CONGRUENCE CLASSES IN BROUWERIAN SEMILATTICES¹

IVAN CHAJDA

Palacký University of Olomouc Department of Algebra and Geometry Tomkova 40, CZ-77900 Olomouc e-mail: chajda@risc.upol.cz

AND

HELMUT LÄNGER

Technische Universität Wien Institut für Algebra und Computermathematik Wiedner Hauptstraße 8–10, A–1040 Wien e-mail: h.laenger@tuwien.ac.at

Abstract

Brouwerian semilattices are meet-semilattices with 1 in which every element a has a relative pseudocomplement with respect to every element b, i. e. a greatest element c with $a \wedge c \leq b$. Properties of classes of reflexive and compatible binary relations, especially of congruences of such algebras are described and an abstract characterization of congruence classes via ideals is obtained.

Keywords: congruence class, Brouwerian semilattice, ideal.

2000 Mathematics Subject Classification: Primary 08A30; Secondary 06A12.

¹This paper is a result of the collaboration of the authors within the framework of the "Aktion Österreich – Tschechische Republik" (grant No. 30p4 "Dependence and algebraic properties of congruence classes").

1. Introduction

Definition 1.1. Let (S, \wedge) be a meet-semilattice and $a, b, c \in S$ and let \leq denote its induced partial ordering relation. The element c is called a relative pseudocomplement of a with respect to b if c is the greatest element c of c satisfying c and c and c and c and c are definition of c are definition of c and c are definition

Remark 1.1. Without loss of generality the greatest element 1 of (S, \leq) can be included in the similarity type of a Brouwerian semilattice since it is an algebraic (i. e. an equationally definable) constant, namely a * a = 1 for each $a \in S$ (see Lemma 1.1).

Notational convention. Throughout the paper let $S = (S, \wedge, *, 1)$ denote an arbitrary but fixed Brouwerian semilattice.

Remark 1.2. It is well-known that the class of all Brouwerian semilattices forms a variety.

Lemma 1.1. For $a, b, c \in S$ (i)–(xii) hold:

- (i) a * 1 = 1;
- (ii) 1 * a = a;
- (iii) a*a=1;
- (iv) (a * a) * a = a;
- (v) a < b * a;
- (vi) $a \wedge (a * b) = a \wedge b$;
- (vii) a < b if and only if a * b = 1;
- (viii) if $b \le c$, then $c * a \le b * a$;
- (ix) $b \le (b * a) * a$;
- (x) ((b*a)*a)*a = b*a;
- (xi) $((b \land c) * a) * a = ((b * a) * a) \land ((c * a) * a);$
- (xii) $(b \wedge c) * a = (b \wedge ((c * a) * a)) * a = (((b * a) * a) \wedge c) * a =$ = $(((b * a) * a) \wedge ((c * a) * a)) * a$.

Remark 1.3. Though the listed properties of Brouwerian semilattices are mostly known (cf. e. g. [3]), for the convenience of the reader we provide a proof.

Proof of Lemma 1.1. (i)–(iii) are trivial.

- (iv) follows from (iii) and (ii).
- (v) follows from $b \wedge a \leq a$.
- (vi): Since $a \wedge (a * b) \leq b$, it holds $a \wedge (a * b) \leq a \wedge b$. On the other hand (v) implies $a \wedge b \leq a \wedge (a * b)$.
- (vii): If $a \le b$, then a*b=1. If, conversely, a*b=1, then $a=a \land 1=a \land (a*b)=a \land b \le b$ according to (vi).
 - (viii): $b \wedge (c*a) \leq c \wedge (c*a) \leq a$ and, hence, $c*a \leq b*a$.
 - (ix): $(b*a) \wedge b = b \wedge (b*a) \leq a$ and, hence, $b \leq (b*a)*a$.
- (x): $((b*a)*a)*a \le b*a$ according to (ix) and (viii). On the other hand $b*a \le ((b*a)*a)*a$ according to (ix).
- (xi): From $b \wedge c \leq b$, c, it follows by applying (viii) twice $((b \wedge c) * a) * a \leq (b * a) * a$, (c * a) * a and, hence, $((b \wedge c) * a) * a \leq ((b * a) * a) \wedge ((c * a) * a)$. On the other hand the following are equivalent:

