CONGRUENCE CLASSES IN BROUWERIAN SEMILATTICES ${ }^{1}$

Ivan Chajda
Palacky University of Olomouc
Department of Algebra and Geometry
Tomkova 40, CZ-77900 Olomouc
e-mail: chajda@risc.upol.cz
AND
Helmut Länger
Technische Universität Wien
Institut für Algebra und Computermathematik
Wiedner Hauptstraße 8-10, A-1040 Wien
e-mail: h.laenger@tuwien.ac.at

Abstract

Brouwerian semilattices are meet-semilattices with 1 in which every element a has a relative pseudocomplement with respect to every element b, i. e. a greatest element c with $a \wedge c \leq b$. Properties of classes of reflexive and compatible binary relations, especially of congruences of such algebras are described and an abstract characterization of congruence classes via ideals is obtained.

Keywords: congruence class, Brouwerian semilattice, ideal.
2000 Mathematics Subject Classification: Primary 08A30; Secondary 06A12.

[^0]
1. Introduction

Definition 1.1. Let (S, \wedge) be a meet-semilattice and $a, b, c \in S$ and let \leq denote its induced partial ordering relation. The element c is called a relative pseudocomplement of a with respect to b if c is the greatest element x of S satisfying $a \wedge x \leq b$. An algebra ($S, \wedge, *, 1$) of type ($2,2,0$) is called a Brouwerian semilattice if (S, \wedge) is a meet-semilattice with greatest element 1 and, for every $a, b \in S, a * b$ is the relative pseudocomplement of a with respect to b.

Remark 1.1. Without loss of generality the greatest element 1 of (S, \leq) can be included in the similarity type of a Brouwerian semilattice since it is an algebraic (i. e. an equationally definable) constant, namely $a * a=1$ for each $a \in S$ (see Lemma 1.1).

Notational convention. Throughout the paper let $\mathcal{S}=(S, \wedge, *, 1)$ denote an arbitrary but fixed Brouwerian semilattice.

Remark 1.2. It is well-known that the class of all Brouwerian semilattices forms a variety.

Lemma 1.1. For $a, b, c \in S$ (i)-(xii) hold:
(i) $a * 1=1$;
(ii) $1 * a=a$;
(iii) $a * a=1$;
(iv) $(a * a) * a=a$;
(v) $a \leq b * a$;
(vi) $a \wedge(a * b)=a \wedge b ;$
(vii) $a \leq b$ if and only if $a * b=1$;
(viii) if $b \leq c$, then $c * a \leq b * a$;
(ix) $b \leq(b * a) * a$;
(x) $((b * a) * a) * a=b * a$;
(xi) $((b \wedge c) * a) * a=((b * a) * a) \wedge((c * a) * a)$;
(xii) $\quad(b \wedge c) * a=(b \wedge((c * a) * a)) * a=(((b * a) * a) \wedge c) * a=$ $=(((b * a) * a) \wedge((c * a) * a)) * a$.

Remark 1.3. Though the listed properties of Brouwerian semilattices are mostly known (cf. e. g. [3]), for the convenience of the reader we provide a proof.

Proof of Lemma 1.1. (i)-(iii) are trivial.
(iv) follows from (iii) and (ii).
(v) follows from $b \wedge a \leq a$.
(vi): Since $a \wedge(a * b) \leq b$, it holds $a \wedge(a * b) \leq a \wedge b$. On the other hand (v) implies $a \wedge b \leq a \wedge(a * b)$.
(vii): If $a \leq b$, then $a * b=1$. If, conversely, $a * b=1$, then $a=a \wedge 1=a \wedge(a * b)=a \wedge b \leq b$ according to (vi).
(viii): $b \wedge(c * a) \leq c \wedge(c * a) \leq a$ and, hence, $c * a \leq b * a$.
(ix): $(b * a) \wedge b=b \wedge(b * a) \leq a$ and, hence, $b \leq(b * a) * a$.
(x): $((b * a) * a) * a \leq b * a$ according to (ix) and (viii). On the other hand $b * a \leq((b * a) * a) * a$ according to (ix).
(xi): From $b \wedge c \leq b, c$, it follows by applying (viii) twice $((b \wedge c) * a) * a \leq$ $(b * a) * a,(c * a) * a$ and, hence, $((b \wedge c) * a) * a \leq((b * a) * a) \wedge((c * a) * a)$. On the other hand the following are equivalent:

