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Abstract

The category of all binary relations between arbitrary sets turns out
to be a certain symmetric monoidal category Rel with an additional
structure characterized by a family d = (dA : A → A⊗A | A ∈ |Rel|) of
diagonal morphisms, a family t = (tA : A → I | A ∈ |Rel|) of terminal
morphisms, and a family∇ = (∇A : A⊗A → A | A ∈ |Rel|) of diagonal
inversions having certain properties. Using this properties in [11] was
given a system of axioms which characterizes the abstract concept of a
halfdiagonal-halfterminal-symmetric monoidal category with diagonal
inversions (hdht∇s-category). Besides of certain identities this system
of axioms contains two identical implications. In this paper is shown
that there is an equivalent characterizing system of axioms for hdht∇s-
categories consisting of identities only. Therefore, the class of all small
hdht∇-symmetric categories (interpreted as hetrogeneous algebras of
a certain type) forms a variety and hence there are free theories for
relational structures.
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1. Defining conditions

Let K• be any symmetric monoidal category in the sense of Eilenberg-Kelly
([2]) with the object class |K|, the morphism class K, the distinguished
object I, the bifunctor ⊗ : K × K → K, and the families a, r, l, s of
isomorphisms of K such that the following axioms are valid for all objects
and all morphisms of K. By K[A,B] we denote the set of all morphisms
ρ ∈ K with the domain (source) dom ρ = A and the codomain (target)
codom ρ = B.

Bifunctor properties:

(F1) dom (ρ⊗ ρ′) = dom ρ⊗ dom ρ′,

(F2) codom (ρ⊗ ρ′) = codom ρ⊗ codom ρ′,

(F3) 1A⊗B = 1A ⊗ 1B,

(F4) (ρ⊗ ρ′)(σ ⊗ σ′) = ρσ ⊗ ρ′σ′.

Conditions of monoidality:

(M1) aA,B,C⊗DaA⊗B,C,D = (1A ⊗ aA,B,C)aA,B⊗C,D(aA,B,C ⊗ 1D),

(M2) aA,I,B(rA ⊗ 1B) = 1A ⊗ lB,

(M3) aA,B,CsA⊗B,CaC,A,B = (1A ⊗ sB,C)aA,C,B(sA,C ⊗ 1B),

(M4) sA,BsB,A = 1A⊗B,

(M5) sA,I lA = rA,

(M6) aA,B,C((ρ⊗ σ)⊗ τ) = (ρ⊗ (σ ⊗ τ))aA′,B′,C′ ,
(M7) rAρ = (ρ⊗ 1I)rA′ ,

(M8) sA,B(σ ⊗ ρ) = (ρ⊗ σ)sA′,B′ .

Remark that the validity of an equation containing morphism compositions
includes that they are defined on both sides.

An immediate consequence of the conditions above is the validity of

(M9) ∀A, B ∈ |K| (aI,A,B(lA ⊗ 1B) = lA⊗B),

(M10) ∀A, B ∈ |K| (aA,B,IrA⊗B = 1A ⊗ rB),

(M11) rI = lI ,

(M12) sI,I = 1I⊗I ,
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(M13) ∀A ∈ |K| (sI,ArA = lA),

(M14) ∀A ∈ |K| (lAρ = (1I ⊗ ρ)lA′).

Using the denotation

bA,B,C,D := aA⊗B,C,D(a−1
A,B,C(1A ⊗ sB,C)aA,C,B ⊗ 1D)a−1

A⊗C,B,D

one obtains the following properties for all objects A,A′, B, B′, C, C ′, D,D′

of K and all morphisms ρ ∈ K[A,A′], σ ∈ K[B, B′], λ ∈ K[C, C ′],
µ ∈ K[D, D′]:

(M15) bA,B,C,D((ρ⊗ σ)⊗ (λ⊗ µ) = ((ρ⊗ λ)⊗ (σ ⊗ µ)bA′,B′,C′D′ ,

(M16) bA,I,I,B = 1A⊗I ⊗ 1I⊗B,

(M17) bA,B,C,DbA,C,B,D = 1A×B ⊗ 1C⊗D,
(M18) bA,B,C,D(sA,C ⊗ sB,D) = sA⊗B,C⊗DbC,D,A,B.

Obviously, all morphisms bA,B,C,D are isomorphims in the category K•.

Definition 1.1 ([1]). A diagonal-terminal-symmetric category (shortly
dts-category) K = (K•, d, t) is defined as a symmetric monoidal category
endowed with morphism families

d = (dA : A → A⊗A | A ∈ |K|) and t = (tA : A → I | A ∈ |K|)

satisfying the following conditions for all objects A,B, A′ ∈ |K| and all
morphisms ρ ∈ K[A, A′].

Diagonality:

(D1) dA(dA ⊗ 1A) = dA(1A ⊗ dA)aA,A,A,

(D2) dAsA,A = dA,

(D3) dA⊗B = (dA ⊗ dB)bA,A,B,B,

(D4) dA(ρ⊗ ρ) = ρdA′ .

