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ON M-OPERATORS OF ¢-LATTICES

RADOMIR HALAS*

Palacky University of Olomouc
Department of Algebra and Geometry

Tomkova 40, CZ-77900 Olomouc
e-mail: halas@aix.upol.cz

Abstract

It is well known that every complete lattice can be considered as
a complete lattice of closed sets with respect to appropriate closure
operator. The theory of g-lattices as a natural generalization of lattices
gives rise to a question whether a similar statement is true in the case
of g-lattices. In the paper the so-called M-operators are introduced
and it is shown that complete g-lattices are g-lattices of closed sets
with respect to M-operators.
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1. INTRODUCTION

The idea of introducing lattice-like structure on a quasiordered set is due to
I. Chajda in [1].

Having a quasiordered set (A; @) with a quasiorder relation @ (i.e. @
is both reflexive and transitive relation on A), denote by Eg = QN Q! the
equivalence on A induced by (). The relation QQ/Eq on a factor set A/Eg
defined by

(B,C) € Q/Eq iff (b,c) € Q for some b€ B,ce C
is known to be a partial order relation on A/Eq. To simplify notation we
shall write < instead of Q/Eq.

*The financial support by the Czech Government Council No 314/98:153100011 is
gratefully acknowledged.
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A mapping x : A/Eg — A with the property x(B) € B for each
B € A/Eq is called a g¢-function on A.

If for each B,C € A/Eq there exist sup<(B,C) and inf<(B,C), then
the triple (A, @, x) is called an L-quasiordered set. The equivalence class
[a] g, will be denoted simply by [a].

L-quasiordered sets give rise to lattice-like operations on A in the
following manner [1]:

Lemma 1. Let (A, Q, x) be an L-quasiordered set. Let us define for x,y € A
the operations

zVy = x(sup<([z], [y]),
z Ay = x(inf<([z], [y]).
Then the algebra (A;V, N\) satisfies the identities

rVy=yVuzx, TANYy=yAx (commutativity);

xV(yVz)=(@Vy Vz, zAYANz)=(@Ay) Az (associativity);

xV(xAy)=zVu, xrA(xVy)=zAx (weak-absorption);
zVy=zV(yVy), rANy=xA(yAy) (weak-idempotence);
VT =xAx (equalization).

An algebra A = (A;V,A) satisfying the axioms of Lemma 1 is called a
q-lattice.

Conversely, having a ¢-lattice A = (A4;V, A), the relation @ on A defined
by

(z,y) eQifzvy=yVy

is a quasiorder relation, the so-called induced quasiorder on A.

Let us note that (z,y) € Q iff Ay =z Az, see [1].

The set SkA = {z € A : 2V x = z} of all idempotent elements of
A, the so-called skeleton of A, forms a lattice with respect to the induced
operations V and A; this lattice is called the induced lattice of a q-lattice A.
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Hence a g-lattice A = (A;V, A) is a lattice if and only if A = SkA.

The set C(a) = {z € AjaVa =2z Vz} for a € Ais called the cell of
a. It is clear that every g¢-lattice is a disjoint union of cells and every cell
contains exactly one element from the skeleton.

When visualizing a g-lattice A = (A;V,A\), we firstly draw the lattice
skeleton SkA and then we add the corresponding cells. For example, the
diagram

represents a g-lattice with a skeleton SkA = {a, ¢} and with two cells C'(a) =
C(b) = {a,b},C(c) = C(d) = {c,d}.

2. M-OPERATORS

A g-lattice A = (A;V,A) is called complete if SkA is a complete lattice.
Since the join (the meet) of two (not necessarily distinct) elements of a
g-lattice A is always a skeletal element, A is complete iff \/{a;a € X}
(or A{a;a € X}) exists for an arbitrary subset X of A.

By an operator on A we mean a mapping C : P(4A) — P(A) of all
subsets P(A) of A into itself. A subset X C A is called closed with respect
to C (or C-closed) if C(X) = X. The set of all C-closed sets will be denoted
by L(C).