$$
\begin{aligned}
& b \wedge c \wedge((b \wedge c) * a) \leq a, \\
& c \wedge((b \wedge c) * a) \leq b * a, \\
& c \wedge((b \wedge c) * a) \leq((b * a) * a) * a, \\
& c \wedge((b \wedge c) * a) \wedge((b * a) * a) \leq a, \\
& ((b \wedge c) * a) \wedge((b * a) * a) \leq c * a, \\
& ((b \wedge c) * a) \wedge((b * a) * a) \leq((c * a) * a) * a, \\
& ((b \wedge c) * a) \wedge((b * a) * a) \wedge((c * a) * a) \leq a \text { and } \\
& ((b * a) * a) \wedge((c * a) * a) \leq((b \wedge c) * a) * a .
\end{aligned}
$$

(xii): According to (x) and (xi) one obtains

$$
\begin{aligned}
& (b \wedge c) * a=(((b \wedge c) * a) * a) * a=(((b * a) * a) \wedge((c * a) * a)) * a \\
& (b \wedge((c * a) * a)) * a= \\
& =(((b \wedge((c * a) * a)) * a) * a) * a= \\
& \\
& =(((b * a) * a) \wedge((((c * a) * a) * a) * a)) * a= \\
& \\
& =(((b * a) * a) \wedge((c * a) * a)) * a
\end{aligned}
$$

and

$$
\begin{aligned}
(((b * a) * a) \wedge c) * a & =(((((b * a) * a) \wedge c) * a) * a) * a= \\
& =(((((b * a) * a) * a) * a) \wedge((c * a) * a)) * a= \\
& =(((b * a) * a) \wedge((c * a) * a)) * a .
\end{aligned}
$$

Remark 1.4. In the following we often make use of Lemma 1.1 without explicitly mentioning it.

2. Reflexive and compatible binary relations in Brouwerian SEmilattices

Let R be a binary relation on $S, a \in R$ and n a positive integer. Then $[a] R:=\{x \in S \mid x R a\}, R^{n}:=R \circ R \circ \cdots \circ R$ with n factors and R is called compatible with respect to \mathcal{S} if it has the substitution property with respect to both operations \wedge as well as *.

In this section R, R_{1}, R_{2} denote some arbitrary but fixed reflexive binary relations on S which are compatible with respect to \mathcal{S}.

Theorem 2.1. If $a \in S$ is the least element of $[a] R_{1}$, then $[a]\left(R_{2} \circ R_{1}\right)^{n} \subseteq$ $[a]\left(R_{1} \circ R_{2}\right)^{n}$ and $[a]\left(R_{1} \circ\left(R_{2} \circ R_{1}\right)^{n}\right) \subseteq[a]\left(R_{2} \circ\left(R_{1} \circ R_{2}\right)^{n}\right)$ for every positive integer n.

Proof. Let n be a positive integer. If $b \in[a]\left(R_{2} \circ R_{1}\right)^{n}$, then there exist $a_{1}, \ldots, a_{2 n} \in S$ with $b R_{2} a_{1} R_{1} \ldots R_{1} a_{2 n}=a$ and hence

$$
b=b \wedge 1=b \wedge\left(a_{1} * a_{1}\right) R_{1} b \wedge\left(a_{1} * a\right) R_{2} a_{1} \wedge\left(a_{1} * a\right)=a_{1} \wedge a=a
$$

