ON M-OPERATORS OF \boldsymbol{q}-LATTICES

Radomír Halaš*
Palacky University of Olomouc Department of Algebra and Geometry
Tomkova 40, CZ-77900 Olomouc
e-mail: halas@aix.upol.cz

Abstract

It is well known that every complete lattice can be considered as a complete lattice of closed sets with respect to appropriate closure operator. The theory of q-lattices as a natural generalization of lattices gives rise to a question whether a similar statement is true in the case of q-lattices. In the paper the so-called M-operators are introduced and it is shown that complete q-lattices are q-lattices of closed sets with respect to M-operators.

Keywords: (complete) q-lattice, closure operator, M-operator.
2000 Mathematics Subject Classification: 06B99, 05A05, 06A15.

1. Introduction

The idea of introducing lattice-like structure on a quasiordered set is due to I. Chajda in [1].

Having a quasiordered set $(A ; Q)$ with a quasiorder relation Q (i.e. Q is both reflexive and transitive relation on A), denote by $E_{Q}=Q \cap Q^{-1}$ the equivalence on A induced by Q. The relation Q / E_{Q} on a factor set A / E_{Q} defined by

$$
(B, C) \in Q / E_{Q} \text { iff }(b, c) \in Q \text { for some } b \in B, c \in C
$$

is known to be a partial order relation on A / E_{Q}. To simplify notation we shall write \leq instead of Q / E_{Q}.

[^0]A mapping $\chi: A / E_{Q} \longrightarrow A$ with the property $\chi(B) \in B$ for each $B \in A / E_{Q}$ is called a q-function on A.

If for each $B, C \in A / E_{Q}$ there exist $\sup _{\leq}(B, C)$ and $\operatorname{in} f_{\leq}(B, C)$, then the triple (A, Q, χ) is called an L-quasiordered set. The equivalence class $\left.{ }_{[a}\right]_{E_{Q}}$ will be denoted simply by $[a]$.
L-quasiordered sets give rise to lattice-like operations on A in the following manner [1]:

Lemma 1. Let (A, Q, χ) be an L-quasiordered set. Let us define for $x, y \in A$ the operations

$$
\begin{aligned}
& x \vee y=\chi\left(\sup _{\leq}([x],[y]),\right. \\
& x \wedge y=\chi\left(\inf _{\leq}([x],[y]) .\right.
\end{aligned}
$$

Then the algebra $(A ; \vee, \wedge)$ satisfies the identities

$$
\begin{array}{rlrlrl}
x \vee y & =y \vee x, & x \wedge y & =y \wedge x & & (\text { commutativity }) ; \\
x \vee(y \vee z) & =(x \vee y) \vee z, & x \wedge(y \wedge z) & =(x \wedge y) \wedge z & & (\text { associativity }) ; \\
x \vee(x \wedge y) & =x \vee x, & x \wedge(x \vee y) & =x \wedge x & & \text { (weak-absorption); } \\
x \vee & x \vee y & =x \vee(y \vee y), & x \wedge y & =x \wedge(y \wedge y) & \\
\text { (weak-idempotence); } \\
x \vee & x & =x \wedge x & & & \text { (equalization). }
\end{array}
$$

An algebra $\mathcal{A}=(A ; \vee, \wedge)$ satisfying the axioms of Lemma 1 is called a q-lattice.

Conversely, having a q-lattice $\mathcal{A}=(A ; \vee, \wedge)$, the relation Q on A defined by

$$
(x, y) \in Q \text { iff } x \vee y=y \vee y
$$

is a quasiorder relation, the so-called induced quasiorder on A.
Let us note that $(x, y) \in Q$ iff $x \wedge y=x \wedge x$, see [1].
The set $S k \mathcal{A}=\{x \in A: x \vee x=x\}$ of all idempotent elements of \mathcal{A}, the so-called skeleton of \mathcal{A}, forms a lattice with respect to the induced operations \vee and \wedge; this lattice is called the induced lattice of a q-lattice \mathcal{A}.

