ON M-OPERATORS OF q-LATTICES

RADOMÍR HALAŠ*

Palacký University of Olomouc Department of Algebra and Geometry Tomkova 40, CZ-77900 Olomouc **e-mail:** halas@aix.upol.cz

Abstract

It is well known that every complete lattice can be considered as a complete lattice of closed sets with respect to appropriate closure operator. The theory of q-lattices as a natural generalization of lattices gives rise to a question whether a similar statement is true in the case of q-lattices. In the paper the so-called M-operators are introduced and it is shown that complete q-lattices are q-lattices of closed sets with respect to M-operators.

Keywords: (complete) q-lattice, closure operator, M-operator.

2000 Mathematics Subject Classification: 06B99, 05A05, 06A15.

1. INTRODUCTION

The idea of introducing lattice-like structure on a quasiordered set is due to I. Chajda in [1].

Having a quasiordered set (A; Q) with a quasiorder relation Q (i.e. Q is both reflexive and transitive relation on A), denote by $E_Q = Q \cap Q^{-1}$ the equivalence on A induced by Q. The relation Q/E_Q on a factor set A/E_Q defined by

 $(B,C) \in Q/E_Q$ iff $(b,c) \in Q$ for some $b \in B, c \in C$

is known to be a partial order relation on A/E_Q . To simplify notation we shall write \leq instead of Q/E_Q .

^{*}The financial support by the Czech Government Council No $314/98{:}153100011$ is gratefully acknowledged.

A mapping $\chi : A/E_Q \longrightarrow A$ with the property $\chi(B) \in B$ for each $B \in A/E_Q$ is called a *q*-function on A.

If for each $B, C \in A/E_Q$ there exist $sup_{\leq}(B, C)$ and $inf_{\leq}(B, C)$, then the triple (A, Q, χ) is called an *L*-quasiordered set. The equivalence class $[a]_{E_Q}$ will be denoted simply by [a].

L-quasiordered sets give rise to lattice-like operations on A in the following manner [1]:

Lemma 1. Let (A, Q, χ) be an L-quasiordered set. Let us define for $x, y \in A$ the operations

$$\begin{aligned} x \lor y &= \chi(sup_{\leq}([x], [y])), \\ x \land y &= \chi(inf_{\leq}([x], [y])). \end{aligned}$$

Then the algebra $(A; \lor, \land)$ satisfies the identities

$$\begin{aligned} x \lor y = y \lor x, & x \land y = y \land x & (commutativity); \\ x \lor (y \lor z) = (x \lor y) \lor z, & x \land (y \land z) = (x \land y) \land z & (associativity); \\ x \lor (x \land y) = x \lor x, & x \land (x \lor y) = x \land x & (weak-absorption); \\ x \lor y = x \lor (y \lor y), & x \land y = x \land (y \land y) & (weak-idempotence); \\ x \lor x = x \land x & (equalization). \end{aligned}$$

An algebra $\mathcal{A} = (A; \lor, \land)$ satisfying the axioms of Lemma 1 is called a *q*-lattice.

Conversely, having a q-lattice $\mathcal{A} = (A; \lor, \land)$, the relation Q on A defined by

$$(x,y) \in Q$$
 iff $x \lor y = y \lor y$

is a quasiorder relation, the so-called *induced quasiorder on A*.

Let us note that $(x, y) \in Q$ iff $x \wedge y = x \wedge x$, see [1].

The set $Sk\mathcal{A} = \{x \in A : x \lor x = x\}$ of all idempotent elements of \mathcal{A} , the so-called *skeleton of* \mathcal{A} , forms a lattice with respect to the induced operations \lor and \land ; this lattice is called the *induced lattice of a q-lattice* \mathcal{A} .

Hence a q-lattice $\mathcal{A} = (A; \lor, \land)$ is a lattice if and only if $A = Sk\mathcal{A}$.

The set $C(a) = \{x \in A; a \lor a = x \lor x\}$ for $a \in A$ is called the *cell of* a. It is clear that every q-lattice is a disjoint union of cells and every cell contains exactly one element from the skeleton.