for $n=1$ and

$$
\begin{aligned}
b & =b \wedge 1=b \wedge\left(a_{1} * a_{1}\right) R_{1} b \wedge\left(a_{1} * a_{2}\right) R_{2} a_{1} \wedge\left(a_{1} * a_{3}\right)=a_{1} \wedge a_{3} R_{1} \ldots \\
& \ldots \quad R_{1} a_{2 n-2} \wedge a_{2 n} R_{2} a_{2 n-1} \wedge a=a
\end{aligned}
$$

for $n>1$, and therefore $b \in[a]\left(R_{1} \circ R_{2}\right)^{n}$. If $b \in[a]\left(R_{1} \circ\left(R_{2} \circ R_{1}\right)^{n}\right)$, then there exist $a_{1}, \ldots, a_{2 n+1} \in S$ with $b R_{1} a_{1} R_{2} \ldots R_{2} a_{2 n} R_{1} a_{2 n+1}=a$ and hence

$$
\begin{aligned}
b & =b \wedge 1=b \wedge\left(a_{1} * a_{1}\right) R_{2} b \wedge\left(a_{1} * a_{2}\right) R_{1} a_{1} \wedge\left(a_{1} * a_{3}\right)=a_{1} \wedge a_{3} R_{2} \ldots \\
& \ldots \quad R_{2} a_{2 n-2} \wedge a_{2 n} R_{1} a_{2 n-1} \wedge a R_{2} a_{2 n} \wedge a=a
\end{aligned}
$$

and therefore $b \in[a]\left(R_{2} \circ\left(R_{1} \circ R_{2}\right)^{n}\right)$.
Lemma 2.1. If $a \in S$ is the least element of $[a] R$, then $[a] R \subseteq[a] R^{-1}$.
Proof. If $b \in[a] R$, then one obtains

$$
b=b \wedge 1=b \wedge(a * a) \in[b \wedge(b * a)] R^{-1}=[b \wedge a] R^{-1}=[a] R^{-1} .
$$

Remark 2.1. From Lemma 2.1 it follows that if $a \in S$ is the least element of both $[a] R$ and $[a] R^{-1}$, then $[a] R=[a] R^{-1}$.

Lemma 2.2. If $a \in S$ is the least element of $[a] R$, then $[a] R^{n}=[a] R$ for every positive integer n.

Proof. We use induction on n. The case $n=1$ is trivial. Now assume $n \geq 1$ and $[a] R^{n}=[a] R$. The inclusion $[a] R \subseteq[a] R^{n+1}$ is trivial. If $b \in$ $[a] R^{n+1}$, then there exist $c_{1}, \ldots, c_{n+1} \in S$ with $b R c_{1} R \ldots R c_{n} R c_{n+1}=a$ and therefore

$$
b=b \wedge 1=b \wedge\left(c_{1} * c_{1}\right) R c_{1} \wedge\left(c_{1} * c_{2}\right)=c_{1} \wedge c_{2} R \ldots R c_{n} \wedge a=a
$$

whence $b \in[a] R^{n}$ which implies $[a] R^{n+1} \subseteq[a] R^{n}=[a] R$.
Definition 2.1. For every subset M of S^{2} let $\Theta(M)$ denote the least congruence on \mathcal{S} including $M . \Theta(M)$ is usually called the congruence generated by M.

Theorem 2.2. If $a \in S$ is the least element of both $[a] R$ and $[a] R^{-1}$, then $[a] R=[a] \Theta(R)$.

Proof. Let $b \in[a]\left(R \circ R^{-1}\right)$. Then there exists an element c of S with $b R c R^{-1} a$. Since a is the least element of $[a] R^{-1}$ it follows $c \geq a$. This implies $b \wedge a R c \wedge a=a$ and since a is the least element of $[a] R$, it follows $b \wedge a \geq a$. This shows $b \geq a$. Therefore, a is the least element of $[a]\left(R \circ R^{-1}\right)$ and it follows from Lemma 2.2 that $[a]\left(R \circ R^{-1}\right)^{n}=[a]\left(R \circ R^{-1}\right)$ for every positive integer n. Because of Remark 2.1 and Lemma 2.2, $[a] R=[a] R^{-1}$ and $[a](R \circ R)=[a] R$, and therefore, $[a]\left(R \circ R^{-1}\right)=[a](R \circ R)=[a] R$. Now

$$
[a] \Theta(R)=[a]\left(\bigcup_{n=1}^{\infty}\left(R \circ R^{-1}\right)^{n}\right)=\bigcup_{n=1}^{\infty}[a]\left(R \circ R^{-1}\right)^{n}=\bigcup_{n=1}^{\infty}[a] R=[a] R .
$$