Hence a q-lattice $\mathcal{A}=(A ; \vee, \wedge)$ is a lattice if and only if $A=\operatorname{SkA}$.
The set $C(a)=\{x \in A ; a \vee a=x \vee x\}$ for $a \in A$ is called the cell of a. It is clear that every q-lattice is a disjoint union of cells and every cell contains exactly one element from the skeleton.

When visualizing a q-lattice $\mathcal{A}=(A ; \vee, \wedge)$, we firstly draw the lattice skeleton $S k \mathcal{A}$ and then we add the corresponding cells. For example, the diagram
c
a
d
b
represents a q-lattice with a skeleton $S k \mathcal{A}=\{a, c\}$ and with two cells $C(a)=$ $C(b)=\{a, b\}, C(c)=C(d)=\{c, d\}$.

2. M-operators

A q-lattice $\mathcal{A}=(A ; \vee, \wedge)$ is called complete if $S k \mathcal{A}$ is a complete lattice. Since the join (the meet) of two (not necessarily distinct) elements of a q-lattice \mathcal{A} is always a skeletal element, \mathcal{A} is complete iff $\bigvee\{a ; a \in X\}$ (or $\bigwedge\{a ; a \in X\}$) exists for an arbitrary subset X of A.

By an operator on A we mean a mapping $C: \mathcal{P}(A) \longrightarrow \mathcal{P}(A)$ of all subsets $\mathcal{P}(A)$ of A into itself. A subset $X \subseteq A$ is called closed with respect to C (or C-closed) if $C(X)=X$. The set of all C-closed sets will be denoted by $\mathcal{L}(C)$.

The set $\mathcal{P}(A)$ can be quasiordered in a natural way as follows:

Lemma 2. Let A be a set, $M \in \mathcal{P}(A)$. Let us define the relation \leq on $\mathcal{P}(A)$ for $X, Y \in \mathcal{P}(A)$ by

$$
X \leq Y \quad \text { iff } \quad X \cap M \subseteq Y \cap M
$$

Then \leq is a quasiorder relation on $\mathcal{P}(A)$ and, moreover, $\mathcal{P}(A)$ is a q-lattice with respect to the operations

$$
\begin{aligned}
& X \wedge Y=X \cap Y \cap M \\
& X \vee Y=(X \cup Y) \cap M
\end{aligned}
$$

with $\operatorname{SkP}(A)=\mathcal{P}(M)$.
Proof. Easy.
The q-lattice from Lemma 2 will be called a set- $M-q$-lattice on A. It is easy to see that set- A - q-lattice on A is just a set-lattice on A. (i.e. lettice of all subsets of A)

We are ready to formulate our natural problem:
Given a complete q-lattice \mathcal{A}, does there exist an operator C on A and $M \subseteq A$ such that the set $\mathcal{L}(C)$ of all C-closed sets on A is closed under the operations \wedge and \vee (as introduced in Lemma 2) and the set- $M-q$-lattice $\mathcal{L}(C)$ is isomorphic to \mathcal{A} ?

In the following we give a positive answer to the above problem.
Remember that an operator $C: \mathcal{P}(A) \longrightarrow \mathcal{P}(A)$ is called a closure operator on A if for each $X, Y \in \mathcal{P}(A)$:
(C1) $\quad X \subseteq C(X)$,
(C2) $\quad X \subseteq Y \Rightarrow C(X) \subseteq C(Y)$,
(C3) $C(C(X))=C(X)$.
For a singleton $a \in A$, we shall write $C(a)$ instead of $C(\{a\})$.
We start from the following definition:
Definition 1. Let C be a closure operator on $A, M \subseteq A$ and $M^{\prime}=A \backslash M$. Let us define a C_{M}-closure of $X \subseteq A$ as follows:

$$
\begin{aligned}
& C_{M}(X)= \\
& \begin{cases}(C(X) \cap M) \cup\left\{m^{\prime}\right\}, & \text { if } X \cap M^{\prime}=\left\{m^{\prime}\right\} \text { and } C(X) \cap M=C\left(m^{\prime}\right) \cap M \\
C(X) \cap M, & \text { otherwise. }\end{cases}
\end{aligned}
$$

The C_{M}-closure does not have the properties (C1)-(C3) of a closure operator. Its properties are listed in the following proposition.