When visualizing a q-lattice $\mathcal{A} = (A; \lor, \land)$, we firstly draw the lattice skeleton $Sk\mathcal{A}$ and then we add the corresponding cells. For example, the diagram

represents a q-lattice with a skeleton $Sk\mathcal{A} = \{a, c\}$ and with two cells $C(a) = C(b) = \{a, b\}, C(c) = C(d) = \{c, d\}.$

2. M-operators

A q-lattice $\mathcal{A} = (A; \lor, \land)$ is called *complete* if $Sk\mathcal{A}$ is a complete lattice. Since the join (the meet) of two (not necessarily distinct) elements of a q-lattice \mathcal{A} is always a skeletal element, \mathcal{A} is complete iff $\bigvee \{a; a \in X\}$ (or $\bigwedge \{a; a \in X\}$) exists for an arbitrary subset X of A.

By an operator on A we mean a mapping $C : \mathcal{P}(A) \longrightarrow \mathcal{P}(A)$ of all subsets $\mathcal{P}(A)$ of A into itself. A subset $X \subseteq A$ is called *closed with respect* to C (or C-closed) if C(X) = X. The set of all C-closed sets will be denoted by $\mathcal{L}(C)$.

The set $\mathcal{P}(A)$ can be quasiordered in a natural way as follows:

Lemma 2. Let A be a set, $M \in \mathcal{P}(A)$. Let us define the relation \leq on $\mathcal{P}(A)$ for $X, Y \in \mathcal{P}(A)$ by

$$X \leq Y$$
 iff $X \cap M \subseteq Y \cap M$.

Then \leq is a quasiorder relation on $\mathcal{P}(A)$ and, moreover, $\mathcal{P}(A)$ is a q-lattice with respect to the operations

$$X \wedge Y = X \cap Y \cap M,$$
$$X \vee Y = (X \cup Y) \cap M$$

with $Sk\mathcal{P}(A) = \mathcal{P}(M)$.

Proof. Easy.

The q-lattice from Lemma 2 will be called a set-M-q-lattice on A. It is easy to see that set-A-q-lattice on A is just a set-lattice on A. (i.e. lettice of all subsets of A)

We are ready to formulate our natural problem:

Given a complete q-lattice \mathcal{A} , does there exist an operator C on A and $M \subseteq A$ such that the set $\mathcal{L}(C)$ of all C-closed sets on A is closed under the operations \wedge and \vee (as introduced in Lemma 2) and the set-M-q-lattice $\mathcal{L}(C)$ is isomorphic to \mathcal{A} ?

In the following we give a positive answer to the above problem. Remember that an operator $C : \mathcal{P}(A) \longrightarrow \mathcal{P}(A)$ is called a *closure operator* on A if for each $X, Y \in \mathcal{P}(A)$:

- (C1) $X \subseteq C(X),$
- (C2) $X \subseteq Y \Rightarrow C(X) \subseteq C(Y),$
- (C3) C(C(X)) = C(X).

For a singleton $a \in A$, we shall write C(a) instead of $C(\{a\})$.

We start from the following definition:

Definition 1. Let C be a closure operator on A, $M \subseteq A$ and $M' = A \setminus M$. Let us define a C_M -closure of $X \subseteq A$ as follows:

 $C_M(X) = \begin{cases} (C(X) \cap M) \cup \{m'\}, & \text{if } X \cap M' = \{m'\} \text{ and } C(X) \cap M = C(m') \cap M; \\ C(X) \cap M, & \text{otherwise.} \end{cases}$

The C_M -closure does not have the properties (C1)–(C3) of a closure operator. Its properties are listed in the following proposition.

Proposition 1. C_M -closure operator on A has the following properties for $X, Y \subseteq A$:

(1) $X \subseteq M \Rightarrow C_M(X) \subseteq M$,

(2)
$$X \cap M \subseteq C_M(X),$$

- (3) $X \subseteq Y \Rightarrow C_M(X) \cap M \subseteq C_M(Y) \cap M$,
- (4) $C_M(C_M(X \cap M)) = C_M(X \cap M).$

Proof. (1) is easily seen from the definition of C.

Since C is a closure operator on A, (2) follows from the fact that $X \subseteq C(X)$ for each $X \subseteq A$.