Terminality:

(T1) dA(1A ⊗ tA)rA = 1A,

(T2) tI = 1I ,

(T3) ρtA′ = tA.
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Let A, A′, B be arbitrary objects in K and let ρ ∈ K[A,A′] be any
morphism in K. Then the properties
(D5) dA(dA ⊗ dA) = dAdA⊗A,

(D6) dA(dA ⊗ dA) = dA(dA ⊗ dA)bA,A,A,A,

(D7) tAdI = dA(tA ⊗ tA),

(D9) ρdA′dA′⊗A′ = dA(ρdA′ ⊗ dA(ρ⊗ ρ))),

(T4) dA(tA ⊗ 1A)lA = 1A,

(T5) dA⊗B((1A ⊗ tB)rA ⊗ (tA ⊗ 1B)lB) = 1A⊗B,

(T6) tA⊗B = (tA ⊗ tB)tI⊗I ,

(T7) rI = tI⊗I ,

(T8) dAtA⊗A = tA,

(T9) ρtA′dI = dA(ρtA′ ⊗ tA)

are consequences of the conditions above ([1]).
The category Set of all total functions between arbitrary sets is a model

of a dts-category by

I := {∅}, A⊗B := {〈a, b〉| a ∈ A ∧ b ∈ B},
ρ ∈ Set[A,B] :⇔ ρ = {(a, b) | a ∈ A ∧ b = ρ(a) ∈ B},

∀ a ∈ A ∃!! b ∈ B (b = ρ(a)),

ρ ∈ Set[A,B], σ ∈ Set[B, C] ⇒ ρ ◦ σ := {(a, c) | a ∈ A ∧ c = σ(ρ(a))},
(a, c) ∈ ρ ◦ σ ⇔ ∃ b ∈ B ((a, b) ∈ ρ ∧ (b, c) ∈ σ),

ρ∈Set[A,B], ρ′∈Set[A′, B′]⇒ρ⊗ρ′ := {(〈a, a′〉, 〈ρ(a), ρ′(a′)〉) | a∈A, a′∈A′},
aA,B,C := {(〈a, 〈b, c〉〉, 〈〈a, b〉, c〉) | a ∈ A, b ∈ B, c ∈ C},
sA,B := {(〈a, b〉, 〈b, a〉) | a ∈ A, b ∈ B},
rA := {(〈a, ∅〉, a) | a ∈ A},
lA := {(〈∅, a〉, a) | a ∈ A},
dA := {(a, 〈a, a〉) | a ∈ A},
tA := {(a, ∅) | a ∈ A}.
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Remark that I is a terminal object in any dts-category K and
(A ⊗ B; pA,B

1 , pA,B
2 ) forms a categorical product of the objects A, B in the

category K, where pA,B
1 := (1A ⊗ tB)rA and pA,B

2 := (tA ⊗ 1B)lB.
Moreover, dA(ρ ⊗ σ) = ρdB is equivalent to ρ = σ for all A, B ∈ |K|

and all ρ, σ ∈ K[A,B] because of

σ = σdBpB,B
2 = dA(σtB ⊗ σ)lB = dA(tA ⊗ σ)lB

= dA(ρtB ⊗ σ)lB = dA(ρ⊗ σ)pB,B
2 = ρdBpB,B

2 = ρ.

The morphisms pA,B
1 and pA,B

2 are called canonical projections in the
category K.

Conditions (D9) and (T9) are equivalent to

ρdA′=dA(ρdA′⊗dA(ρ⊗ρ))pA′,A′
2 and ρtA′=dA(ρtA′⊗tA)pI,I

2 , respectively.

Definition 1.2. Let K• be again a symmetric monoidal category endowed
with morhism families d and t as above. Then K = (K•, d, t) is called
halfdiagonal-terminal-symmetric category (shortly hdts-category), if the con-
ditions

(D1), (D2), (D3), (D5), (D7), (T1), (T2), (T3)

hold identically.

As above, the identities (T4), (T5), (T6), (T7), (T8), (T9) follow from
the defining conditions in an hdts-category.

Definition 1.3. A diagonal-halfterminal-symmetric category (shortly
dhts-category) ([3], [7], [10]) is defined as a sequence K := (K•; d, t, O, o)
such that K• is again a symmetric monoidal category, d and t are families as
above, O is a distinguished zero-object of K•, o : I → O is a distinguished
morphism of K•, and the following equations are fulfilled for all objects
A,B, A′, B′ ∈ |K| and all morphisms ρ ∈ K[A,A′], σ ∈ K[B,B′], λ ∈
K[A,O], κ ∈ K[O,A]:

(D4), (T1), (T4), (T5), (T6), and

(o1) tAo = λ,

(o2) (1A ⊗ tO)rA = κ,

(O1) A⊗O = O ⊗A = O.
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Remark that the conditions