$$b \wedge c \wedge ((b \wedge c) * a) \leq a,$$

$$c \wedge ((b \wedge c) * a) \leq b * a,$$

$$c \wedge ((b \wedge c) * a) \leq ((b * a) * a) * a,$$

$$c \wedge ((b \wedge c) * a) \wedge ((b * a) * a) \leq a,$$

$$((b \wedge c) * a) \wedge ((b * a) * a) \leq c * a,$$

$$((b \wedge c) * a) \wedge ((b * a) * a) \leq ((c * a) * a) * a,$$

$$((b \wedge c) * a) \wedge ((b * a) * a) \wedge ((c * a) * a) \leq a \text{ and}$$

$$((b \times a) * a) \wedge ((c * a) * a) \wedge ((b \wedge c) * a) * a.$$

(xii): According to (x) and (xi) one obtains

$$(b \land c) * a = (((b \land c) * a) * a) * a = (((b * a) * a) \land ((c * a) * a)) * a,$$

$$(b \wedge ((c*a)*a))*a = (((b \wedge ((c*a)*a))*a)*a)*a =$$

$$= (((b*a)*a) \wedge ((((c*a)*a)*a)*a))*a =$$

$$= (((b*a)*a) \wedge ((c*a)*a))*a$$

and

$$(((b*a)*a) \land c) * a = (((((b*a)*a) \land c) * a) * a) * a =$$

$$= (((((b*a)*a)*a) \land ((c*a)*a)) * a =$$

$$= (((b*a)*a) \land ((c*a)*a)) * a.$$

Remark 1.4. In the following we often make use of Lemma 1.1 without explicitly mentioning it.

2. Reflexive and compatible binary relations in Brouwerian semilattices

Let R be a binary relation on S, $a \in R$ and n a positive integer. Then $[a]R := \{x \in S \mid x R a\}, R^n := R \circ R \circ \cdots \circ R \text{ with } n \text{ factors and } R \text{ is } called compatible with respect to <math>S$ if it has the substitution property with respect to both operations \wedge as well as *.

In this section R, R_1 , R_2 denote some arbitrary but fixed reflexive binary relations on S which are compatible with respect to S.

Theorem 2.1. If $a \in S$ is the least element of $[a]R_1$, then $[a](R_2 \circ R_1)^n \subseteq [a](R_1 \circ R_2)^n$ and $[a](R_1 \circ (R_2 \circ R_1)^n) \subseteq [a](R_2 \circ (R_1 \circ R_2)^n)$ for every positive integer n.

Proof. Let n be a positive integer. If $b \in [a](R_2 \circ R_1)^n$, then there exist $a_1, \ldots, a_{2n} \in S$ with $b R_2 a_1 R_1 \ldots R_1 a_{2n} = a$ and hence

$$b = b \wedge 1 = b \wedge (a_1 * a_1) R_1 b \wedge (a_1 * a) R_2 a_1 \wedge (a_1 * a) = a_1 \wedge a = a$$

for n = 1 and

$$b = b \wedge 1 = b \wedge (a_1 * a_1) R_1 b \wedge (a_1 * a_2) R_2 a_1 \wedge (a_1 * a_3) = a_1 \wedge a_3 R_1 \dots$$
$$\dots R_1 a_{2n-2} \wedge a_{2n} R_2 a_{2n-1} \wedge a = a$$

for n > 1, and therefore $b \in [a](R_1 \circ R_2)^n$. If $b \in [a](R_1 \circ (R_2 \circ R_1)^n)$, then there exist $a_1, \ldots, a_{2n+1} \in S$ with $b R_1 a_1 R_2 \ldots R_2 a_{2n} R_1 a_{2n+1} = a$ and hence

$$b = b \wedge 1 = b \wedge (a_1 * a_1) R_2 b \wedge (a_1 * a_2) R_1 a_1 \wedge (a_1 * a_3) = a_1 \wedge a_3 R_2 \dots$$

...
$$R_2 a_{2n-2} \wedge a_{2n} R_1 a_{2n-1} \wedge a R_2 a_{2n} \wedge a = a$$
,

and therefore $b \in [a](R_2 \circ (R_1 \circ R_2)^n)$.

Lemma 2.1. If $a \in S$ is the least element of [a]R, then $[a]R \subseteq [a]R^{-1}$.

Proof. If $b \in [a]R$, then one obtains

$$b = b \wedge 1 = b \wedge (a*a) \in [b \wedge (b*a)]R^{-1} = [b \wedge a]R^{-1} = [a]R^{-1}.$$

Remark 2.1. From Lemma 2.1 it follows that if $a \in S$ is the least element of both [a]R and $[a]R^{-1}$, then $[a]R = [a]R^{-1}$.