Further we have $C_M(X) \cap M = C(X) \cap M$ for each $X \subseteq A$, hence $X \subseteq Y$ yields $C(X) \subseteq C(Y)$ and

$$C_M(X) \cap M = C(X) \cap M \subseteq C(Y) \cap M = C_M(Y) \cap M;$$

this proves the property (3).

Let us verify the property (4). Since $X \cap M \subseteq M$, we have by (1) $C_M(X \cap M) \subseteq M$, and, moreover

$$C_M(C_M(X \cap M)) = C_M(C(X \cap M) \cap M) = C(C(X \cap M) \cap M) \cap M =$$
$$= C(C(X \cap M)) \cap M = C(X \cap M) \cap M = C_M(X \cap M)$$

by (C3) and (C2) of the operator C.

Proposition 1 leads us to the following definition:

Definition 2. Let $M \subseteq A$. An operator C^* on A with properties

- (MC1) $X \subseteq M \Rightarrow C^*(X) \subseteq M$,
- (MC2) $X \cap M \subseteq C^*(X),$
- (MC3) $X \subseteq Y \Rightarrow C^*(X) \cap M \subseteq C^*(Y) \cap M$,
- (MC4) $C^*(C^*(X \cap M)) = C^*(X \cap M),$

for each $X, Y \subseteq A$, is called an *M*-operator on *A*.

Let us note that for an *M*-operator C^* on *A*, the set $\mathcal{L}(C^*)$ of all C^* -closed sets is non-empty. Indeed, by (MC4) we have $\{C^*(X) : X \subseteq M\} \subseteq \mathcal{L}(C^*)$, and, by (MC1) and (MC2) $M \in \mathcal{L}(C^*)$.

Next we will show that $\mathcal{L}(C^*)$ can be endowed by a set-M-q-lattice structure:

Proposition 2. Let C^* be an M-operator on A, let $X_{\alpha} \in \mathcal{L}(C^*), \alpha \in \Lambda$. Then $\mathcal{L}(C^*)$ is a complete q-lattice w.r.t. operations

$$\bigwedge X_{\alpha} = \bigcap X_{\alpha} \cap M,$$
$$\bigvee X_{\alpha} = \bigwedge \{ Y \in \mathcal{L}(C^*) : X_{\alpha} \leq Y \text{ for each } \alpha \in \Lambda \},$$

where \leq is the quasiorder on A induced by \wedge . Moreover, $Sk\mathcal{L}(C^*) = \{X \in \mathcal{L}(C^*) : X \subseteq M\}$.

Proof. Firstly we have to prove that the operations are well-defined, i.e. that $\bigcap X_{\alpha} \cap M \in \mathcal{L}(C^*)$ whenever $X_{\alpha} \in \mathcal{L}(C^*)$ for each $\alpha \in \Lambda$. By (MC2) we have $\bigcap X_{\alpha} \cap M \subseteq C^*(\bigcap X_{\alpha} \cap M)$. Conversely, $\bigcap X_{\alpha} \cap M \subseteq X_{\alpha}$ for each $\alpha \in \Lambda$, hence using (MC1) and (MC3) one gets

$$C^*\left(\bigcap X_{\alpha} \cap M\right) = C^*\left(\bigcap X_{\alpha} \cap M\right) \cap M \subseteq C^*(X_{\alpha}) \cap M = X_{\alpha} \cap M$$

for each $\alpha \in \Lambda$. But this yields also

$$C^*\left(\bigcap X_{\alpha}\cap M\right)\subseteq\bigcap X_{\alpha}\cap M$$

verifying the closedness of the set $\bigcap X_{\alpha} \cap M$.

The operation \wedge on $\mathcal{L}(C^*)$ is then well defined and induces a quasiorder relation \leq on $\mathcal{L}(C^*)$ as follows:

$$X \leq Y$$
 iff $X \cap M \subseteq Y \cap M$.

We show that $\bigcap X_{\alpha} \cap M$ is the greatest lower bound of X_{α} 's w.r.t. induced quasiorder. Indeed, let $X \in \mathcal{L}(C^*)$ and suppose that $X \leq X_{\alpha}$ for each $\alpha \in \Lambda$. Then $X \cap M \subseteq X_{\alpha} \cap M$, hence also $X \cap M \subseteq \bigcap X_{\alpha} \cap M$ verifying $X \leq \bigcap X_{\alpha} \cap M$.