3. Congruences and congruence classes in Brouwerian
 SEmilattices

Definition 3.1. An algebra \mathcal{A} is called an algebra with 1 if 1 is a distinguished fixed element of the base set of \mathcal{A}. Let \mathcal{A} be an algebra with 1. \mathcal{A} is called weakly regular if, for all $\Theta, \Phi \in \operatorname{Con} \mathcal{A},[1] \Theta=[1] \Phi$ implies $\Theta=\Phi . \mathcal{A}$ is called permutable at 1 if, for any $\Theta, \Phi \in \operatorname{Con} \mathcal{A}$, it holds $[1](\Theta \circ \Phi)=[1](\Phi \circ \Theta) . \mathcal{A}$ is called distributive at 1 if, for all $\Theta, \Phi, \Psi \in \operatorname{Con} \mathcal{A}$, it holds $[1]((\Theta \vee \Phi) \cap \Psi)=[1]((\Theta \cap \Psi) \vee(\Phi \cap \Psi))$. \mathcal{A} is called arithmetic at 1 if it is both permutable at 1 and distributive at 1 . A variety \mathcal{V} is called a variety with 1 if 1 is an equationally definable constant of \mathcal{V}. A variety with 1 is called weakly regular, respectively arithmetic at 1 , if each of its members has the corresponding property.

Proposition 3.1. A variety \mathcal{V} with 1 is weakly regular if and only if there exist a positive integer n and binary terms t_{1}, \ldots, t_{n} of \mathcal{V} such that the condition $t_{1}(x, y)=\cdots=t_{n}(x, y)=1$ is equivalent to $x=y$, and \mathcal{V} is arithmetic at 1 if and only if there exists a binary term t of \mathcal{V} satisfying $t(x, x)=t(1, x)=1$ and $t(x, 1)=x$.

Proof. The first assertion was proved in [2] and the second one in [1].
Theorem 3.1. The variety of Brouwerian semilattices is weakly regular and arithmetic at 1 .

Proof. This follows from Proposition 3.1 by taking $n:=2, t_{1}(x, y):=x * y$ and $t_{2}(x, y)=t(x, y):=y * x$.

Theorem 3.2. For $a, b, c, d \in S$ and $\Theta \in \operatorname{ConS}$, (i)-(ix) hold:
(i) If $b, c \in[a] \Theta$, then $b \wedge c \in[a] \Theta$.
(ii) If $b \geq a$, then $b \in[a] \Theta$ if and only if $(b * a) * a \in[a] \Theta$.
(iii) If $b, c \in[a] \Theta$, then $(b * c) * a \in[a] \Theta$.
(iv) If $b, c \in[a] \Theta$, then $((b * a) \wedge(c * a)) * a \in[a] \Theta$.
(v) If $b \Theta c$, then $(b * a) \wedge((c * a) * a) \in[a] \Theta$.
(vi) If $b \leq c$, then $b * a \Theta c * a$ if and only if $(b * a) \wedge((c * a) * a) \in[a] \Theta$.
(vii) If $b \leq c$ and $(b * a) \wedge((c * a) * a) \in[a] \Theta$, then

$$
((b \wedge d) * a) \wedge(((c \wedge d) * a) * a) \in[a] \Theta
$$

(viii) If $b \leq c$ and $(b * a) \wedge((c * a) * a) \in[a] \Theta$, then $((b * a) * a) \wedge(c * a) \in[a] \Theta$.
(ix) If $b, c \wedge(b * a) \in[a] \Theta$, then $c \in[a] \Theta$.

