theta \cdot \Phi \cdot \Theta) \cap \Psi$. Then $\langle x, y\rangle \in \Psi$ and there are elements $b, c \in A$ with

$$
x \Theta b \Phi c \Theta y
$$

Since $\Theta \subseteq \Psi$, we have $\langle b, x\rangle \in \Psi,\langle y, c\rangle \in \Psi$ and, together with $\langle x, y\rangle \in \Psi$, also $\langle b, c\rangle \in \Psi$. Thus $\langle b, c\rangle \in \Phi \cap \Psi$ and hence

$$
x \Theta b(\Phi \cap \Psi) c \Theta y
$$

which yields $\langle x, y\rangle \in \Theta \cdot(\Phi \cap \Psi) \cdot \Theta \subseteq \Theta \vee(\Phi \cap \Psi)$. We have shown that L is 3 -submodular. By (b) of Remark $1, L$ is also 2 -submodular.

It is worth saying that the proof of Lemma 1 is in fact the same as the proof of the well-known result by B. Jónsson [3] that every 3-permutable algebra is congruence modular.

Theorem 1. Let \mathcal{V} be a variety of algebras and $k \geq 2$ an integer. The following conditions are equivalent:
(1) \mathcal{V} is congruence k-submodular;
(2) there exist an integer $n>0$ and $(k+1)$-ary terms p_{0}, \ldots, p_{n} satisfying the following identities:
$p_{0}\left(x, z_{1}, \ldots, z_{k-1}, y\right)=x, \quad p_{n}\left(x, z_{1}, \ldots, z_{k-1}, y\right)=y$,
$p_{i}\left(x, x, z_{2}, z_{2}, z_{4}, z_{4}, \ldots\right)=p_{i+1}\left(x, x, z_{2}, z_{2}, z_{4}, z_{4}, \ldots\right)$ for i even,
$p_{i}\left(x, z_{1}, z_{1}, z_{3}, z_{3}, \ldots, y\right)=p_{i+1}\left(x, z_{1}, z_{1}, z_{3}, z_{3}, \ldots, y\right)$ for i odd,
$p_{i}\left(x, x, z_{2}, z_{2}, \ldots, z_{k-3}, z_{k-3}, x, x\right)=$
$=p_{i+1}\left(x, x, z_{2}, z_{2}, \ldots, z_{k-3}, z_{k-3}, x, x\right)$ for i odd and k odd,
$p_{i}\left(x, x, z_{2}, z_{2}, \ldots, z_{k-2}, z_{k-2}, x\right)=$
$=p_{i+1}\left(x, x, z_{2}, z_{2}, \ldots, z_{k-2}, z_{k-2}, x\right)$ for i odd and k even.

Proof. $(1) \Rightarrow(2)$: Consider the free algebra $F_{v}\left(x, y, z_{1}, \ldots, z_{k-1}\right)$ of \mathcal{V} generated by $k+1$ free generators $x, y, z_{1}, \ldots, z_{k-1}$. Further, let Θ, Φ, Ψ be the following congruences on this free algebra:

$$
\begin{aligned}
& \Theta=\Theta\left(\left\langle x, z_{1}\right\rangle,\left\langle z_{2}, z_{3}\right\rangle, \ldots\right) \\
& \Phi=\Theta\left(\left\langle z_{1}, z_{2}\right\rangle,\left\langle z_{3}, z_{4}\right\rangle, \ldots\right) \\
& \Psi=\Theta\left(\langle x, y\rangle,\left\langle x, z_{1}\right\rangle,\left\langle z_{2}, z_{3}\right\rangle \ldots\right)
\end{aligned}
$$

Clearly $\Theta \subseteq \Psi$ and

$$
\langle x, y\rangle \in(\underbrace{\Theta \cdot \Phi \cdot \Theta \cdots}_{k \text { factors }}) \cap \Psi .
$$

Due to k-submodularity, we have also $\langle x, y\rangle \in \Theta \vee(\Phi \cap \Psi)$ and, by (C), there exist an integer $n>0$ and elements $p_{0}, p_{1}, \ldots, p_{n}$ of $F_{v}\left(x, y, z_{1}, \cdots, z_{k-1}\right)$ such that $p_{0}=x, p_{n}=y$ and $\left\langle p_{i}, p_{i+1}\right\rangle \in \Theta$ for i even

$$
\begin{equation*}
\left\langle p_{i}, p_{i+1}\right\rangle \in(\Phi \cap \Psi) \text { for i odd. } \tag{D}
\end{equation*}
$$

Of course, $p_{i}=p_{i}\left(x, z_{1}, \ldots, z_{k-1}, y\right)$ for $(k+1)$-ary terms $p_{i}(i=0, \ldots, n)$. Since the factor algebras of $F_{v}\left(x, y, z_{1}, \cdots, z_{k-1}\right)$ by Θ or $\Phi \cap \Psi$ are again free algebras of \mathcal{V}, the relations (D) give (2) immediately.
$(2) \Rightarrow(1)$: Let \mathcal{V} satisfy the identities of (2), let $\mathcal{A} \in \mathcal{V}$ and $\Theta, \Phi, \Psi \in$ $\operatorname{Con}(\mathcal{A}), \Theta \subseteq \Psi$. Suppose

$$
\langle a, b\rangle \in(\underbrace{\Theta \cdot \Phi \cdot \Theta \cdots \cdots}_{k \text { factors }}) \cap \Psi .
$$