It is immediately seen that $\bigvee X_{\alpha}$ is the least upper bound of X_{α} 's w.r.t. \leq and, altogether, $\mathcal{L}(C^*)$ is a complete q-lattice.

Now we are ready to show that complete q-lattices can be viewed as q-lattices of closed sets w.r.t. appropriate M-operators.

Theorem. Let $\mathcal{L} = (L, \lor, \land)$ be a complete q-lattice and let \leq be the induced quasiorder on L. Then the operator C on L defined by

$$C(X) = \{ y \in Sk\mathcal{L} : y \le \bigvee X \} \cup X$$

is a closure operator and for $M = Sk\mathcal{L}$ we have $\mathcal{L}(C_M) \cong \mathcal{L}$.

Proof. According to Proposition 1 and Definition 2, the operator C_M is an *M*-operator on *L*, and by Proposition 2, $\mathcal{L}(C_M)$ is a complete *q*-lattice. It is easily seen that *C* is a closure operator on *L*. Hence it is enough to prove that the *q*-lattices $\mathcal{L}(C_M)$ and \mathcal{L} are isomorphic. Denote for $a \in L$ by $L_{Sk}(a)$ the set of all skeletal elements lying below *a*.

Let us describe all C_M -closed sets:

- by (MC4) all the sets $C_M(X)$ for $X \subseteq M$ are C_M -closed, i.e. the sets $C_M(X) = \{y \in Sk\mathcal{L} : y \leq \bigvee X\} = L_{Sk}(\bigvee X);$
- let us consider the sets $X \subseteq L$ with $|X \cap M'| \ge 2$.

Then $C_M(X) = C(X) \cap M \subseteq M$, so $C_M(X) \neq X$ and X is not C_M -closed:

• suppose that $X \subseteq L$ with $X \cap M' = \{m'\}$ and $M \cap C(m') \neq M \cap C(X)$. Then again

 $C_M(X) = C(X) \cap M \subseteq M$ and since $m' \notin M$, X is not C_M -closed;

• finally, let $X \cap M' = \{m'\}$ and $M \cap C(m') = M \cap C(X)$ for $X \subseteq L$. This gives

 $C_M(X) = \{ y \in Sk\mathcal{L} : y \leq \forall X \} \cup \{ m' \} = \{ y \in Sk\mathcal{L} : y \leq m' \lor m' \} \cup \{ m' \},\$

and the sets

$$\{y \in Sk\mathcal{L} : y \le m' \lor m'\} \cup \{m'\} \text{ for } m' \notin Sk\mathcal{L}$$

are C_M -closed.

Let us verify that the mapping $\phi: L \longrightarrow \mathcal{L}(C_M)$ defined by

$$\phi(x) = L_{Sk}(x) \text{ for } x \in Sk\mathcal{L},$$

$$\phi(y) = L_{Sk}(y \lor y) \cup \{y\} \text{ for } y \notin Sk\mathcal{L}$$

is the desired isomorphism.

Injectivity of ϕ is easily seen from its definition, surjectivity then yields from the fact that the elements of $\mathcal{L}(C_M)$ are of the form $L_{Sk}(x)$ for $x \in Sk\mathcal{L}$ or $L_{Sk}(y \lor y) \cup \{y\}$ for $y \notin Sk\mathcal{L}$.