(D1), (D2), (D3), (D5), (D6), (D7), (D9), (T2), (T7), (T8), (T9),
and

(B1) bA,B,C,D(1A⊗C ⊗ tB⊗D)rA⊗C = (1A ⊗ tB)rA ⊗ (1C ⊗ tD)rC ,

(B2) bA,B,C,D(tA⊗C ⊗ 1B⊗D)lB⊗D = (tA ⊗ 1B)lB ⊗ (tC ⊗ 1D)lD

are consequences of the other conditions ([3], [7], [10]).
Formulas (o1), (o2), and (O1) explain that the morphism sets K[A,O]

and K[O, A] both consist of exactly one element oA,O and oO,A, respectively,
and O is a zero object in K. In any dhts-category there is a so-called
zero-morphism oA,B to each pair of objects A,B ∈ |K| with the properties

(o3) ∀ρ ∈ K[A,A′], σ ∈ K[B, B′] (ρoA,B = oA′,B ∧ oA,Bσ = oA,B′),

(o4) ∀ξ, η ∈ K (oA,B ⊗ ξ = oA,B = η ⊗ oA,B),

(o5) oO,A = (1A ⊗ tO)rA = (tO ⊗ 1A)lA.

The category Par of all partial functions between arbitrary sets is a model
of a dhts-category by the same fixations as above and O = ∅ (the empty
set) and o : I → O, oA,O : A → O, oO,A : O → A, oA,B : A → B as the
empty functions. The morphisms are given by

ρ ∈ K[A,B] :⇔ ρ = {(a, ρ(a)) | a ∈ D(ρ) ∧ ρ(a) ∈ B},
∀ a ∈ D(ρ) ⊆ A ∃!! b ∈ B (b = ρ(a)).

The following fact is of importance for the consideration of dhts-categories.

Lemma 1.4. Let K be a symmetric monoidal category endowed with mor-
phism families d and t as above which fulfil conditions (D4), (T1) and (T6).
Then conditions (T4) and (T5) are consequences of the validity of (D2) and
(D3) in K.

Proof. Using (T1) and (D2) one obtains (T4) as follows:

1A =dA(1A⊗tA)rA =dAsA,A(1A⊗tA)rA =dA(tA⊗1A)sI,ArA =dA(tA⊗1A)lA.
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The calculation

dA⊗B((1A ⊗ tB)rA ⊗ (tA ⊗ 1B)lB)

= (dA ⊗ dB)bA,A,B,B((1A ⊗ tB)rA ⊗ (tA ⊗ 1B)lB) ((D3))

= (dA(1A ⊗ tA)⊗ dB(tB ⊗ 1B))bA,I,I,B(rA ⊗ lB) ((M15))

= (dA(1A ⊗ tA)⊗ dB(tB ⊗ 1B))(1A⊗I ⊗ 1I⊗B)(rA ⊗ lB) ((M16))

= (dA(1A ⊗ tA)⊗ dB(tB ⊗ 1B))(rA ⊗ lB) ((F3))

= (dA(1A ⊗ tA)rA ⊗ dB(tB ⊗ 1B)lB) ((F4))

= 1A ⊗ 1B ((T1), (T4))

shows the validity of (T5).

Let K be an arbitrary dhts-category. Then all morphisms ρ ∈ K[A,A′],
A,A′ ∈ |K|, fulfilling ρtA′ = tA, form a subcategory MK of K which is
even a dts-caregory. Denoting by MK the smallest dts-subcategory of MK

containing all morphisms of the families a, r, l, s, d, t one has

MK ⊆ Iso(K) ⊆ Cor(K) ⊆ MK ,

where Iso(K) (Cor(K)) is a dts-subcategory of MK generated by all
isomorphisms (coretractions) of K together with all terminal morphisms
of K, since all coretractions and all terminal morphisms fulfil the condition
(T3) (see [7], [10]).

The object I ∈ |K| is a terminal object in the subcategories MK , Iso(K),
Cor(K), and MK but not in the whole category K. Morphisms of the kind
pA,B
1 = (1A⊗tB)rA and pA,B

2 = (tA⊗1B)lB are called canonincal projections
again and (A ⊗ B; pA,B

1 , pA,B
2 ) is a categorical product of A and B in MK ,

but in general not in the whole category.
Schreckenberger had proved ([7]) that

ρ ≤ σ :⇔ dA(ρ⊗ σ) = ρdA′ (ρ, σ ∈ K[A,A′])

defines a partial order relation which is stable under composition and
⊗-operation. Moreover, the following are equivaent:



146 H.-J. Vogel

(i) dA(ρ⊗ σ) = ρdA′ ,

(ii) dA(ρ⊗ σ)pA′,A′
2 = ρ,

(iii) dA(σ ⊗ ρ)pA′,A′
1 = ρ.

Hoehnke had shown ([3]) the validity of the identical implication

ρ = dA(ρ⊗ σ)pA′,A′
2 ⇒ ρ = dA(ρ⊗ σ)pA′,A′

1 .

The relation≤ in the dhts-category Par describes exactly the usual inclusion
⊆.

Morphisms eA ∈ K[A,A] of any dhts-category K fulfilling eA ≤ 1A for
any A ∈ |K| are called subidentities ([7]). Especially, for each ρ ∈ K[A, B],
the morphism

α(ρ) := dA(ρ⊗ 1A)pB,A
2 (= dA(1A ⊗ ρ)pA,B

1 )

is a subidentity of A ∈ |K|, since

dA(dA(ρ⊗1A)pB,A
2 ⊗1A)pA,A

2 = dA(ρ⊗ dA(1A ⊗ 1A))aB,A,A(pB,A
2 ⊗ 1A)pA,A

2

= dA(ρ⊗ dA)(1B ⊗ pA,A
2 )pB,A

2

= dA(ρ⊗ dApA,A
2 )pB,A

2 = dA(ρ⊗ 1A)pB,A
2 .