Proposition 1. C_{M}-closure operator on A has the following properties for $X, Y \subseteq A$:
(1) $X \subseteq M \Rightarrow C_{M}(X) \subseteq M$,
(2) $X \cap M \subseteq C_{M}(X)$,
(3) $X \subseteq Y \Rightarrow C_{M}(X) \cap M \subseteq C_{M}(Y) \cap M$,
(4) $C_{M}\left(C_{M}(X \cap M)\right)=C_{M}(X \cap M)$.

Proof. (1) is easily seen from the definition of C.
Since C is a closure operator on A, (2) follows from the fact that $X \subseteq$ $C(X)$ for each $X \subseteq A$.

Further we have $C_{M}(X) \cap M=C(X) \cap M$ for each $X \subseteq A$, hence $X \subseteq Y$ yields $C(X) \subseteq C(Y)$ and

$$
C_{M}(X) \cap M=C(X) \cap M \subseteq C(Y) \cap M=C_{M}(Y) \cap M
$$

this proves the property (3).
Let us verify the property (4). Since $X \cap M \subseteq M$, we have by (1) $C_{M}(X \cap M) \subseteq M$, and, moreover

$$
\begin{gathered}
C_{M}\left(C_{M}(X \cap M)\right)=C_{M}(C(X \cap M) \cap M)=C(C(X \cap M) \cap M) \cap M= \\
=C(C(X \cap M)) \cap M=C(X \cap M) \cap M=C_{M}(X \cap M)
\end{gathered}
$$

by (C3) and (C2) of the operator C.
Proposition 1 leads us to the following definition:
Definition 2. Let $M \subseteq A$. An operator C^{*} on A with properties
(MC1) $\quad X \subseteq M \Rightarrow C^{*}(X) \subseteq M$,
(MC2) $\quad X \cap M \subseteq C^{*}(X)$,
(MC3) $X \subseteq Y \Rightarrow C^{*}(X) \cap M \subseteq C^{*}(Y) \cap M$,
$(\mathrm{MC} 4) \quad C^{*}\left(C^{*}(X \cap M)\right)=C^{*}(X \cap M)$,
for each $X, Y \subseteq A$, is called an M-operator on A.

Let us note that for an M-operator C^{*} on A, the set $\mathcal{L}\left(C^{*}\right)$ of all C^{*}-closed sets is non-empty. Indeed, by (MC4) we have $\left\{C^{*}(X): X \subseteq M\right\} \subseteq \mathcal{L}\left(C^{*}\right)$, and, by (MC1) and (MC2) $M \in \mathcal{L}\left(C^{*}\right)$.

Next we will show that $\mathcal{L}\left(C^{*}\right)$ can be endowed by a set-M-q-lattice structure:

Proposition 2. Let C^{*} be an M-operator on A, let $X_{\alpha} \in \mathcal{L}\left(C^{*}\right), \alpha \in \Lambda$. Then $\mathcal{L}\left(C^{*}\right)$ is a complete q-lattice w.r.t. operations

$$
\begin{gathered}
\bigwedge X_{\alpha}=\bigcap X_{\alpha} \cap M \\
\bigvee X_{\alpha}=\bigwedge\left\{Y \in \mathcal{L}\left(C^{*}\right): \quad X_{\alpha} \leq Y \text { for each } \alpha \in \Lambda\right\}
\end{gathered}
$$

