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Abstract

It is well known that every complete lattice can be considered as
a complete lattice of closed sets with respect to appropriate closure
operator. The theory of q-lattices as a natural generalization of lattices
gives rise to a question whether a similar statement is true in the case
of q-lattices. In the paper the so-called M -operators are introduced
and it is shown that complete q-lattices are q-lattices of closed sets
with respect to M -operators.
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1. Introduction

The idea of introducing lattice-like structure on a quasiordered set is due to
I. Chajda in [1].

Having a quasiordered set (A;Q) with a quasiorder relation Q (i.e. Q
is both reflexive and transitive relation on A), denote by EQ = Q∩Q−1 the
equivalence on A induced by Q. The relation Q/EQ on a factor set A/EQ

defined by

(B,C) ∈ Q/EQ iff (b, c) ∈ Q for some b ∈ B, c ∈ C

is known to be a partial order relation on A/EQ. To simplify notation we
shall write ≤ instead of Q/EQ.

∗The financial support by the Czech Government Council No 314/98:153100011 is
gratefully acknowledged.
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A mapping χ : A/EQ −→ A with the property χ(B) ∈ B for each
B ∈ A/EQ is called a q-function on A.

If for each B,C ∈ A/EQ there exist sup≤(B,C) and inf≤(B,C), then
the triple (A,Q,χ) is called an L-quasiordered set. The equivalence class
[a]EQ

will be denoted simply by [a].

L-quasiordered sets give rise to lattice-like operations on A in the
following manner [1]:

Lemma 1. Let (A,Q,χ) be an L-quasiordered set. Let us define for x, y ∈ A
the operations

x ∨ y = χ(sup≤([x], [y]),

x ∧ y = χ(inf≤([x], [y]).

Then the algebra (A;∨,∧) satisfies the identities

x ∨ y = y ∨ x, x ∧ y = y ∧ x (commutativity);

x ∨ (y ∨ z) = (x ∨ y) ∨ z, x ∧ (y ∧ z) = (x ∧ y) ∧ z (associativity);

x ∨ (x ∧ y) = x ∨ x, x ∧ (x ∨ y) = x ∧ x (weak-absorption);

x ∨ y = x ∨ (y ∨ y), x ∧ y = x ∧ (y ∧ y) (weak-idempotence);

x ∨ x = x ∧ x (equalization).

An algebra A = (A;∨,∧) satisfying the axioms of Lemma 1 is called a
q-lattice.

Conversely, having a q-lattice A = (A;∨,∧), the relation Q on A defined
by

(x, y) ∈ Q iff x ∨ y = y ∨ y

is a quasiorder relation, the so-called induced quasiorder on A.

Let us note that (x, y) ∈ Q iff x ∧ y = x ∧ x, see [1].

The set SkA = {x ∈ A : x ∨ x = x} of all idempotent elements of
A, the so-called skeleton of A, forms a lattice with respect to the induced
operations ∨ and ∧; this lattice is called the induced lattice of a q-lattice A.
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Hence a q-lattice A = (A;∨,∧) is a lattice if and only if A = SkA.

The set C(a) = {x ∈ A; a ∨ a = x ∨ x} for a ∈ A is called the cell of

a. It is clear that every q-lattice is a disjoint union of cells and every cell
contains exactly one element from the skeleton.

When visualizing a q-lattice A = (A;∨,∧), we firstly draw the lattice
skeleton SkA and then we add the corresponding cells. For example, the
diagram

a b

c d

represents a q-lattice with a skeleton SkA = {a, c} and with two cells C(a) =
C(b) = {a, b}, C(c) = C(d) = {c, d}.

2. M-operators

A q-lattice A = (A;∨,∧) is called complete if SkA is a complete lattice.
Since the join (the meet) of two (not necessarily distinct) elements of a
q-lattice A is always a skeletal element, A is complete iff

∨

{a; a ∈ X}
(or

∧

{a; a ∈ X}) exists for an arbitrary subset X of A.

By an operator on A we mean a mapping C : P(A) −→ P(A) of all
subsets P(A) of A into itself. A subset X ⊆ A is called closed with respect

to C (or C-closed) if C(X) = X. The set of all C-closed sets will be denoted
by L(C).

The set P(A) can be quasiordered in a natural way as follows:

Lemma 2. Let A be a set , M ∈ P(A). Let us define the relation ≤ on

P(A) for X,Y ∈ P(A) by

X ≤ Y iff X ∩ M ⊆ Y ∩ M.
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Then ≤ is a quasiorder relation on P(A) and , moreover , P(A) is a q-lattice
with respect to the operations

X ∧ Y = X ∩ Y ∩ M,

X ∨ Y = (X ∪ Y ) ∩ M

with SkP(A) = P(M).

P roof. Easy.