Important properties of subidentities are described in [7], [13], [15].

Definition 1.5. A diagonal-halfterminal-symmetric category with diagonal
inversion ∇ (shortly dht∇s-category, [10]) is, by definition, a sequence K :=
(K•; d, t,∇, O, o) such that (K•; d, t, O, o) is a dhts-category endowed with a
morphism family ∇ = (∇A| A ∈ |K|) satisfying the following for all A ∈ |K|:
(∇1) dA∇A = 1A,

(∇2) ∇AdAdA⊗A = dA⊗A(∇AdA ⊗ 1A⊗A).

The category Par is also a model of a dht∇s-category, where

∇A := {(〈a, a〉, a)| a ∈ A}, A ∈ |Par|.
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The properties

(D8) ∇AdA = dA⊗A(∇A ⊗∇A),

(D9’) ρdA′ = dA(ρdA′ ⊗ dA(ρ⊗ ρ))∇A′⊗A′ ,

(T9’) ρtA′ = dA(ρtA′ ⊗ tA)∇I ,

(∇3) aA,A,A(∇A ⊗ 1A)∇A = (1A ⊗∇A)∇A,

(∇4) sA,A∇A = ∇A,

(∇5) ∇A⊗B = bA,B,A,B(∇A ⊗∇B),

(∇6) ∇AdA = (dA ⊗ 1A)a−1
A,A,A(1A ⊗∇A),

(∇7) ∇AdA = (1A ⊗ dA)aA,A,A(∇A ⊗ 1A),

(∇8) ∇AdA = (dA ⊗ dA)∇A⊗A,

(∇9) ∇AρdA′ = dA⊗A(∇Aρ⊗ (ρ⊗ ρ)∇A′),

(∇9’) ∇Aρ = dA⊗A(∇Aρ⊗ (ρ⊗ ρ)∇A′)∇A′ ,

(∇10) ∇A⊗A∇A = (∇A ⊗∇A)∇A,

(D∇) ρ = dA(ρ⊗ ρ)∇A′

follow from the axioms and the other properties of a dht∇s-category for all
A, A′, B ∈ |K| and all ρ ∈ K[A, A′] (see [13]).

By the definition of the partial order relation, (T9) is equivalent to
ρtA′ ≤ tA, (∇2) is equivalent to ∇AdA ≤ 1A2 , and (∇9) is equivalent to
∇Aρ ≤ (ρ⊗ ρ)∇A′ for ρ ∈ K[A,A′].

Moreover, one has the following important property in any
dht∇s-category K ([11]):

(P∇) ∀A,A′∈|K| ∀ ρ, σ∈K[A,A′] (dA(ρ⊗σ)pA′,A′
2 =ρ ⇔ dA(ρ⊗σ)∇A′=ρ).

In any dht∇s-category, conditions (D9), (T9), and (∇9) result in (D9’),
(T9’), and (∇9’), respectively.

2. hdht∇s-categories

Definition 2.1 ([10]). A sequence K = (K•; d, t,∇, o) is called halfdiagonal-
halfterminal-symmetric monoidal category with diagonal inversion∇ (shortly
hdht∇s-category), iff K• is a symmetric monoidal category as above,
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(dA : A→A⊗A | A ∈ |K|), (tA : A→I | A ∈ |K|), (∇A : A⊗A →A | A∈|K|)
are families of morphisms of K, and o : I → O (I 6= O ∈ |K|) is a
distinguished morphism of K such that for all objects and all morphisms
of the underlying category K the conditions

(D1), (D2), (D3), (D5), (D7), (D8),

(T1), (T2), (T6), (T9’),

(∇1), (∇2), (∇3), (∇4), (∇5), (D∇),

(o1), (o2), (O1),

and
(*1) dA(ρ⊗ ρ′)∇BdB(σ ⊗ σ′)∇C

= dA(dA(ρ⊗ ρ′)∇BdB(σ ⊗ σ′)∇C ⊗ dA(ρσ ⊗ ρ′σ′)∇C)∇C

are fulfilled.

The system of axioms given in this definition is free of contradictions,
because the category Rel of all binary relations between sets is a model of
it, i.e. Rel fulfils all the axioms of an hdht∇s-category, where |Rel| is the
class of all sets, the morphisms are characterized by

ρ ∈ Rel[A,A′] :⇔ ρ = {(a, a′) | a ∈ D(ρ) ⊆ A ∧ a′ ∈ W (ρ) ⊆ A′ ∧ H(a, a′)},

where H(x, y) is a sentence form in two variables, the distinguished objects
are I = {∅} and O = ∅, the operation ⊗ for objects is given as in Set, the
composition and the ⊗-operation of morphisms are described by

ρ∈Rel[A,B], σ∈Rel[B,C] ⇒ρ◦σ={(a, c) | ∃ b∈B ((a, b)∈ρ ∧ (b, c)∈σ)},

ρ∈Rel[A,B], ρ′∈Rel[A′, B′]⇒ρ⊗ρ′={(〈a, a′〉, 〈b, b′〉) | (a, b)∈ρ ∧ (a′, b′)∈ρ′},

and the morphisms of the families a, r, l, s, b, d, t, ∇, (0A,B | A,B ∈ |Rel|)
are as in Par.