where \leq is the quasiorder on A induced by \wedge. Moreover, $\operatorname{SkL}\left(C^{*}\right)=\{X \in$ $\left.\mathcal{L}\left(C^{*}\right): X \subseteq M\right\}$.
Proof. Firstly we have to prove that the operations are well-defined, i.e. that $\bigcap X_{\alpha} \cap M \in \mathcal{L}\left(C^{*}\right)$ whenever $X_{\alpha} \in \mathcal{L}\left(C^{*}\right)$ for each $\alpha \in \Lambda$. By (MC2) we have $\bigcap X_{\alpha} \cap M \subseteq C^{*}\left(\bigcap X_{\alpha} \cap M\right)$. Conversely, $\cap X_{\alpha} \cap M \subseteq X_{\alpha}$ for each $\alpha \in \Lambda$, hence using (MC1) and (MC3) one gets

$$
C^{*}\left(\bigcap X_{\alpha} \cap M\right)=C^{*}\left(\bigcap X_{\alpha} \cap M\right) \cap M \subseteq C^{*}\left(X_{\alpha}\right) \cap M=X_{\alpha} \cap M
$$

for each $\alpha \in \Lambda$. But this yields also

$$
C^{*}\left(\bigcap X_{\alpha} \cap M\right) \subseteq \bigcap X_{\alpha} \cap M
$$

verifying the closedness of the set $\bigcap X_{\alpha} \cap M$.
The operation \wedge on $\mathcal{L}\left(C^{*}\right)$ is then well defined and induces a quasiorder relation \leq on $\mathcal{L}\left(C^{*}\right)$ as follows:

$$
X \leq Y \quad \text { iff } \quad X \cap M \subseteq Y \cap M
$$

We show that $\bigcap X_{\alpha} \cap M$ is the greatest lower bound of X_{α} 's w.r.t. induced quasiorder. Indeed, let $X \in \mathcal{L}\left(C^{*}\right)$ and suppose that $X \leq X_{\alpha}$ for each $\alpha \in \Lambda$. Then $X \cap M \subseteq X_{\alpha} \cap M$, hence also $X \cap M \subseteq \bigcap X_{\alpha} \cap M$ verifying $X \leq \bigcap X_{\alpha} \cap M$.

It is immediately seen that $\bigvee X_{\alpha}$ is the least upper bound of $X_{\alpha}{ }^{\prime}$ s w.r.t. \leq and, altogether, $\mathcal{L}\left(C^{*}\right)$ is a complete q-lattice.

Now we are ready to show that complete q-lattices can be viewed as q-lattices of closed sets w.r.t. appropriate M-operators.

Theorem. Let $\mathcal{L}=(L, \vee, \wedge)$ be a complete q-lattice and let \leq be the induced quasiorder on L. Then the operator C on L defined by

$$
C(X)=\{y \in S k \mathcal{L}: y \leq \bigvee X\} \cup X
$$

is a closure operator and for $M=S k \mathcal{L}$ we have $\mathcal{L}\left(C_{M}\right) \cong \mathcal{L}$.
Proof. According to Proposition 1 and Definition 2, the operator C_{M} is an M-operator on L, and by Proposition $2, \mathcal{L}\left(C_{M}\right)$ is a complete q-lattice. It is easily seen that C is a closure operator on L. Hence it is enough to prove that the q-lattices $\mathcal{L}\left(C_{M}\right)$ and \mathcal{L} are isomorphic. Denote for $a \in L$ by $L_{S k}(a)$ the set of all skeletal elements lying below a.

Let us describe all C_{M}-closed sets:

- by (MC4) all the sets $C_{M}(X)$ for $X \subseteq M$ are C_{M}-closed, i.e. the sets $C_{M}(X)=\{y \in S k \mathcal{L}: y \leq \bigvee X\}=L_{S k}(\bigvee X)$;
- let us consider the sets $X \subseteq L$ with $\left|X \cap M^{\prime}\right| \geq 2$.