Proof. (i): $b \wedge c \in[a \wedge a] \Theta=[a] \Theta$.
(ii): If $b \in[a] \Theta$, then $(b * a) * a \in[(a * a) * a] \Theta=[a] \Theta$. If, conversely, $(b * a) * a \in[a] \Theta$, then $b=b \wedge 1=b \wedge(a * a) \in[b \wedge(((b * a) * a) * a)] \Theta=$ $[b \wedge(b * a)] \Theta=[b \wedge a] \Theta=[a] \Theta$.
(iii): $(b * c) * a \in[(a * a) * a] \Theta=[a] \Theta$.
(iv): $((b * a) \wedge(c * a)) * a \in[((a * a) \wedge(a * a)) * a] \Theta=[(a * a) * a] \Theta=[a] \Theta$.
(v): $(b * a) \wedge((c * a) * a) \in[(b * a) \wedge((b * a) * a)] \Theta=[(b * a) \wedge a] \Theta=[a] \Theta$.
(vi): If $b * a \Theta c * a$, then $(b * a) \wedge((c * a) * a) \in[(b * a) \wedge((b * a) * a)] \Theta=$ $[(b * a) \wedge a] \Theta=[a] \Theta$. Assume, conversely, $(b * a) \wedge((c * a) * a) \in[a] \Theta$. Then $[(c * a) * a] \Theta \wedge[b * a] \Theta=[a] \Theta$ and, hence, $[b * a] \Theta \leq[(c * a) * a] \Theta *[a] \Theta=$ $[((c * a) * a) * a] \Theta=[c * a] \Theta$. On the other hand, $b \leq c$ implies $c * a \leq b * a$ and, hence, $[c * a] \Theta \leq[b * a] \Theta$. Together it follows $[b * a] \Theta=[c * a] \Theta$ and hence $b * a \Theta c * a$.
(vii): According to (vi), $b * a \Theta c * a$ which implies $(((b * a) * a) \wedge d) *$ $a \Theta(((c * a) * a) \wedge d) * a$. On the other hand, $b \leq c$ implies $(b * a) * a \leq(c * a) * a$ and, hence, $((b * a) * a) \wedge d \leq((c * a) * a) \wedge d$. Applying (vi) once more, one obtains
$((b \wedge d) * a) \wedge(((c \wedge d) * a) * a)=((((b * a) * a) \wedge d) * a) \wedge(((((c * a) * a) \wedge d) * a) * a) \in[a] \Theta$.
(viii): According to (vi), $b * a \Theta c * a$, whence by (v):

$$
((b * a) * a) \wedge(c * a)=((b * a) * a) \wedge(((c * a) * a) * a) \in[a] \Theta .
$$

(ix): $c=c \wedge 1=c \wedge(a * a) \in[c \wedge(b * a)] \Theta=[a] \Theta$.

Remark 3.1. The assumption $b \geq a$ in (ii) cannot be omitted as can be seen from the following example:

If Θ denotes the equivalence relation having the classes $\{0, b\},\{a, d\}$ and $\{c, 1\}$, then $(b * a) * a=c * a=d \in[a] \Theta$ but $b \notin[a] \Theta$. (Note that $b \nsupseteq a$.)
Corollary 3.1. From (vi), it follows that for $a, b, c \in S$ with $b \leq c$ and, for $\Theta, \Phi \in \operatorname{ConS}$ with $[a] \Theta=[a] \Phi, b * a \Theta c * a$ is equivalent to $b * a \Phi c * a$.

Lemma 3.1. If $a, b \in S$ and $\Theta \in \operatorname{ConS}$, then $b \in[a] \Theta$ if and only if $a * b, b * a \in[1] \Theta$.
Proof. If $b \in[a] \Theta$, then $a * b, b * a \in[a * a] \Theta=[1] \Theta$. If, conversely, $a * b, b * a \in[1] \Theta$, then $b=b \wedge 1 \in[b \wedge(b * a)] \Theta=[b \wedge a] \Theta=[a \wedge b] \Theta=$ $[a \wedge(a * b)] \Theta=[a \wedge 1] \Theta=[a] \Theta$.