Now let $x, y \in L$. To verify that ϕ is a homomorphism, we distinguish three cases:

Case 1. Assume $x, y \in Sk\mathcal{L}$. Then $x \wedge y \in Sk\mathcal{L}$ and

$$\phi(x) \wedge \phi(y) = L_{Sk}(x) \wedge L_{Sk}(y) = (L_{Sk}(x) \cap L_{Sk}(y)) \cap Sk\mathcal{L} =$$
$$= L_{Sk}(x) \cap L_{Sk}(y) = L_{Sk}(x \wedge y) = \phi(x \wedge y)$$

By the definition of join in $\mathcal{L}(C_M)$ we have

$$\phi(x) \lor \phi(y) = \bigwedge \{ Y \in \mathcal{L}(C_M) : \phi(x) \le Y, \phi(y) \le Y \} =$$
$$= \bigcap \{ Y \in \mathcal{L}(C_M) : L_{Sk}(x) \subseteq Y \cap Sk\mathcal{L}, L_{Sk}(y) \subseteq Y \cap Sk\mathcal{L} \} \cap Sk\mathcal{L} \}$$

Evidently, $x \lor y \in Sk\mathcal{L}$, $L_{Sk}(x \lor y) \in \mathcal{L}(C_M)$ and

$$L_{Sk}(x) \cup L_{Sk}(y) \subseteq L_{Sk}(x \lor y) = L_{Sk}(x \lor y) \cap Sk\mathcal{L} = \phi(x \lor y).$$

To prove the converse inclusion, we have to show that

$$\phi(x \lor y) = L_{Sk}(x \lor y) \subseteq Y \cap Sk\mathcal{L}$$

for each $Y \in \mathcal{L}(C_M)$ with $L_{Sk}(x) \cup L_{Sk}(y) \subseteq Y \cap Sk\mathcal{L}$.

If $Y = L_{Sk}(z)$ for some $z \in Sk\mathcal{L}$, we get

$$L_{Sk}(x) \cup L_{Sk}(y) \subseteq L_{Sk}(z) \cap Sk\mathcal{L} = L_{Sk}(z),$$

i.e. $x \leq z, y \leq z$, and since $Sk\mathcal{L}$ is the lattice, $x \vee y \leq z$. But then

$$L_{Sk}(x \lor y) \subseteq L_{Sk}(z) = Y = Y \cap Sk\mathcal{L}.$$

In the remaining case, we have $Y = L_{Sk}(u \lor u) \cup \{u\}$ for some $u \notin Sk\mathcal{L}$. This yields $x \leq u \lor u$, $y \leq u \lor u$ and hence $x \lor y \leq u \lor u$. Finally, we get

$$L_{Sk}(x \lor y) \subseteq L_{Sk}(u \lor u) = Y \cap Sk\mathcal{L},$$

finishing the Case 1.

Case 2. Assume that $x, y \notin Sk\mathcal{L}$. Then

$$\begin{split} \phi(x) \wedge \phi(y) &= \\ &= (L_{Sk}(x \lor x) \cup \{x\}) \cap (L_{Sk}(y \lor y) \cup \{y\}) \cap Sk\mathcal{L} = \\ &= L_{Sk}(x \lor x) \cap L_{Sk}(y \lor y) = L_{Sk}((x \lor x) \land (y \lor y)). \end{split}$$

By Lemma 1, $(x \lor x) \land (y \lor y) = x \land y$, hence

$$L_{Sk}((x \lor x) \land (y \lor y)) = L_{Sk}(x \land y) = \phi(x \land y),$$

veryfying that, in the Case 2, ϕ is \wedge -preserving.

The join of $\phi(x)$ and $\phi(y)$ is of the form

$$\phi(x) \lor \phi(y) = \bigwedge \{ Y \in \mathcal{L}(C_M) : (L_{Sk}(x \lor x) \cup (\{x\})) \cap Sk\mathcal{L} \subseteq Y \cap Sk\mathcal{L}, \}$$

 $(L_{Sk}(y \lor y) \cup (\{y\})) \cap Sk\mathcal{L} \subseteq Y \cap Sk\mathcal{L}\} \cap Sk\mathcal{L} =$

 $= \bigcap \{ Y \in \mathcal{L}(C_M) : (L_{Sk}(x \lor x) \cup L_{Sk}(y \lor y) \subseteq Y \cap Sk\mathcal{L} \} \cap Sk\mathcal{L} \}$

Since $L_{Sk}(x \lor x) \cup L_{Sk}(y \lor y) \subseteq L_{Sk}(x \lor y)$, we deduce

$$\phi(x) \lor \phi(y) \subseteq \phi(x \lor y).$$

Similarly as in the Case 1, we have to prove

$$L_{Sk}(x \lor y) \subseteq Y \cap Sk\mathcal{L}$$

for each $Y \in \mathcal{L}(C_M)$ with $L_{Sk}(x \lor x) \cup L_{Sk}(y \lor y) \subseteq Y \cap Sk\mathcal{L}$.