Then $C_{M}(X)=C(X) \cap M \subseteq M$, so $C_{M}(X) \neq X$ and X is not C_{M}-closed:

- suppose that $X \subseteq L$ with $X \cap M^{\prime}=\left\{m^{\prime}\right\}$ and $M \cap C\left(m^{\prime}\right) \neq M \cap C(X)$. Then again

$$
C_{M}(X)=C(X) \cap M \subseteq M \text { and since } m^{\prime} \notin M, X \text { is not } C_{M^{-}} \text {closed; }
$$

- finally, let $X \cap M^{\prime}=\left\{m^{\prime}\right\}$ and $M \cap C\left(m^{\prime}\right)=M \cap C(X)$ for $X \subseteq L$. This gives
$C_{M}(X)=\{y \in S k \mathcal{L}: y \leq \vee X\} \cup\left\{m^{\prime}\right\}=\left\{y \in S k \mathcal{L}: y \leq m^{\prime} \vee m^{\prime}\right\} \cup\left\{m^{\prime}\right\}$,
and the sets

$$
\left\{y \in S k \mathcal{L}: y \leq m^{\prime} \vee m^{\prime}\right\} \cup\left\{m^{\prime}\right\} \text { for } m^{\prime} \notin S k \mathcal{L}
$$

are C_{M}-closed.

Let us verify that the mapping $\phi: L \longrightarrow \mathcal{L}\left(C_{M}\right)$ defined by

$$
\begin{gathered}
\phi(x)=L_{S k}(x) \text { for } x \in S k \mathcal{L}, \\
\phi(y)=L_{S k}(y \vee y) \cup\{y\} \text { for } y \notin S k \mathcal{L}
\end{gathered}
$$

is the desired isomorphism.
Injectivity of ϕ is easily seen from its definition, surjectivity then yields from the fact that the elements of $\mathcal{L}\left(C_{M}\right)$ are of the form $L_{S k}(x)$ for $x \in S k \mathcal{L}$ or $L_{S k}(y \vee y) \cup\{y\}$ for $y \notin S k \mathcal{L}$.

Now let $x, y \in L$. To verify that ϕ is a homomorphism, we distinguish three cases:

Case 1. Assume $x, y \in S k \mathcal{L}$. Then $x \wedge y \in S k \mathcal{L}$ and

$$
\begin{aligned}
\phi(x) \wedge \phi(y) & =L_{S k}(x) \wedge L_{S k}(y)=\left(L_{S k}(x) \cap L_{S k}(y)\right) \cap S k \mathcal{L}= \\
& =L_{S k}(x) \cap L_{S k}(y)=L_{S k}(x \wedge y)=\phi(x \wedge y)
\end{aligned}
$$

By the definition of join in $\mathcal{L}\left(C_{M}\right)$ we have

$$
\begin{aligned}
& \phi(x) \vee \phi(y) \\
&=\bigwedge\left\{Y \in \mathcal{L}\left(C_{M}\right): \phi(x) \leq Y, \phi(y) \leq Y\right\}= \\
&=\bigcap\left\{Y \in \mathcal{L}\left(C_{M}\right): L_{S k}(x) \subseteq Y \cap S k \mathcal{L}, L_{S k}(y) \subseteq Y \cap S k \mathcal{L}\right\} \cap S k \mathcal{L} .
\end{aligned}
$$

Evidently, $x \vee y \in S k \mathcal{L}, L_{S k}(x \vee y) \in \mathcal{L}\left(C_{M}\right)$ and

$$
L_{S k}(x) \cup L_{S k}(y) \subseteq L_{S k}(x \vee y)=L_{S k}(x \vee y) \cap S k \mathcal{L}=\phi(x \vee y) .
$$

To prove the converse inclusion, we have to show that

$$
\phi(x \vee y)=L_{S k}(x \vee y) \subseteq Y \cap S k \mathcal{L}
$$

for each $Y \in \mathcal{L}\left(C_{M}\right)$ with $L_{S k}(x) \cup L_{S k}(y) \subseteq Y \cap S k \mathcal{L}$.