Definition 3.2. A subset I of S is called an ideal of \mathcal{S} if there exists a congruence Θ on \mathcal{S} with $[1] \Theta=I$. Since the intersection of ideals of \mathcal{S} is again an ideal of \mathcal{S}, there exists a smallest ideal of \mathcal{S} including a given subset M of S. This ideal is called the ideal of \mathcal{S} generated by M and it is denoted by $\mathrm{I}(M)$. For $a \in S$ and $M \subseteq S$ put $a * M:=\{a * x \mid x \in M\}$ and $M * a:=\{x * a \mid x \in M\}$.

Lemma 3.2. For $a, b \in S$ and $\Theta \in \operatorname{ConS}$ the following are equivalent:
(i) $b \in[a] \Theta$;
(ii) $a * b, b * a \in(a *([a] \Theta)) \cup(([a] \Theta) * a)$;
(iii) $a * b, b * a \in \mathrm{I}((a *([a] \Theta)) \cup(([a] \Theta) * a))$;
(iv) $a * b, b * a \in[1] \Theta$.

Proof. The implications (i) \Rightarrow (ii) \Rightarrow (iii) are trivial.
(iii) \Rightarrow (iv): $\mathrm{I}((a *([a] \Theta)) \cup(([a] \Theta) * a)) \subseteq[1] \Theta$ follows from Lemma 3.1.
(iv) \Rightarrow (i): follows from Lemma 3.1.

Corollary 3.2. If $a \in S, \Theta, \Phi \in \operatorname{ConS}$ and

$$
\mathrm{I}((a *([a] \Theta)) \cup(([a] \Theta) * a))=\mathrm{I}((a *([a] \Phi)) \cup(([a] \Phi) * a)),
$$

then $[a] \Theta=[a] \Phi$.
Theorem 3.3. A non-empty subset A of S is a class of some congruence on \mathcal{S} if and only if $a \in A, b \in S$ and $a * b, b * a \in \mathrm{I}((a * A) \cup(A * a))$ together imply $b \in A$.

Proof. Assume the condition of the theorem to hold. Let $c \in A$. Then there exists a congruence Ψ on \mathcal{S} with $[1] \Psi=\mathrm{I}((c * A) \cup(A * c))$. If $d \in A$, then $c * d, d * c \in \mathrm{I}((c * A) \cup(A * c))=[1] \Psi$ and, hence, $d \in[c] \Psi$ according to Lemma 3.1. If, conversely, $e \in[c] \Psi$, then $c * e, e * c \in[1] \Psi=\mathrm{I}((c * A) \cup(A * c))$, because of Lemma 3.1, and, hence $e \in A$ according to the condition of the theorem. This shows $A=[c] \Psi$ and therefore A is a class of some congruence on \mathcal{S}. The rest of the proof follows from Lemma 3.2.

References

[1] J. Duda, Arithmeticity at 0, Czechoslovak Math. J. 37 (1987), 197-206.
[2] K. Fichtner, Eine Bemerkung über Mannigfaltigkeiten universeller Algebren mit Idealen, Monatsb. Deutsch. Akad. Wiss. Berlin 12 (1970), 21-25.
[3] P. Köhler, Brouwerian semilattices: the lattice of total subalgebras, Banach Center Publ. 9 (1982), 47-56.
[4] W.C. Nemitz, Implicative semi-lattices, Trans. Amer. Math. Soc. 117 (1965), 128-142.

Received 14 August 2001
Revised 12 December 2001

[^0]: ${ }^{1}$ This paper is a result of the collaboration of the authors within the framework of the "Aktion Österreich - Tschechische Republik" (grant No. 30p4 "Dependence and algebraic properties of congruence classes").