Lemma 2.2. The relation ≤ defined by

ρ ≤ σ :⇔ dA(ρ⊗ σ)∇B = ρ

is a partial order relation in any hdht∇-symmetric category which is compat-
ible with compostion and ⊗-operation for morphisms. Moreover, the greatest
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lower bound of two morphisms λ, µ ∈ K[A,B] with respect to the canonical
order relation ≤ is given by

dA(λ⊗ µ)∇B = inf{λ, µ}.

Proof. Condition (D∇) shows the reflexivity of ≤. The relation is anti-
symmetric because of

ρ ≤ σ ∧ σ ≤ ρ ⇒ σ = dA(σ ⊗ ρ)∇B

= dAsA,A(σ ⊗ ρ)∇B ((D2))

= dA(ρ⊗ σ)sB,B∇B ((M8))

= dA(ρ⊗ σ)∇B ((∇4))

= ρ.

The implication

ρ≤σ ∧ σ≤τ⇒ρ = dA(ρ⊗ σ)∇B

= dA(ρ⊗ dA(σ ⊗ τ)∇B)∇B

= dA(1A ⊗ dA)(ρ⊗ (σ ⊗ τ))(1B ⊗∇B)∇B

= dA(dA⊗1A)((ρ⊗σ)⊗τ)a−1
B,B,B(1B⊗∇B)∇B ((M6), (D1))

= dA(dA(ρ⊗ σ)⊗ τ)(∇B ⊗ 1B)∇B ((∇3))

= dA(dA(ρ⊗ σ)∇B ⊗ τ)∇B

= dA(ρ⊗ τ)∇B

⇒ρ ≤ τ

yields the transitivity of the relation ≤.

Now suppose ρ ≤ σ, λ ≤ µ, and cod ρ = dom λ. Then ρλ ≤ σµ follows
via the definition of ≤ by condition (∗1):
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ρ≤σ ∧ λ≤µ⇒ dA(ρ⊗ σ)∇B = ρ ∧ dB(λ⊗ µ)∇C = λ

⇒ ρλ= dA(ρ⊗ σ)∇BdB(λ⊗ µ)∇C

= dA(dA(ρ⊗σ)∇BdB(λ⊗µ)∇C⊗dA(ρλ⊗σµ)∇C)∇C

= dA(ρλ⊗ dA(ρλ⊗ σµ)∇C)∇C

= dA(dA(ρλ⊗ ρλ)⊗ σµ)a−1
C,C,C(1C ⊗∇C)∇C

= dA(ρλ⊗ ρλ)∇C ⊗ σµ)∇C

= dA(ρλ⊗ σµ)∇C

⇒ ρλ ≤ σµ.

For morphisms ρ ≤ σ ∈ K[A,B] and ρ′ ≤ σ′ ∈ K[A′, B′] one obtains

ρ = dA(ρ⊗ σ)∇B and ρ′ = dA′(ρ′ ⊗ σ′)∇B′ ,

hence

ρ⊗ ρ′ = dA(ρ⊗ σ)∇B ⊗ dA′(ρ′ ⊗ σ′)∇B′

= (dA ⊗ dA′)((ρ⊗ σ)⊗ (ρ′ ⊗ σ′))(∇B ⊗∇B′)

= dA⊗A′((ρ⊗ ρ′)⊗ (σ ⊗ σ′))bB,B′,B,B′(∇B⊗∇B′) ((D3), (M18))

= dA⊗A′((ρ⊗ ρ′)⊗ (σ ⊗ σ′))∇B⊗B′ ((∇5)),

therefore ρ⊗ ρ′ ≤ σ ⊗ σ′.

Now let λ and µ be morphisms from A into B. Then

dA(λ⊗ µ)∇B = dA(dA(λ⊗ λ)∇B ⊗ µ)∇B ((D∇))

= dA(λ⊗ dA(λ⊗ µ)∇B)∇B ((D1), (M6), (∇3))

= dAsA,A(λ⊗ dA(λ⊗ µ)∇B)∇B ((D2))

= dA(dA(λ⊗ µ)∇B ⊗ λ)sB,B∇B ((M8))

= dA(dA(λ⊗ µ)∇B ⊗ λ)∇B ((∇4)),
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hence dA(λ⊗ µ)∇B ≤ λ. In the same manner one shows dA(λ⊗ µ)∇B ≤ µ.

Further let be τ ≤ λ and τ ≤ µ. Then it follows

τ = dA(τ ⊗ µ)∇B = dA(dA(τ ⊗ λ)∇B ⊗ µ)∇B = dA(τ ⊗ dA(λ⊗ µ)∇B)∇B,

therefore τ ≤ dA(λ ⊗ µ)∇B. Consequently, dA(λ ⊗ µ)∇B is the greatest
lower bound of λ and µ with respect to the partial order relation.