The set P(A) can be quasiordered in a natural way as follows:

Lemma 2. Let A be a set, M € P(A). Let us define the relation < on
P(A) for XY € P(A) by

XY iff XnMCYnNM.
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Then < is a quasiorder relation on P(A) and, moreover, P(A) is a g-lattice
with respect to the operations
XAY =XNYNM,
XVY=(XUY)nM
with SEP(A) = P(M).
Proof. Easy. [ |

The g-lattice from Lemma 2 will be called a set-M -g-lattice on A. It is easy
to see that set-A-g-lattice on A is just a set-lattice on A. (i.e. lettice of all
subsets of A)

We are ready to formulate our natural problem:

Given a complete g-lattice A, does there exist an operator C on A and
M C A such that the set £(C) of all C-closed sets on A is closed under
the operations A and V (as introduced in Lemma 2) and the set-M-g-lattice
L(C) is isomorphic to A?

In the following we give a positive answer to the above problem.
Remember that an operator C': P(A) — P(A) is called a closure operator
on A if for each X, Y € P(A) :

(Cl) X CC(X),
(C2) XCY = CX)CC(),
(C3) C(C(X))=C(X).
For a singleton a € A, we shall write C'(a) instead of C'({a}).
We start from the following definition:
Definition 1. Let C be a closure operator on A, M C A and M’ = A~ M.
Let us define a Cps-closure of X C A as follows:
Cy(X) =
CcX)ynMyu{m'y, it XnM ={m'} and C(X)NM=C(m')NM;

C(X)NM, otherwise.
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The C)p-closure does not have the properties (C1)-(C3) of a closure
operator. Its properties are listed in the following proposition.

Proposition 1. Cy-closure operator on A has the following properties for
X, YCA:

(1) XCM= Cy(X)CM,

)
(2) XNMC Cyu(X),

3) XCY= Cy(X)NnMCCy(Y)nM,
@) Cu(Cu(XNM)) = Cp(X 0 M).

Proof. (1) is easily seen from the definition of C'.

Since C'is a closure operator on A, (2) follows from the fact that X C
C(X) for each X C A.
Further we have Cpy(X) N M = C(X) N M for each X C A, hence
X CY yields C(X) C C(Y) and
Cu(X)NM=C(X)NMCCY)nM=Cny(Y)NM;

this proves the property (3).
Let us verify the property (4). Since X N M C M, we have by (1)
Cy(X N M) C M, and, moreover

Cu(Cu(XNnM)=Cyu(C(XNM)NM)=CCXNM)NM)NM =
=C(CXNM)NM=CXNM)NM=Cy(XNM)
by (C3) and (C2) of the operator C. ]
Proposition 1 leads us to the following definition:
Definition 2. Let M C A. An operator C* on A with properties
(MC1) XC M= C*"X)CM,
(MC2) XNMC C*X),
(MC3) XCY = C*(X)NnM CC*(Y)NnM,
(MC4) C*(C*(XNM))=C*(XnNM),
for each X,Y C A, is called an M-operator on A.
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Let us note that for an M-operator C* on A, the set L(C*) of all C*-closed
sets is non-empty. Indeed, by (MC4) we have {C*(X) : X C M} C L(C*),
and, by (MC1) and (MC2) M € L(C¥).

Next we will show that £(C*) can be endowed by a set-M-q-lattice
structure:

Proposition 2. Let C* be an M-operator on A, let X, € L(C*),a € A.
Then L(C*) is a complete g-lattice w.r.t. operations

AXo =()Xan M,
\/X :/\{YEE(C*): Xo <Y foreach o€ A},

where < is the quasiorder on A induced by N. Moreover, SKL(C*) ={X €
L(C*): X C M}.