Then $\langle a, b\rangle \in \Psi$ and there exist $c_{1}, \ldots, c_{k-1} \in A$ such that

$$
a \Theta c_{1} \Phi c_{2} \Theta c_{3} \ldots b
$$

We have

$$
\begin{aligned}
a & =p_{0}\left(a, c_{1}, \cdots, c_{k-1}, b\right) \\
b & =p_{n}\left(a, c_{1}, \ldots, c_{k-1}, b\right)
\end{aligned}
$$

Denote by $v_{i}=p_{i}\left(a, c_{1}, \ldots, c_{k-1}, b\right)$.
For i odd, we have

$$
\begin{aligned}
& v_{i}=p_{i}\left(a, c_{1}, \ldots, c_{k-1}, b\right) \Psi p_{i}\left(a, a, c_{2}, c_{2}, \ldots, a\right)= \\
& =p_{i+1}\left(a, a, c_{2}, c_{2}, \ldots, a\right) \Psi p_{i+1}\left(a, c_{1}, \ldots, c_{k-1}, b\right)
\end{aligned}
$$

(since $\Theta \subseteq \Psi)$, i.e. $\left\langle v_{i}, v_{i+1}\right\rangle \in \Psi$.
Further,

$$
\begin{aligned}
& a=v_{0}=p_{0}\left(a, c_{1}, \ldots, c_{k-1}, b\right) \Theta p_{0}\left(a, a, c_{2}, c_{2} \ldots\right)= \\
& =p_{1}\left(a, a, c_{2}, c_{2}, \ldots\right) \Theta p_{1}\left(a, c_{1}, \ldots, c_{k-1}, b\right)=v_{1} \Phi p_{1}\left(a, c_{1}, c_{1}, c_{3}, c_{3} \ldots\right)= \\
& =p_{2}\left(a, c_{1}, c_{1}, c_{3}, c_{3}, \ldots\right) \Phi p_{2}\left(a, c_{1}, \ldots, c_{k-1}, b\right)= \\
& =v_{2} \Theta p_{2}\left(a, a, c_{2}, c_{2}, \ldots\right)=\ldots=b
\end{aligned}
$$

Altogether, we have $a=v_{0} \Theta v_{1}(\Phi \cap \Psi) v_{2} \Theta v_{3}(\Phi \cap \Psi) \cdots b$; thus $\langle a, b\rangle \in$ $\Theta \vee(\Phi \cap \Psi)$ proving k-submodularity of \mathcal{V}.

Remark 2. By Lemma 1, the identities (2) of Theorem 1 should be easily (trivially) satisfied for $k=2$ or $k=3$. Really, one can check that for $k=2$, we can take $n=3$ and

$$
\begin{aligned}
& p_{0}(x, z, y)=x \\
& p_{1}(x, z, y)=z \\
& p_{2}(x, z, y)=y
\end{aligned}
$$

are terms which satisfy (2) of Theorem 1.

Analogously, for $k=3$ we can take $n=4$ and

$$
\begin{aligned}
& p_{0}\left(x, z_{1}, z_{2}, y\right)=y \\
& p_{1}\left(x, z_{1}, z_{2}, y\right)=z_{1} \\
& p_{2}\left(x, z_{1}, z_{2}, y\right)=z_{2} \\
& p_{3}\left(x, z_{1}, z_{2}, y\right)=y
\end{aligned}
$$

Congruence modular varieties were characterized by A. Day in [2]. Analysing his proof, we can find out that he properly proved the following assertion:

Proposition (A. Day). A variety \mathcal{V} is congruence modular if and only if the free algebra $F_{v}\left(x, z_{1}, z_{2}, y\right)$ of \mathcal{V} satisfies

$$
(\Phi \cdot \Theta \cdot \Phi) \cap \Psi \subseteq \Theta \vee(\Phi \cap \Psi)
$$

for each $\Theta, \Phi, \Psi \in \operatorname{Con}(\mathcal{A})$ with $\Theta \subseteq \Psi$.
This result enables us to state

Theorem 2. A variety \mathcal{V} is congruence modular if and only if it is congruence 4-submodular.