If $Y=L_{S k}(z)$ for some $z \in S k \mathcal{L}$, we get

$$
L_{S k}(x) \cup L_{S k}(y) \subseteq L_{S k}(z) \cap S k \mathcal{L}=L_{S k}(z),
$$

i.e. $x \leq z, y \leq z$, and since $S k \mathcal{L}$ is the lattice, $x \vee y \leq z$. But then

$$
L_{S k}(x \vee y) \subseteq L_{S k}(z)=Y=Y \cap S k \mathcal{L} .
$$

In the remaining case, we have $Y=L_{S k}(u \vee u) \cup\{u\}$ for some $u \notin S k \mathcal{L}$. This yields $x \leq u \vee u, y \leq u \vee u$ and hence $x \vee y \leq u \vee u$. Finally, we get

$$
L_{S k}(x \vee y) \subseteq L_{S k}(u \vee u)=Y \cap S k \mathcal{L},
$$

finishing the Case 1.
Case 2. Assume that $x, y \notin S k \mathcal{L}$. Then

$$
\begin{aligned}
& \phi(x) \wedge \phi(y)= \\
& =\left(L_{S k}(x \vee x) \cup\{x\}\right) \cap\left(L_{S k}(y \vee y) \cup\{y\}\right) \cap S k \mathcal{L}= \\
& =L_{S k}(x \vee x) \cap L_{S k}(y \vee y)=L_{S k}((x \vee x) \wedge(y \vee y)) .
\end{aligned}
$$

By Lemma $1,(x \vee x) \wedge(y \vee y)=x \wedge y$, hence

$$
L_{S k}((x \vee x) \wedge(y \vee y))=L_{S k}(x \wedge y)=\phi(x \wedge y),
$$

veryfying that, in the Case $2, \phi$ is \wedge-preserving.
The join of $\phi(x)$ and $\phi(y)$ is of the form

$$
\begin{aligned}
& \phi(x) \vee \phi(y)= \bigwedge\left\{Y \in \mathcal{L}\left(C_{M}\right):\left(L_{S k}(x \vee x) \cup(\{x\})\right) \cap S k \mathcal{L} \subseteq Y \cap S k \mathcal{L},\right. \\
&\left.\left(L_{S k}(y \vee y) \cup(\{y\})\right) \cap S k \mathcal{L} \subseteq Y \cap S k \mathcal{L}\right\} \cap S k \mathcal{L}= \\
&=\bigcap\left\{Y \in \mathcal{L}\left(C_{M}\right):\left(L_{S k}(x \vee x) \cup L_{S k}(y \vee y) \subseteq Y \cap S k \mathcal{L}\right\} \cap S k \mathcal{L} .\right.
\end{aligned}
$$

Since $L_{S k}(x \vee x) \cup L_{S k}(y \vee y) \subseteq L_{S k}(x \vee y)$, we deduce

$$
\phi(x) \vee \phi(y) \subseteq \phi(x \vee y) .
$$

Similarly as in the Case 1, we have to prove

$$
L_{S k}(x \vee y) \subseteq Y \cap S k \mathcal{L}
$$

for each $Y \in \mathcal{L}\left(C_{M}\right)$ with $L_{S k}(x \vee x) \cup L_{S k}(y \vee y) \subseteq Y \cap S k \mathcal{L}$.
We distinguish again two cases with respect to Y.
If $Y=L_{S k}(z)$ for some $z \in S k \mathcal{L}$, then $x \vee x \leq z, y \vee y \leq z$ and hence $x \vee y \leq z$, i.e.