Proof. Firstly we have to prove that the operations are well-defined, i.e.
that (| Xq N M € L(C*) whenever X, € L(C*) for each a € A. By (MC2)
we have (1 XoNM C C*(( XaNM). Conversely, ()Xo NM C X, for each
a € A, hence using (MC1) and (MC3) one gets

o (ﬂXaﬂM) — O (ﬂXamM) NMC C*(Xa)NM =X, N M
for each o € A. But this yields also

o (ﬂXamM) C(XanM

verifying the closedness of the set [ X, N M.
The operation A on £(C*) is then well defined and induces a quasiorder
relation < on £(C*) as follows:

XY iff XnMCYnNnM.

We show that (| X, N M is the greatest lower bound of X,'s w.r.t. induced
quasiorder. Indeed, let X € L£(C*) and suppose that X < X, for each
a € A. Then X N M C X, N M, hence also X N M C (X, N M verifying
X <NXoaNM.

It is immediately seen that \/ X, is the least upper bound of X,'s w.r.t.
< and, altogether, £(C*) is a complete g-lattice. [
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Now we are ready to show that complete g-lattices can be viewed as g-lattices
of closed sets w.r.t. appropriate M-operators.

Theorem. Let L = (L,V,A) be a complete g-lattice and let < be the induced
quasiorder on L. Then the operator C on L defined by

C(X)={yeSkL: y<\/X}UX

is a closure operator and for M = SkL we have L(Cyr) = L.

Proof. According to Proposition 1 and Definition 2, the operator Cjy is
an M-operator on L, and by Proposition 2, £(Cjy) is a complete g-lattice.
It is easily seen that C' is a closure operator on L. Hence it is enough to
prove that the g-lattices £(Cjs) and £ are isomorphic. Denote for a € L by
Lgi(a) the set of all skeletal elements lying below a.

Let us describe all Cjy-closed sets:

e by (MC4) all the sets Cps(X) for X C M are Cjs-closed, i.e. the sets
Cu(X)={y € SkL: y <V X} = Lgi(V X);

e let us consider the sets X C L with | X N M'| > 2.
Then Cy(X) =C(X)NM C M, so Cp(X) # X and X is not Cpr-closed:

e suppose that X C L with XNM' = {m’} and M NC(m') # M NC(X).
Then again

Cru(X)=C(X)NM C M and since m' ¢ M, X is not Cy- closed;

e finally, let XN M = {m'} and M NC(m') = MNC(X) for X C L.
This gives

Cu(X)={yeSkL: y<VvX}U{m'} ={yeSkL: y<m'vm'}u{m'},
and the sets
{ye SkL: y<m'vm'}u{m'} for m' ¢ SkL

are C)s-closed.
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Let us verify that the mapping ¢ : L — L(C)y) defined by
¢(x) = Lgg(z) for z € SkL,

¢(y) = Lsr(y Vy)U{y} for y & SEL

is the desired isomorphism.
Injectivity of ¢ is easily seen from its definition, surjectivity then yields
from the fact that the elements of £(C)y) are of the form Lgy(z) for z € SkL

or Lgr(yVy)U{y} fory & SKL.
Now let z,y € L. To verify that ¢ is a homomorphism, we distinguish
three cases:

Case 1. Assume x,y € SkL. Then z Ay € SEL and
¢(x) N d(y) = Lsk(x) A Lsi(y) = (Lsk(x) N Lsk(y)) N SEL =
= Lsk(2) N Lsk(y) = Lsk(z Ay) = d(z Ay)
By the definition of join in £(C);) we have
3(x)Voly) = \{Y € L(Cu) : d(z) SV, 0(y) <YV} =
= MY € £(Cy) : Lsp(z) €Y N SkL, Lgp(y) €Y N SkLY N SkL.
Evidently, x Vy € SkL, Lgi(xVy) € L(Cyr) and

Lsi(z) U Lsk(y) € Lsp(z Vy) = Lsg(xz Vy) N SEL = ¢(z V y).