Lemma 2.3. Any hdht∇s-category K has the following properties:

∀ A ∈ |K| (∇Ada ≤ 1A⊗A),

∀ A,A′ ∈ |K| ∀ ρ ∈ K[A,A′] (ρdA′ ≤ dA(ρ⊗ ρ)),

∀ A,A′ ∈ |K| ∀ ρ ∈ K[A,A′] (∇Aρ ≤ (ρ⊗ ρ)∇A′).

Proof. Composing the equation in condition (∇2) with ∇A′,A′ and using
(∇1) one obtains

∇AdA = ∇AdAdA⊗A∇A′⊗A′ = dA⊗A(∇AdA ⊗ 1A⊗A)∇A⊗A,

hence ∇AdA ≤ 1A⊗A by the definition of ≤.
Condition (D∇) gives rise to

ρdA′ = (dA(ρ⊗ ρ)∇A′)dA′ = (dA(ρ⊗ ρ))(∇A′dA′) ≤ dA(ρ⊗ ρ) and

∇Aρ = ∇A(dA(ρ⊗ ρ)∇A′) = (∇AdA)((ρ⊗ ρ)∇A′) ≤ (ρ⊗ ρ)∇A′ ,

respectively.

Corollary 2.4. By the definition of the partial order relation,

(D9’) ρdA′ = dA(ρdA′ ⊗ dA(ρ⊗ ρ))∇A′⊗A′ and

(∇9’) ∇Aρ = dA⊗A(∇Aρ⊗ (ρ⊗ ρ)∇A′)∇A′

are identities in each hdht∇s-category K.

Theorem 2.5. Let K be an hdht∇s-category as defined above. Then the
class

FK := {ρ ∈ K | ddom ρ(ρ⊗ ρ) = ρdcod ρ}
of so-called functional morphisms forms an hdht∇s-subcategory FK of K
which is even a dht∇s-category.

The partial order relation in the dht∇-symmetric category FK is the
restriction of ≤ in the hdht∇-symmetric category K.
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Proof. The conditions (D5), (D7), and (D8) show that the class FK

contains all morphisms of the families d, t, and ∇, respectively.
Let ρ ∈ K[A, B] be an isomorphism in K. Then there is a ρ−1 ∈ K[B, A]

such that ρ−1dA ≤ dB(ρ−1 ⊗ ρ−1) and ρdB ≤ dA(ρ⊗ ρ), hence dA(ρ⊗ ρ) ≤
ρdB ≤ dA(ρ ⊗ ρ), i.e. ρdB = dA(ρ ⊗ ρ). Therefore, each isomorphism of K
belongs to FK , especially, all identities and all morphisms of the families
a, a−1, r, r−1, l, l−1, s, s−1, b, b−1 are in FK . All zero morphisms
oA,B, A, B ∈ |K|, o = oI,O, are elements of FK since oA,BdB = oA,B⊗B =
dA(oA,B ⊗ oA,B).

Let ρ ∈ K[A,B] ∩ FK and σ ∈ K[B,C] ∩ FK . Then

(ρσ)dC =ρ(σdC)=ρ(dB(σ⊗σ))=(ρdB)(σ⊗σ)=dA(ρ⊗ρ)(σ⊗σ)=dA(ρσ⊗ρσ),

hence FK is closed under composition.
If ρ ∈ K[A,B] and ρ′ ∈ K[A′, B′] are morphisms of FK , then (ρ⊗ ρ′) ∈

K[A⊗A′, B ⊗B′] is in FK too, since

(ρ⊗ ρ′)dB⊗B′ = (ρ⊗ ρ′)(dB ⊗ dB′)bB,B,B′,B′

= (dA(ρ⊗ ρ)⊗ dA′(ρ′ ⊗ ρ′)bB,B,B′,B′

= (dA ⊗ dA′)bA,A,A′,A′((ρ⊗ ρ′)⊗ (ρ⊗ ρ′))

= dA⊗A′((ρ⊗ ρ′)⊗ (ρ⊗ ρ′)).

With respect to the axioms of an hdht∇s-category, which are identities only,
and because of the defining condition of FK ⊆ K, one has a
dht∇s-category FK .

The partial order relation ≤ in K is defined by ρ ≤ σ ⇔ ρ = dA(ρ ⊗
σ)∇A′ for morphisms ρ, σ ∈ K[A,A′]. By property (P∇), this condition is
equivalent to ρ = dA(ρ ⊗ σ)pA′,A′

2 for morphisms ρ, σ of FK , hence ρ ≤ σ
with respect to the partial order relation in the dht∇s-category FK .

Proposition 2.6. All morphisms ρ ∈ K[A,B], A, B ∈ |K|, of an
hdht∇s-category K fulfilling the condition ρtB = tA (so-called total mor-
phisms) form a symmetric monoidal subcategory TK• which contains all
coretractions of K and all morphims tA, A ∈ |K|.

