ArticleOriginal scientific text
Title
Minimal formations of universal algebras
Authors 1, 2
Affiliations
- Department of Mathematics, Xuzhou Normal University, Xuzhou 221009, P. R. China
- Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China (SAR)
Abstract
A class ℱ of universal algebras is called a formation if the following conditions are satisfied: 1) Any homomorphic image of A ∈ ℱ is in ℱ; 2) If α₁, α₂ are congruences on A and , i = 1,2, then A/(α₁∩α₂) ∈ ℱ. We prove that any formation generated by a simple algebra with permutable congruences is minimal, and hence any formation containing a simple algebra, with permutable congruences, contains a minimum subformation. This result gives a partial answer to an open problem of Shemetkov and Skiba on formations of finite universal algebras proposed in 1989.
Keywords
universal algebra, congruence, formation, minimal subformation
Bibliography
- L.A. Artamonov, V.N. Sali, L.A. Skorniakov, L.N. Shevrin and E.G. Shulgeifer, General Algebra (Russian), vol. II, Izd. 'Nauka', Moscow 1991.
- D.W. Barnes, Saturated formations of soluable Lie algebras in characteristic zero, Arch. Math., 30 (1978), 477-480.
- D.W. Barnes and H.M. Gastineau-Hills, On the theory of soluble Lie algebras, Math. Z., 106 (1969), 343-353.
- K. Doerk and T.O. Hawkes, Finite soluable groups, Walter de Gruyter & Co., Berlin 1992.
- A.I. Mal˘cev, Algebraic systems (Russian), Izd. 'Nauka', Moscow 1970.
- L.A. Shemetkov, Formations of finite groups (Russian), Izd. 'Nauka', Moscow 1978.
- L.A. Shemetkov, The product of any formation of algebraic systems (Russian), Algebra i Logika, 23 (1984), 721-729. (English transl.: Algebra and Logic 23 (1985), 489-490).
- L.A. Shemetkov and A.N. Skiba, Formations of algebraic systems (Russian), Izd. 'Nauka', Moscow 1989.