The q-lattice from Lemma 2 will be called a set-M -q-lattice on A. It is easy
to see that set-A-q-lattice on A is just a set-lattice on A. (i.e. lettice of all
subsets of A)

We are ready to formulate our natural problem:

Given a complete q-lattice A, does there exist an operator C on A and
M ⊆ A such that the set L(C) of all C-closed sets on A is closed under
the operations ∧ and ∨ (as introduced in Lemma 2) and the set-M -q-lattice
L(C) is isomorphic to A?

In the following we give a positive answer to the above problem.
Remember that an operator C : P(A) −→ P(A) is called a closure operator

on A if for each X,Y ∈ P(A) :

(C1) X ⊆ C(X),

(C2) X ⊆ Y ⇒ C(X) ⊆ C(Y ),

(C3) C(C(X)) = C(X).

For a singleton a ∈ A, we shall write C(a) instead of C({a}).

We start from the following definition:

Definition 1. Let C be a closure operator on A, M ⊆ A and M ′ = ArM.
Let us define a CM -closure of X ⊆ A as follows:

CM (X) =















(C(X) ∩ M) ∪ {m′}, if X ∩ M ′ = {m′} and C(X) ∩ M =C(m′) ∩ M ;

C(X) ∩ M, otherwise.
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The CM -closure does not have the properties (C1)–(C3) of a closure
operator. Its properties are listed in the following proposition.

Proposition 1. CM -closure operator on A has the following properties for

X,Y ⊆ A :

(1) X ⊆ M ⇒ CM (X) ⊆ M,

(2) X ∩ M ⊆ CM (X),

(3) X ⊆ Y ⇒ CM (X) ∩ M ⊆ CM (Y ) ∩ M,

(4) CM (CM (X ∩ M)) = CM (X ∩ M).

P roof. (1) is easily seen from the definition of C.

Since C is a closure operator on A, (2) follows from the fact that X ⊆
C(X) for each X ⊆ A.

Further we have CM (X) ∩ M = C(X) ∩ M for each X ⊆ A, hence
X ⊆ Y yields C(X) ⊆ C(Y ) and

CM (X) ∩ M = C(X) ∩ M ⊆ C(Y ) ∩ M = CM (Y ) ∩ M ;

this proves the property (3).
Let us verify the property (4). Since X ∩ M ⊆ M , we have by (1)

CM (X ∩ M) ⊆ M , and, moreover

CM (CM (X ∩ M)) = CM (C(X ∩ M) ∩ M) = C(C(X ∩ M) ∩ M) ∩ M =

= C(C(X ∩ M)) ∩ M = C(X ∩ M) ∩ M = CM (X ∩ M)

by (C3) and (C2) of the operator C.

Proposition 1 leads us to the following definition:

Definition 2. Let M ⊆ A. An operator C∗ on A with properties

(MC1) X ⊆ M ⇒ C∗(X) ⊆ M,

(MC2) X ∩ M ⊆ C∗(X),

(MC3) X ⊆ Y ⇒ C∗(X) ∩ M ⊆ C∗(Y ) ∩ M,

(MC4) C∗(C∗(X ∩ M)) = C∗(X ∩ M),

for each X,Y ⊆ A, is called an M -operator on A.
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Let us note that for an M -operator C∗ on A, the set L(C∗) of all C∗-closed
sets is non-empty. Indeed, by (MC4) we have {C∗(X) : X ⊆ M} ⊆ L(C∗),
and, by (MC1) and (MC2) M ∈ L(C∗).

Next we will show that L(C∗) can be endowed by a set-M-q-lattice
structure:

Proposition 2. Let C∗ be an M-operator on A, let Xα ∈ L(C∗), α ∈ Λ.
Then L(C∗) is a complete q-lattice w.r.t. operations

∧

Xα =
⋂

Xα ∩ M,

∨

Xα =
∧

{Y ∈ L(C∗) : Xα ≤ Y for each α ∈ Λ},

where ≤ is the quasiorder on A induced by ∧. Moreover , SkL(C∗) = {X ∈
L(C∗) : X ⊆ M}.

P roof. Firstly we have to prove that the operations are well-defined, i.e.
that

⋂

Xα ∩ M ∈ L(C∗) whenever Xα ∈ L(C∗) for each α ∈ Λ. By (MC2)
we have

⋂

Xα ∩M ⊆ C∗(
⋂

Xα ∩M). Conversely,
⋂

Xα ∩M ⊆ Xα for each
α ∈ Λ, hence using (MC1) and (MC3) one gets

C∗
(

⋂

Xα ∩ M
)

= C∗
(

⋂

Xα ∩ M
)

∩ M ⊆ C∗(Xα) ∩ M = Xα ∩ M

for each α ∈ Λ. But this yields also

C∗
(

⋂

Xα ∩ M
)

⊆
⋂

Xα ∩ M

verifying the closedness of the set
⋂

Xα ∩ M.