Moreover, TK := (TK•, d, t) is an hdts-category.

Proof. Obviously, all identity morphisms 1A, A ∈ |K|, are in TK .
Because of

ρtB = tA ∧ σtC = tB ⇒ (ρσ)tc = ρ(σtC) = ρtB = tA
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and

ρtB= tA∧ρ′tB′= tA′⇒(ρ⊗ρ′)tB⊗B′=(ρ⊗ρ′)(tB⊗tB′)tI⊗I =(tA⊗tA′)tI⊗I = tA⊗A′

the class TK is closed under composition and ⊗-operation.
Let ρ ∈ K[A,B] be a coretraction in K. Then there is ρ∗ ∈ K[B, A]

such that ρρ∗ = 1A. So, one has (see [6], p. 12)

ρtB = 1AρtB = dA(1A ⊗ tA)rAρtB ((T1))

= dA(ρtB ⊗ tA)rI ((M7))

= dA(ρ⊗ ρ)(tB ⊗ ρ∗tA)rI ((ρρ∗ = 1A))

≥ ρdB(tB ⊗ 1B)(1I ⊗ ρ∗tA)lI ((2.3))

= ρdb(tB ⊗ 1B)lBρ∗tA ((M14))

= ρ1Bρ∗tA ((T4))

= tA ≥ ρtB,

therefore ρtB = tA, hence ρ ∈ TK .
Because of tAtI = tA1I = tA, A ∈ |K|, dA∇A = 1A, A ∈ |K|,

and each isomorphism is just a coretraction, all morphisms of the families
a, a−1, r, r−1, l, l−1, s, s−1, b, b−1, d, and t belong to TK .

Since arbitrary suitable morphisms and objects of K fulfil the identities
(D1), (D2), (D3), (D5), (D6), (D7), (T1), (T2), (T3), (T4), (T5), (T6),
(T7), (T8), (T9), the sequence (TK•, d, t) is an hdts-category.

Corollary 2.7. Let K be any hdht∇s-category. Then all morphisms of the
families 1, a, r, l, s, b, d, t, ∇, and (oA,B | A,B ∈ |K|) possess all
properties of such morhisms in a dht∇s-category, especially the following
identities are valid:

(D8), (T4), (T5), (T7), (T8), (B1), (B2), (o3), (o4), (o5),

(∇6), ∇7), (∇8), (∇10),

(I1) ∇IdI = 1I⊗I ,

(I2) tI⊗I = ∇I = lI = rI = d−1
I ,

(I3) dI = r−1
I = l−1

I ,

(I4) dI ⊗ dI = dI⊗I .
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Lemma 2.8. Let K be an hdht∇s-category. Then one has
(T9) ρtA′dI = dA(ρtA′ ⊗ tA)
for all objects A,A′ ∈ |K| and all morphisms ρ ∈ K[A,A′].

Moreover:

(i) ∀ A, A′ ∈ |K| ∀ ρ ∈ K[A,A′] (ρdA′dA′⊗A′ = dA(ρdA′ ⊗ dA(ρ⊗ ρ))

⇒ ρdA′ = dA(ρdA′ ⊗ dA(ρ⊗ ρ))∇A′⊗A′),

(ii) ∀ A, A′ ∈ |K| ∀ ρ ∈ K[A,A′] (∇AρdA′ = dA(∇Aρ⊗ (ρ⊗ ρ)∇A′)

⇒ ∇Aρ = dA(∇Aρ⊗ (ρ⊗ ρ)∇A′)∇A′),

(iii) ∀ A, A′ ∈ |K| ∀ ρ ∈ K[A,A′] (ρtA′dI = dA(ρtA′ ⊗ tA)

⇔ ρtA′ = dA(ρtA′ ⊗ tA)∇I).

Proof. Because of ∇IdI = 1I⊗I and ∇I = rI = lI = tI⊗I the equation

dA(ρtA′ ⊗ tA) = dA(ρtA′ ⊗ tA)∇IdI = dA(ρtA′ ⊗ tA)rIdI

= dA(1A ⊗ tA)rAρtA′dI = ρtA′dI

is valid for each ρ ∈ K[A,A′] and all A,A′ ∈ |K|, hence K fulfils condition
(T9).

The condition (T9’) is equivalent to (T9), since

dA(ρtA′ ⊗ tA) = ρtA′dI ⇒ dA(ρtA′ ⊗ tA)∇I = ρtA′

by dI∇I = 1I and

dA(ρtA′ ⊗ tA)∇I = ρtA′ ⇒ dA(ρtA′ ⊗ tA) = ρtA′dI

by ∇IdI = 1I⊗I , hence property (iii) is shown.

The implications (i) and (ii) are satisfied because of the general property

ξdB = dA(ξ ⊗ η) ⇒ ξ = ξdB∇B = dA(ξ ⊗ η)∇B.

Remark 2.9. The opposite of the implications (i) and (ii), respectively, is
not true in general, since there are conterexamples in Rel.