Lemma 2.2. If $a \in S$ is the least element of [a]R, then $[a]R^n = [a]R$ for every positive integer n.

Proof. We use induction on n. The case n=1 is trivial. Now assume $n \geq 1$ and $[a]R^n = [a]R$. The inclusion $[a]R \subseteq [a]R^{n+1}$ is trivial. If $b \in [a]R^{n+1}$, then there exist $c_1, \ldots, c_{n+1} \in S$ with $b R c_1 R \ldots R c_n R c_{n+1} = a$ and therefore

$$b = b \wedge 1 = b \wedge (c_1 * c_1) R c_1 \wedge (c_1 * c_2) = c_1 \wedge c_2 R \dots R c_n \wedge a = a$$

whence $b \in [a]R^n$ which implies $[a]R^{n+1} \subseteq [a]R^n = [a]R$.

Definition 2.1. For every subset M of S^2 let $\Theta(M)$ denote the least congruence on S including M. $\Theta(M)$ is usually called the *congruence generated* by M.

Theorem 2.2. If $a \in S$ is the least element of both [a]R and $[a]R^{-1}$, then $[a]R = [a]\Theta(R)$.

Proof. Let $b \in [a](R \circ R^{-1})$. Then there exists an element c of S with $bRcR^{-1}a$. Since a is the least element of $[a]R^{-1}$ it follows $c \geq a$. This implies $b \wedge aRc \wedge a = a$ and since a is the least element of [a]R, it follows $b \wedge a \geq a$. This shows $b \geq a$. Therefore, a is the least element of $[a](R \circ R^{-1})$ and it follows from Lemma 2.2 that $[a](R \circ R^{-1})^n = [a](R \circ R^{-1})$ for every positive integer n. Because of Remark 2.1 and Lemma 2.2, $[a]R = [a]R^{-1}$ and $[a](R \circ R) = [a]R$, and therefore, $[a](R \circ R^{-1}) = [a](R \circ R) = [a]R$. Now

$$[a]\Theta(R) = [a] \left(\bigcup_{n=1}^{\infty} (R \circ R^{-1})^n \right) = \bigcup_{n=1}^{\infty} [a](R \circ R^{-1})^n = \bigcup_{n=1}^{\infty} [a]R = [a]R.$$

3. Congruences and congruence classes in Brouwerian semilattices

Definition 3.1. An algebra \mathcal{A} is called an algebra with 1 if 1 is a distinguished fixed element of the base set of \mathcal{A} . Let \mathcal{A} be an algebra with 1. \mathcal{A} is called weakly regular if, for all $\Theta, \Phi \in \text{Con}\mathcal{A}$, $[1]\Theta = [1]\Phi$ implies $\Theta = \Phi$. \mathcal{A} is called permutable at 1 if, for any $\Theta, \Phi \in \text{Con}\mathcal{A}$, it holds $[1](\Theta \circ \Phi) = [1](\Phi \circ \Theta)$. \mathcal{A} is called distributive at 1 if, for all $\Theta, \Phi, \Psi \in \text{Con}\mathcal{A}$, it holds $[1]((\Theta \vee \Phi) \cap \Psi) = [1]((\Theta \cap \Psi) \vee (\Phi \cap \Psi))$. \mathcal{A} is called arithmetic at 1 if it is both permutable at 1 and distributive at 1. A variety \mathcal{V} is called a variety with 1 if 1 is an equationally definable constant of \mathcal{V} . A variety with 1 is called weakly regular, respectively arithmetic at 1, if each of its members has the corresponding property.

Proposition 3.1. A variety V with 1 is weakly regular if and only if there exist a positive integer n and binary terms t_1, \ldots, t_n of V such that the condition $t_1(x,y) = \cdots = t_n(x,y) = 1$ is equivalent to x = y, and V is arithmetic at 1 if and only if there exists a binary term t of V satisfying t(x,x) = t(1,x) = 1 and t(x,1) = x.

Proof. The first assertion was proved in [2] and the second one in [1].

Theorem 3.1. The variety of Brouwerian semilattices is weakly regular and arithmetic at 1.

Proof. This follows from Proposition 3.1 by taking n := 2, $t_1(x, y) := x * y$ and $t_2(x, y) = t(x, y) := y * x$.