To prove the converse inclusion, we have to show that

d(xVy)=Lsp(zVy) CYNSKL

for each Y € L£(C)y) with Lgi(x) U Lgi(y) CY NSKL.
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If Y = Lg(z) for some z € SEL, we get

Lsi(x) U Lsk(y) € Lsi(2) N SEL = Lsi(2),

ie. x <z, y <z and since SkL is the lattice, x V y < z. But then

Lgi(xVy) C Lsp(2) =Y =Y N SKL.

In the remaining case, we have Y = Lgi(u V u) U {u} for some u ¢ SkL.
This yields x < uVwu, y <uVwuand hence x Vy < u V u. Finally, we get

Lgk(:L’ V y) - LSk(u V u) =Y NSkL,
finishing the Case 1.
Case 2. Assume that x,y &€ SkL. Then

o(z) A p(y) =

= (Lsr(z V) U{z}) N (Lskly Vy) U{y}) N SkL =

= Lsk(z V) N Lsk(y Vy) = Ler((z vV x) Ay Vy)).
By Lemma 1, (zV 2) A (y Vy) = z Ay, hence

Lsi((x V) ANy Vy)) = Lsk(r Ay) = d(z A y),

veryfying that, in the Case 2, ¢ is A-preserving.
The join of ¢(x) and ¢(y) is of the form

é(x) V é(y) = ANY € L(Cwr) ¢ (Lsi(z V) U ({z})) N SEL C Y N SKL,
(Lsx(y Vy) U ({y}) N SkL C Y N SKL) N SkL =

=Y € L(Cun) : (Lsp(zV x) U Lsp(y Vy) CY NSEL} N SKL.
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Since Lgk(x V x) U Lgi(y Vy) C Lsi(z Vy), we deduce

¢(x) V oly) C oz Vy).

Similarly as in the Case 1, we have to prove

Lgi(xVy) CYNSKL

for each Y € L(Cy) with Lgg(zV z)U Lsi(y Vy) CY NSEL.

We distinguish again two cases with respect to Y.

If Y = Lgi(z) for some z € SkL, then x Vz < z, y Vy < z and hence
zVy<z, ie.

Lsi(xVy) C Lgip(z) =Y =Y NSKL.

IfY = Lgg(uVu)U{u} for some u ¢ SkL, we obtain zVz < uVu, yVy < uVu
and xVy <uVu,ie.

Lsk(xVy) C Lsp(uVu) =Y NSkL,
finishing the Case 2.
Case 3. Suppose that x € SEL, y & SkL. Then
¢(x) A p(y) = (Lsr(z) N (Lsk(y Vy) U{y})) N SkL =

= Lgi(x) N Lgi(y Vy) = Lsx(z A (y Vy))
= Lsp(z Ny) = ¢(z Ny).

To prove that ¢ is V-preserving, we start with

o(z) VvV é(y) = NY € L(Cm) : Lsk(z) €Y NSKL,
(Lse(y Vv y) U ({y}) N SEL C Y N SkLY N SkL —

= NY € L(Cunr) : Lsi(z) U Lg(y Vy) C YN SkL.



ON M-OPERATORS OF ¢-LATTICES 129

Analogously as in previous cases, we have

Lsk(x) U Lsk(y Vy) € Lsp(z V y) = ¢(z Vy).

To finish the proof it is enough to show

Lsi(xVy) CYNSKL

whenever Y € L(C)s) with Lgg(z) U Lgk(y Vy) CY NSKL.
Considering Y = Lgy(z) for some z € SkL, we obtain x < z,y Vy < z
and xV(yVy) =zVy<z, ie.
Lsk(xVy) C Lsi(z) =Y N SKL.

Finally, the case Y = Lgi(u V u) U {u} for some u ¢ SkL yields x <
uVu, yVy<uVu,ie xVy<uVuand

Lgi(xVy) C Lsp(uVu)=Y NSkL,
finishing the Case 3 and the proof of Theorem. [
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