In this paper it is proved that the lattice of additive hereditary properties of finite graphs is completely distributive and that it does not satisfy the Jordan-Dedekind condition for infinite chains.
Matemathical Institute, Slovak Academy of Sciences, Grešákova 6, 040-01 Košice, Slovakia
Bibliografia
[1] G. Birkhoff, Lattice Theory, (the 3-rd ed.), Amer. Math. Soc., Providence, RI, 1967.
[2] M. Borowiecki, I. Broere, M. Frick, P. Mihók, and G. Semanisin, A survey of hereditary properties of graphs, Discussiones Math.- Graph Theory 17 (1997), 5-50.
[3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, 'Advances in Graph Theory', Vishwa International Publications, Gulbarga 1991, 41-68.
[4] G. Grätzer and E. T. Schmidt, On the Jordan-Dedekind chain condition, Acta Sci. Math. 18 (1957), 52-56.
[5] J. Jakubík, On the Jordan-Dedekind chain condition, Acta Sci. Math. 16 (1955), 266-269.
[6] J. Jakubík, A remark on the Jordan-Dedekind chain condition in Boolean algebras (Slovak), Casopis Pest. Mat. 82 (1957), 44-46.
[7] J. Jakubík, On chains in Boolean algebras (Slovak), Mat. Fyz. Casopis SAV 8 (1958), 193-202.
[8] J. Jakubí k, Die Jordan-Dedekindsche Bedingung im direkten Produkt von geordneten Mengen, Acta Sci. Math. 24 (1963), 20-23.
[9] P. Mihók, On graphs critical with respect to generalized independence numbers, Colloq. Math. Soc. J. Bolyai 52 (1987), 417-421.