PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | 21 | 2 | 175-200
Tytuł artykułu

The semantical hyperunification problem

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A hypersubstitution of a fixed type τ maps n-ary operation symbols of the type to n-ary terms of the type. Such a mapping induces a unique mapping defined on the set of all terms of type t. The kernel of this induced mapping is called the kernel of the hypersubstitution, and it is a fully invariant congruence relation on the (absolutely free) term algebra $F_{τ}(X)$ of the considered type ([2]). If V is a variety of type τ, we consider the composition of the natural homomorphism with the mapping induced by a hypersubstitution. The kernel of this mapping is called the semantical kernel of the hypersubstitution with respect to the given variety. If the pair (s,t) of terms belongs to the semantical kernel of a hypersubstitution, then this hypersubstitution equalizes s and t with respect to the variety. Generalizing the concept of a unifier, we define a semantical hyperunifier for a pair of terms with respect to a variety. The problem of finding a semantical hyperunifier with respect to a given variety for any two terms is then called the semantical hyperunification problem.
We prove that the semantical kernel of a hypersubstitution is a fully invariant congruence relation on the absolutely free algebra of the given type. Using this kernel, we define three relations between sets of hypersubstitutions and sets of varieties and introduce the Galois correspondences induced by these relations. Then we apply these general concepts to varieties of semigroups.
Twórcy
  • University of Potsdam, Institute of Mathematics, Am Neuen Palais, 14415 Potsdam, Germany
  • University of Potsdam, Institute of Mathematics, Am Neuen Palais, 14415 Potsdam, Germany
  • Department of Mathematics and C.S., University of Lethbridge, Lethbridge, Ab., Canada T1K-3M4
Bibliografia
  • [1] K. Denecke, J. Hyndman and S.L. Wismath, The Galois correspondence between subvariety lattices and monoids of hypersubstitutions, Discuss.Math. - Gen. Algebra Appl. 20 (2000), 21-36.
  • [2] K. Denecke, J. Koppitz and St. Niwczyk, Equational Theories generated by Hypersubstitutions of Type (n), Internat. J. Algebra Comput., in print.
  • [3] K. Denecke and S.L. Wismath, The monoid of hypersubstitutions of type (2), Contributions to General Algebra 10 (1998), 109-126.
  • [4] K. Denecke and S.L. Wismath, Hyperidentities and Clones, Gordon and Breach Sci. Publ., Amsterdam 2000.
  • [5] J. Płonka, Proper and inner hypersubstitutions of varieties, 'Proccedings of the International Conference 'Summer School on Algebra and Ordered Sets', Olomouc 1994, Palacký University, Olomouc 1994, 106-116.
  • [6] J.H. Siekmann, Universal Unification, Lecture Notes in Computer Science, no. 170 ('International Conference on Automated Deductions (Napa, CA, 1984)'), Springer-Verlag, Berlin 1984, 1-42.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgaa_1036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.