$$
L_{S k}(x \vee y) \subseteq L_{S k}(z)=Y=Y \cap S k \mathcal{L} .
$$

If $Y=L_{S k}(u \vee u) \cup\{u\}$ for some $u \notin S k \mathcal{L}$, we obtain $x \vee x \leq u \vee u, y \vee y \leq u \vee u$ and $x \vee y \leq u \vee u$, i.e.

$$
L_{S k}(x \vee y) \subseteq L_{S k}(u \vee u)=Y \cap S k \mathcal{L},
$$

finishing the Case 2.
Case 3. Suppose that $x \in S k \mathcal{L}, y \notin S k \mathcal{L}$. Then

$$
\begin{aligned}
\phi(x) \wedge \phi(y) & =\left(L_{S k}(x) \cap\left(L_{S k}(y \vee y) \cup\{y\}\right)\right) \cap S k \mathcal{L}= \\
& =L_{S k}(x) \cap L_{S k}(y \vee y)=L_{S k}(x \wedge(y \vee y)) \\
& =L_{S k}(x \wedge y)=\phi(x \wedge y) .
\end{aligned}
$$

To prove that ϕ is \vee-preserving, we start with

$$
\begin{aligned}
\phi(x) \vee \phi(y)= & \bigwedge\left\{Y \in \mathcal{L}\left(C_{M}\right): L_{S k}(x) \subseteq Y \cap S k \mathcal{L},\right. \\
& \left.\left(L_{S k}(y \vee y) \cup(\{y\})\right) \cap S k \mathcal{L} \subseteq Y \cap S k \mathcal{L}\right\} \cap S k \mathcal{L}= \\
= & \bigwedge\left\{Y \in \mathcal{L}\left(C_{M}\right): L_{S k}(x) \cup L_{S k}(y \vee y) \subseteq Y\right\} \cap S k \mathcal{L} .
\end{aligned}
$$

Analogously as in previous cases, we have

$$
L_{S k}(x) \cup L_{S k}(y \vee y) \subseteq L_{S k}(x \vee y)=\phi(x \vee y) .
$$

To finish the proof it is enough to show

$$
L_{S k}(x \vee y) \subseteq Y \cap S k \mathcal{L}
$$

whenever $Y \in \mathcal{L}\left(C_{M}\right)$ with $L_{S k}(x) \cup L_{S k}(y \vee y) \subseteq Y \cap S k \mathcal{L}$.
Considering $Y=L_{S k}(z)$ for some $z \in S k \mathcal{L}$, we obtain $x \leq z, y \vee y \leq z$ and $x \vee(y \vee y)=x \vee y \leq z$, i.e.

$$
L_{S k}(x \vee y) \subseteq L_{S k}(z)=Y \cap S k \mathcal{L} .
$$

Finally, the case $Y=L_{S k}(u \vee u) \cup\{u\}$ for some $u \notin S k \mathcal{L}$ yields $x \leq$ $u \vee u, y \vee y \leq u \vee u$, i.e. $x \vee y \leq u \vee u$ and

$$
L_{S k}(x \vee y) \subseteq L_{S k}(u \vee u)=Y \cap S k \mathcal{L},
$$

finishing the Case 3 and the proof of Theorem.

References

[1] I. Chajda, Lattices on quasiordered sets, Acta Univ. Palack. Olomuc., Fac. Rerum Natur., Math. 31 (1992), 6-12.
[2] I. Chajda and M. Kotrle, Subdirectly irreducible and congruence distributive q-lattices, Czechoslovak Math. J. 43 (1993), 635-642.
[3] I. Chajda, Congruence properties of algebras in nilpotent shifts of varieties, p. 35-46 in: "General Algebra and Discrete Mathematics", Heldermann Verlag, Lemgo 1995.

Received 28 February 2002
Revised 20 September 2002

[^0]: *The financial support by the Czech Government Council No 314/98:153100011 is gratefully acknowledged.