Theorem 3.2. For $a, b, c, d \in S$ and $\Theta \in \text{Con}\mathcal{S}$, (i)–(ix) hold:

- (i) If $b, c \in [a]\Theta$, then $b \wedge c \in [a]\Theta$.
- (ii) If $b \ge a$, then $b \in [a]\Theta$ if and only if $(b * a) * a \in [a]\Theta$.
- (iii) If $b, c \in [a]\Theta$, then $(b * c) * a \in [a]\Theta$.
- (iv) If $b, c \in [a]\Theta$, then $((b*a) \land (c*a)) * a \in [a]\Theta$.
- (v) If $b \Theta c$, then $(b * a) \wedge ((c * a) * a) \in [a] \Theta$.
- (vi) If $b \le c$, then $b * a \Theta c * a$ if and only if $(b * a) \wedge ((c * a) * a) \in [a]\Theta$.
- (vii) If $b \le c$ and $(b*a) \land ((c*a)*a) \in [a]\Theta$, then $((b \land d)*a) \land (((c \land d)*a)*a) \in [a]\Theta$.
- (viii) If $b \le c$ and $(b*a) \land ((c*a)*a) \in [a]\Theta$, then $((b*a)*a) \land (c*a) \in [a]\Theta$.
- (ix) If $b, c \land (b * a) \in [a]\Theta$, then $c \in [a]\Theta$.

Proof. (i): $b \wedge c \in [a \wedge a]\Theta = [a]\Theta$.

- (ii): If $b \in [a]\Theta$, then $(b*a)*a \in [(a*a)*a]\Theta = [a]\Theta$. If, conversely, $(b*a)*a \in [a]\Theta$, then $b=b \wedge 1=b \wedge (a*a) \in [b \wedge (((b*a)*a)*a))\Theta = [b \wedge (b*a)]\Theta = [b \wedge a]\Theta = [a]\Theta$.
 - (iii): $(b*c)*a \in [(a*a)*a]\Theta = [a]\Theta$.
 - (iv): $((b*a) \land (c*a)) * a \in [((a*a) \land (a*a)) * a]\Theta = [(a*a) * a]\Theta = [a]\Theta$.
 - (v): $(b*a) \land ((c*a)*a) \in [(b*a) \land ((b*a)*a)]\Theta = [(b*a) \land a]\Theta = [a]\Theta$.
- (vi): If $b*a \Theta c*a$, then $(b*a) \wedge ((c*a)*a) \in [(b*a) \wedge ((b*a)*a)]\Theta = [(b*a) \wedge a]\Theta = [a]\Theta$. Assume, conversely, $(b*a) \wedge ((c*a)*a) \in [a]\Theta$. Then $[(c*a)*a]\Theta \wedge [b*a]\Theta = [a]\Theta$ and, hence, $[b*a]\Theta \leq [(c*a)*a]\Theta * [a]\Theta = [((c*a)*a)*a]\Theta = [c*a]\Theta$. On the other hand, $b \leq c$ implies $c*a \leq b*a$ and, hence, $[c*a]\Theta \leq [b*a]\Theta$. Together it follows $[b*a]\Theta = [c*a]\Theta$ and hence $b*a\Theta c*a$.
- (vii): According to (vi), $b*a \Theta c*a$ which implies $(((b*a)*a) \wedge d)*a \Theta (((c*a)*a) \wedge d)*a$. On the other hand, $b \leq c$ implies $(b*a)*a \leq (c*a)*a$ and, hence, $((b*a)*a) \wedge d \leq ((c*a)*a) \wedge d$. Applying (vi) once more, one obtains

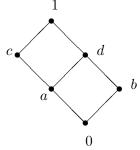
$$((b \wedge d) * a) \wedge (((c \wedge d) * a) * a) = ((((b * a) * a) \wedge d) * a) \wedge ((((c * a) * a) \wedge d) * a) * a) \in [a] \Theta.$$

(viii): According to (vi), $b * a \Theta c * a$, whence by (v):

$$((b*a)*a)\wedge(c*a)=((b*a)*a)\wedge(((c*a)*a)*a)\in[a]\Theta.$$

(ix):
$$c = c \land 1 = c \land (a * a) \in [c \land (b * a)]\Theta = [a]\Theta$$
.