Proof. Of course, if \mathcal{V} is congruence modular then, by Remark 1, \mathcal{V} is also 4 -submodular. Conversely, let \mathcal{V} be 4 -submodular and $F_{v}\left(x, z_{1}, z_{2}, y\right)$ be the free algebra of \mathcal{V} generated by the free generators x, z_{1}, z_{2}, y. Let $\Theta, \Phi, \Psi \in \operatorname{Con}\left(F_{v}\left(x, z_{1}, z_{2}, y\right)\right)$ with $\Theta \subseteq \Psi$. Then $\Phi \cdot \Theta \cdot \Phi \subseteq \Theta \cdot \Phi \cdot \Theta \cdot \Phi$ thus also

$$
(\Phi \cdot \Theta \cdot \Phi) \cap \Psi \subseteq(\Theta \cdot \Phi \cdot \Theta \cdot \Phi) \cap \Psi \subseteq \Theta \vee(\Phi \cap \Psi)
$$

Applying the Proposition, \mathcal{V} is congruence modular.
As a corollary of Theorem 1 and Theorem 2, we can derive a Maltsev condition for congruence modularity different from that of A. Day [2]:

Corollary A variety \mathcal{V} is congruence modular if and only if there exist an integer $n>0$ and 5 -ary terms p_{0}, \ldots, p_{n} such that \mathcal{V} satisfies the following identities:

$$
\begin{aligned}
& p_{0}\left(x, z_{1}, z_{2}, z_{3}, y\right)=x, \quad p_{n}\left(x, z_{1}, z_{2}, z_{3}, y\right)=y \\
& p_{i}(x, x, z, z, y)=p_{i+1}(x, x, z, z, y) \text { for } i \text { even } \\
& p_{i}(x, z, z, y, y)=p_{i+1}(x, z, z, y, y) \text { for } i \text { odd } \\
& p_{i}(x, x, z, z, x)=p_{i+1}(x, x, z, z, x) \text { for all } i=0,1, \ldots, n-1
\end{aligned}
$$

One can mention that our terms occuring in the Corollary are more complex then that of A. Day [2], because they are 5 -ary but Day's terms are only 4-ary. However, they can become very simple in particular cases as shown in the following:

Example 1. For a variety of groups, one can take $n=2$ and

$$
\begin{aligned}
& p_{0}\left(x, z_{1}, z_{2}, z_{3}, y\right)=x \\
& p_{1}\left(x, z_{1}, z_{2}, z_{3}, y\right)=z_{1} \cdot z_{2}^{-1} \cdot z_{3} \\
& p_{2}\left(x, z_{1}, z_{2}, z_{3}, y\right)=y
\end{aligned}
$$

More generally, if \mathcal{V} is a congruence permutable variety and $t(x, y, z)$ its Maltsev term (i.e. $t(x, z, z)=x$ and $t(x, x, z)=z$), then we can take $n=2$ and

$$
\begin{aligned}
& p_{0}\left(x, z_{1}, z_{2}, z_{3}, y\right)=x \\
& p_{1}\left(x, z_{1}, z_{2}, z_{3}, y\right)=t(x, y, z) \\
& p_{2}\left(x, z_{1}, z_{2}, z_{3}, y\right)=y
\end{aligned}
$$

which is a bit more simple than for Day's terms.
Now, we show that our Theorem 2 cannot be stated for a single algebra instead of a variety:

Example 2. Let $\mathcal{A}=(A, F)$ be a unary algebra with $A=\{a, b, c, d, e, f, g\}$ and with 3 unary operations s_{1}, s_{2}, s_{3} defined as follows:

	s_{1}	s_{2}	s_{3}
a	c	e	d
b	d	e	c
c	e	e	b
d	e	f	a
e	e	g	a
f	e	g	b
g	d	f	c

It is an easy excercise to verify that \mathcal{A} has just five congruences, i.e. the identity congruence ω, the full square A^{2} and Θ, Φ, Ψ determined by their partitions as follows

$$
\begin{aligned}
& \Theta \ldots \ldots \ldots\{a, b\},\{c, d\},\{e, f\},\{g\} ; \\
& \Phi \ldots \ldots \ldots\{b, c\},\{d, e\},\{f, g\},\{a\} ; \\
& \Psi \ldots \ldots .\{a, b, g\},\{c, d\},\{e, f\} .
\end{aligned}
$$

Of course, $\Theta \subseteq \Psi$ and one can check easily

$$
\Theta \cap \Phi=\omega=\Psi \cap \Phi, \quad \Theta \vee \Phi=A^{2}=\Psi \vee \Phi
$$

thus $\operatorname{Con}(\mathcal{A}) \simeq N_{5}$ (the non-modular five element lattice).
Moreover, $\Theta \cdot \Phi \cdot \Theta \cdot \Phi$ is not a congruence on \mathcal{A} since, e.g., $\langle a, e\rangle \in$ $\Theta \cdot \Phi \cdot \Theta \cdot \Phi$ but $\langle e, a\rangle \notin \Theta \cdot \Phi \cdot \Theta \cdot \Phi$.

On the contrary, one can check

$$
(\Theta \cdot \Phi \cdot \Theta \cdot \Phi) \cap \Psi=\Theta \subseteq \Theta \vee(\Phi \cap \Psi)
$$

The checking for other combinations of congruences is trivial; thus \mathcal{A} is congruence 4 -submodular.

References

[1] I. Chajda and K. Głazek, A Basic Course on General Algebra, Technical University Press, Zielona Góra (Poland), 2000.
[2] A. Day, A characterization of modularity for congruence lattices of algebras, Canad. Math. Bull. 12 (1969), 167-173.
[3] B. Jónsson, On the representation of lattices, Math. Scand. 1 (1953), 193-206.
Received 18 March 2002