The operation ∧ on L(C∗) is then well defined and induces a quasiorder
relation ≤ on L(C∗) as follows:

X ≤ Y iff X ∩ M ⊆ Y ∩ M.

We show that
⋂

Xα ∩M is the greatest lower bound of Xα
′s w.r.t. induced

quasiorder. Indeed, let X ∈ L(C∗) and suppose that X ≤ Xα for each
α ∈ Λ. Then X ∩ M ⊆ Xα ∩ M, hence also X ∩ M ⊆

⋂

Xα ∩ M verifying
X ≤

⋂

Xα ∩ M.

It is immediately seen that
∨

Xα is the least upper bound of Xα
′s w.r.t.

≤ and, altogether, L(C∗) is a complete q-lattice.



On M-operators of q-lattices 125

Now we are ready to show that complete q-lattices can be viewed as q-lattices
of closed sets w.r.t. appropriate M -operators.

Theorem. Let L = (L,∨,∧) be a complete q-lattice and let ≤ be the induced

quasiorder on L. Then the operator C on L defined by

C(X) = {y ∈ SkL : y ≤
∨

X} ∪ X

is a closure operator and for M = SkL we have L(CM ) ∼= L.

P roof. According to Proposition 1 and Definition 2, the operator CM is
an M -operator on L, and by Proposition 2, L(CM ) is a complete q-lattice.
It is easily seen that C is a closure operator on L. Hence it is enough to
prove that the q-lattices L(CM ) and L are isomorphic. Denote for a ∈ L by
LSk(a) the set of all skeletal elements lying below a.

Let us describe all CM -closed sets:

• by (MC4) all the sets CM (X) for X ⊆ M are CM -closed, i.e. the sets
CM (X) = {y ∈ SkL : y ≤

∨

X} = LSk(
∨

X);

• let us consider the sets X ⊆ L with |X ∩ M ′| ≥ 2.

Then CM (X) = C(X) ∩ M ⊆ M , so CM (X) 6= X and X is not CM -closed:

• suppose that X ⊆ L with X ∩M ′ = {m′} and M ∩C(m′) 6= M ∩C(X).
Then again

CM (X) = C(X) ∩ M ⊆ M and since m′ 6∈ M, X is not CM - closed;

• finally, let X ∩ M ′ = {m′} and M ∩ C(m′) = M ∩ C(X) for X ⊆ L.
This gives

CM (X) = {y ∈ SkL : y ≤ ∨X} ∪ {m′} = {y ∈ SkL : y ≤ m′ ∨ m′} ∪ {m′},

and the sets

{y ∈ SkL : y ≤ m′ ∨ m′} ∪ {m′} for m′ 6∈ SkL

are CM -closed.



126 R. Halaš

Let us verify that the mapping φ : L −→ L(CM ) defined by

φ(x) = LSk(x) for x ∈ SkL,

φ(y) = LSk(y ∨ y) ∪ {y} for y 6∈ SkL

is the desired isomorphism.

Injectivity of φ is easily seen from its definition, surjectivity then yields
from the fact that the elements of L(CM ) are of the form LSk(x) for x ∈ SkL
or LSk(y ∨ y) ∪ {y} for y 6∈ SkL.

Now let x, y ∈ L. To verify that φ is a homomorphism, we distinguish
three cases:

Case 1. Assume x, y ∈ SkL. Then x ∧ y ∈ SkL and

φ(x) ∧ φ(y) = LSk(x) ∧ LSk(y) = (LSk(x) ∩ LSk(y)) ∩ SkL =

= LSk(x) ∩ LSk(y) = LSk(x ∧ y) = φ(x ∧ y)

By the definition of join in L(CM ) we have

φ(x) ∨ φ(y) =
∧

{Y ∈ L(CM ) : φ(x) ≤ Y, φ(y) ≤ Y } =

=
⋂

{Y ∈ L(CM ) : LSk(x) ⊆ Y ∩ SkL, LSk(y) ⊆ Y ∩ SkL} ∩ SkL.

Evidently, x ∨ y ∈ SkL, LSk(x ∨ y) ∈ L(CM ) and

LSk(x) ∪ LSk(y) ⊆ LSk(x ∨ y) = LSk(x ∨ y) ∩ SkL = φ(x ∨ y).

To prove the converse inclusion, we have to show that

φ(x ∨ y) = LSk(x ∨ y) ⊆ Y ∩ SkL

for each Y ∈ L(CM ) with LSk(x) ∪ LSk(y) ⊆ Y ∩ SkL.
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If Y = LSk(z) for some z ∈ SkL, we get

LSk(x) ∪ LSk(y) ⊆ LSk(z) ∩ SkL = LSk(z),

i.e. x ≤ z, y ≤ z, and since SkL is the lattice, x ∨ y ≤ z. But then

LSk(x ∨ y) ⊆ LSk(z) = Y = Y ∩ SkL.