Remark 3.1. The assumption $b \ge a$ in (ii) cannot be omitted as can be seen from the following example:



If Θ denotes the equivalence relation having the classes $\{0,b\}$, $\{a,d\}$ and $\{c,1\}$, then $(b*a)*a=c*a=d\in [a]\Theta$ but $b\notin [a]\Theta$. (Note that $b\not\geq a$.)

Corollary 3.1. From (vi), it follows that for $a, b, c \in S$ with $b \le c$ and, for $\Theta, \Phi \in \text{Con}\mathcal{S}$ with $[a]\Theta = [a]\Phi, b*a\Thetac*a$ is equivalent to $b*a\Phic*a$.

Lemma 3.1. If $a, b \in S$ and $\Theta \in \text{Con}\mathcal{S}$, then $b \in [a]\Theta$ if and only if $a * b, b * a \in [1]\Theta$.

Proof. If $b \in [a]\Theta$, then $a*b,b*a \in [a*a]\Theta = [1]\Theta$. If, conversely, $a*b,b*a \in [1]\Theta$, then $b=b \wedge 1 \in [b \wedge (b*a)]\Theta = [b \wedge a]\Theta = [a \wedge b]\Theta = [a \wedge (a*b)]\Theta = [a \wedge 1]\Theta = [a]\Theta$.

Definition 3.2. A subset I of S is called an *ideal* of S if there exists a congruence Θ on S with $[1]\Theta = I$. Since the intersection of ideals of S is again an ideal of S, there exists a smallest ideal of S including a given subset M of S. This ideal is called the *ideal of* S *generated by* M and it is denoted by I(M). For $a \in S$ and $M \subseteq S$ put $a * M := \{a * x \mid x \in M\}$ and $M * a := \{x * a \mid x \in M\}$.

Lemma 3.2. For $a, b \in S$ and $\Theta \in \text{Con}S$ the following are equivalent:

- (i) $b \in [a]\Theta$;
- (ii) $a * b, b * a \in (a * ([a]\Theta)) \cup (([a]\Theta) * a);$
- (iii) a*b, $b*a \in I((a*([a]\Theta)) \cup (([a]\Theta)*a))$;
- (iv) a*b, $b*a \in [1]\Theta$.

Proof. The implications (i) \Rightarrow (ii) \Rightarrow (iii) are trivial.

- (iii) \Rightarrow (iv): $I((a*([a]\Theta)) \cup (([a]\Theta)*a)) \subseteq [1]\Theta$ follows from Lemma 3.1.
- (iv) \Rightarrow (i): follows from Lemma 3.1.

Corollary 3.2. If $a \in S$, Θ , $\Phi \in \text{Con} S$ and

$$I((a * ([a]\Theta)) \cup (([a]\Theta) * a)) = I((a * ([a]\Phi)) \cup (([a]\Phi) * a)),$$

then $[a]\Theta = [a]\Phi$.

Theorem 3.3. A non-empty subset A of S is a class of some congruence on S if and only if $a \in A$, $b \in S$ and $a * b, b * a \in I((a * A) \cup (A * a))$ together imply $b \in A$.

Proof. Assume the condition of the theorem to hold. Let $c \in A$. Then there exists a congruence Ψ on S with $[1]\Psi = \mathrm{I}((c*A) \cup (A*c))$. If $d \in A$, then $c*d, d*c \in \mathrm{I}((c*A) \cup (A*c)) = [1]\Psi$ and, hence, $d \in [c]\Psi$ according to Lemma 3.1. If, conversely, $e \in [c]\Psi$, then $c*e, e*c \in [1]\Psi = \mathrm{I}((c*A) \cup (A*c))$, because of Lemma 3.1, and, hence $e \in A$ according to the condition of the theorem. This shows $A = [c]\Psi$ and therefore A is a class of some congruence on S. The rest of the proof follows from Lemma 3.2.

References

- [1] J. Duda, Arithmeticity at 0, Czechoslovak Math. J. 37 (1987), 197–206.
- [2] K. Fichtner, Eine Bemerkung über Mannigfaltigkeiten universeller Algebren mit Idealen, Monatsb. Deutsch. Akad. Wiss. Berlin 12 (1970), 21–25.
- [3] P. Köhler, Brouwerian semilattices: the lattice of total subalgebras, Banach Center Publ. 9 (1982), 47–56.
- [4] W.C. Nemitz, Implicative semi-lattices, Trans. Amer. Math. Soc. 117 (1965), 128–142.

Received 14 August 2001 Revised 12 December 2001