We distinguish again two cases with respect to Y.

If $Y = L_{Sk}(z)$ for some $z \in Sk\mathcal{L}$, then $x \vee x \leq z, y \vee y \leq z$ and hence $x \vee y \leq z$, i.e.

$$L_{Sk}(x \lor y) \subseteq L_{Sk}(z) = Y = Y \cap Sk\mathcal{L}$$

If $Y = L_{Sk}(u \lor u) \cup \{u\}$ for some $u \notin Sk\mathcal{L}$, we obtain $x \lor x \leq u \lor u$, $y \lor y \leq u \lor u$ and $x \lor y \leq u \lor u$, i.e.

$$L_{Sk}(x \lor y) \subseteq L_{Sk}(u \lor u) = Y \cap Sk\mathcal{L},$$

finishing the Case 2.

Case 3. Suppose that $x \in Sk\mathcal{L}, y \notin Sk\mathcal{L}$. Then

$$\phi(x) \wedge \phi(y) = (L_{Sk}(x) \cap (L_{Sk}(y \lor y) \cup \{y\})) \cap Sk\mathcal{L} =$$
$$= L_{Sk}(x) \cap L_{Sk}(y \lor y) = L_{Sk}(x \land (y \lor y))$$
$$= L_{Sk}(x \land y) = \phi(x \land y).$$

To prove that ϕ is \lor -preserving, we start with

 $\phi(x) \lor \phi(y) = \bigwedge \{ Y \in \mathcal{L}(C_M) : L_{Sk}(x) \subseteq Y \cap Sk\mathcal{L},$

 $(L_{Sk}(y \lor y) \cup (\{y\})) \cap Sk\mathcal{L} \subseteq Y \cap Sk\mathcal{L}\} \cap Sk\mathcal{L} =$

$$= \bigwedge \{ Y \in \mathcal{L}(C_M) : L_{Sk}(x) \cup L_{Sk}(y \lor y) \subseteq Y \} \cap Sk\mathcal{L}.$$

Analogously as in previous cases, we have

$$L_{Sk}(x) \cup L_{Sk}(y \lor y) \subseteq L_{Sk}(x \lor y) = \phi(x \lor y).$$

To finish the proof it is enough to show

 $L_{Sk}(x \lor y) \subseteq Y \cap Sk\mathcal{L}$

whenever $Y \in \mathcal{L}(C_M)$ with $L_{Sk}(x) \cup L_{Sk}(y \lor y) \subseteq Y \cap Sk\mathcal{L}$.

Considering $Y = L_{Sk}(z)$ for some $z \in Sk\mathcal{L}$, we obtain $x \leq z, y \lor y \leq z$ and $x \lor (y \lor y) = x \lor y \leq z$, i.e.

$$L_{Sk}(x \lor y) \subseteq L_{Sk}(z) = Y \cap Sk\mathcal{L}.$$

Finally, the case $Y = L_{Sk}(u \lor u) \cup \{u\}$ for some $u \notin Sk\mathcal{L}$ yields $x \leq u \lor u, y \lor y \leq u \lor u$, i.e. $x \lor y \leq u \lor u$ and

$$L_{Sk}(x \vee y) \subseteq L_{Sk}(u \vee u) = Y \cap Sk\mathcal{L},$$

finishing the Case 3 and the proof of Theorem.

References

- I. Chajda, Lattices on quasiordered sets, Acta Univ. Palack. Olomuc., Fac. Rerum Natur., Math. 31 (1992), 6–12.
- [2] I. Chajda and M. Kotrle, Subdirectly irreducible and congruence distributive q-lattices, Czechoslovak Math. J. 43 (1993), 635–642.
- [3] I. Chajda, Congruence properties of algebras in nilpotent shifts of varieties, p. 35–46 in: "General Algebra and Discrete Mathematics", Heldermann Verlag, Lemgo 1995.

Received 28 February 2002 Revised 20 September 2002