In the remaining case, we have Y = LSk(u ∨ u) ∪ {u} for some u 6∈ SkL.
This yields x ≤ u ∨ u, y ≤ u ∨ u and hence x ∨ y ≤ u ∨ u. Finally, we get

LSk(x ∨ y) ⊆ LSk(u ∨ u) = Y ∩ SkL,

finishing the Case 1.

Case 2. Assume that x, y 6∈ SkL. Then

φ(x) ∧ φ(y) =

= (LSk(x ∨ x) ∪ {x}) ∩ (LSk(y ∨ y) ∪ {y}) ∩ SkL =

= LSk(x ∨ x) ∩ LSk(y ∨ y) = LSk((x ∨ x) ∧ (y ∨ y)).

By Lemma 1, (x ∨ x) ∧ (y ∨ y) = x ∧ y, hence

LSk((x ∨ x) ∧ (y ∨ y)) = LSk(x ∧ y) = φ(x ∧ y),

veryfying that, in the Case 2, φ is ∧-preserving.

The join of φ(x) and φ(y) is of the form

φ(x) ∨ φ(y) =
∧

{Y ∈ L(CM ) : (LSk(x ∨ x) ∪ ({x})) ∩ SkL ⊆ Y ∩ SkL,

(LSk(y ∨ y) ∪ ({y})) ∩ SkL ⊆ Y ∩ SkL} ∩ SkL =

=
⋂

{Y ∈ L(CM ) : (LSk(x ∨ x) ∪ LSk(y ∨ y) ⊆ Y ∩ SkL} ∩ SkL.
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Since LSk(x ∨ x) ∪ LSk(y ∨ y) ⊆ LSk(x ∨ y), we deduce

φ(x) ∨ φ(y) ⊆ φ(x ∨ y).

Similarly as in the Case 1, we have to prove

LSk(x ∨ y) ⊆ Y ∩ SkL

for each Y ∈ L(CM ) with LSk(x ∨ x) ∪ LSk(y ∨ y) ⊆ Y ∩ SkL.

We distinguish again two cases with respect to Y .

If Y = LSk(z) for some z ∈ SkL, then x ∨ x ≤ z, y ∨ y ≤ z and hence
x ∨ y ≤ z, i.e.

LSk(x ∨ y) ⊆ LSk(z) = Y = Y ∩ SkL.

If Y = LSk(u∨u)∪{u} for some u 6∈ SkL, we obtain x∨x ≤ u∨u, y∨y ≤ u∨u
and x ∨ y ≤ u ∨ u, i.e.

LSk(x ∨ y) ⊆ LSk(u ∨ u) = Y ∩ SkL,

finishing the Case 2.

Case 3. Suppose that x ∈ SkL, y 6∈ SkL. Then

φ(x) ∧ φ(y) = (LSk(x) ∩ (LSk(y ∨ y) ∪ {y})) ∩ SkL =

= LSk(x) ∩ LSk(y ∨ y) = LSk(x ∧ (y ∨ y))

= LSk(x ∧ y) = φ(x ∧ y).

To prove that φ is ∨-preserving, we start with

φ(x) ∨ φ(y) =
∧

{Y ∈ L(CM ) : LSk(x) ⊆ Y ∩ SkL,

(LSk(y ∨ y) ∪ ({y})) ∩ SkL ⊆ Y ∩ SkL} ∩ SkL =

=
∧

{Y ∈ L(CM ) : LSk(x) ∪ LSk(y ∨ y) ⊆ Y } ∩ SkL.
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Analogously as in previous cases, we have

LSk(x) ∪ LSk(y ∨ y) ⊆ LSk(x ∨ y) = φ(x ∨ y).

To finish the proof it is enough to show

LSk(x ∨ y) ⊆ Y ∩ SkL

whenever Y ∈ L(CM ) with LSk(x) ∪ LSk(y ∨ y) ⊆ Y ∩ SkL.
Considering Y = LSk(z) for some z ∈ SkL, we obtain x ≤ z, y ∨ y ≤ z

and x ∨ (y ∨ y) = x ∨ y ≤ z, i.e.

LSk(x ∨ y) ⊆ LSk(z) = Y ∩ SkL.

Finally, the case Y = LSk(u ∨ u) ∪ {u} for some u 6∈ SkL yields x ≤
u ∨ u, y ∨ y ≤ u ∨ u, i.e. x ∨ y ≤ u ∨ u and

LSk(x ∨ y) ⊆ LSk(u ∨ u) = Y ∩ SkL,

finishing the Case 3 and the proof of Theorem.
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