On the structure of halfdiagonal-halfterminal- ... 155

Remark 2.10. As in any dht∇s-category, the morphisms

pA,B
1 := (1A ⊗ tB)rA ∈ K[A⊗B, A] ∩ FK ,

pA,B
2 := (tA ⊗ 1B)lB ∈ K[A⊗B, B] ∩ FK

of an arbitrary hdht∇s-category K are called canonical projections again
and one has

∇A = inf
{
pA,A
1 , pA,A

2

}
= dA

(
pA,A
1 ⊗ pA,A

2

)
∇A

for all A ∈ |K|.
Remark that (A ⊗ B; pA,B

1 , pA,B
2 ) is not a categorical product in the

whole category K, but in the subcategory TK

The family ∇ = (∇A | A ∈ |K|) is uniquely determined by the family
d = (dA | A ∈ |K|) and the conditions (∇1) and (∇2).

Lemma 2.11. Let K be an arbitrary hdht∇s-category. Then there holds:

(∗2) ∀A,B, C ∈ |K| ∀ρ, ρ′ ∈ K[A,B] ∀σ, σ′ ∈ K[B, C] (dA(ρ⊗ ρ′)∇B =ρ

∧ dB(σ ⊗ σ′)∇C =σ ⇒ dA(ρσ ⊗ ρ′σ′)∇C =ρσ),

(∗3) ∀A,B ∈ |K| ∀ρ, σ ∈ K[A, B] (dA(ρ⊗ σ)∇B =ρ ∧ dA(σ ⊗ σ)=σdB

⇒ dA(ρ⊗ σ)pB,B
i =ρ (i ∈ {1, 2})),

(∗4) ∀A,B ∈ |K| ∀ρ ∈ K[A, B] (dA(ρ⊗ ρ)pB,B
i =ρ (i ∈ {1, 2})),

(∗5) ∀A,B ∈ |K| ∀ρ, σ ∈ K[A, B] (dA(ρ⊗ σ)∇B =ρ ∧ dA(σ ⊗ σ)=σdB

⇒ dA(ρ⊗ ρ)=ρdB),

(∗6) ∀A ∈ |K| ∀ρ ∈ K[A,A] (dA(1A ⊗ ρ)∇A =ρ

⇒ dA(1A ⊗ ρ)pA,A
1 =dA(1A ⊗ ρ)pA,A

2 =ρ).

Proof. Axiom (∗1) implies condition (∗2) because of ρ ≤ ρ′ ∧ σ ≤
σ′ ⇒ ρσ ≤ ρ′σ′. To show (∗3) not that dA(ρ ⊗ σ)∇B = ρ ⇔ ρ ≤ σ and
dA(σ ⊗ σ) = σdB ⇔ σ ∈ FK . So one obtains
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dA(ρ⊗ σ)pB,B
i = dA(dA(ρ⊗ σ)∇B ⊗ σ)pB,B

i (ρ ≤ σ)

= dA(ρ⊗ dA(σ ⊗ σ))aB,B,B(∇B ⊗ 1B)pB,B
i (σ ∈ FK)

= dA(ρ⊗ σ)(1B ⊗ dB)aB,B,B(∇B ⊗ 1B)pB,B
i ((F4))

= dA(ρ⊗ σ)∇BdBpB,B
i ((∇7))

= dA(ρ⊗ σ)∇B = ρ

with respect to the axioms of an hdht∇s-category.
The property (∗4) is a consequence of (D9’) and (T9’):

ρ = ρdBpB,B
i ≤ dA(ρ⊗ ρ)pB,B

i ∧ ρtB ≤ tA

⇒ dA(ρ⊗ ρ)pB,B
1 =dA(ρ⊗ ρtB)rB ≤ dA(ρ⊗ tA)rB =dA(1A ⊗ tA)rAρ=ρ

∧ dA(ρ⊗ ρ)pB,B
2 =dA(ρtB ⊗ ρ)lB ≤ dA(tA ⊗ ρ)lB =dA(tA ⊗ 1A)lAρ=ρ.

(*5): Using the previous results and the assumption one obtains

dA(ρ⊗ ρ)=dA(dA(ρ⊗ σ)pB,B
2 ⊗ dA(ρ⊗ σ))pB,B

2 )

=dA(dA ⊗ dA)((ρ⊗ σ)⊗ (ρ⊗ σ)(pB,B
2 ⊗ pB,B

2 )

=dAdA⊗A((ρ⊗ σ)⊗ (ρ⊗ σ))(pB,B
2 ⊗ pB,B

2 )

=dA(dA(ρ⊗ ρ)⊗ dA(σ ⊗ σ))bB,B,B,B(pB,B
2 ⊗ pB,B

2 )

=dA(dA(ρ⊗ ρ)⊗ σdB)pB⊗B,B⊗B
2

=dA(ρ⊗ dA(ρ⊗ σ))aB,B,B(1B⊗B ⊗ dB)pB⊗B,B⊗B
2

=dA(ρ⊗ dA(ρ⊗ σ))aB,B,BpB⊗B,B
2 dB

=dA(ρ⊗ dA(ρ⊗ σ))(1B ⊗ pB,B
2 )pB,B

2 dB

=dA(ρ⊗ dA(ρ⊗ σ)pB,B
2 )pB,B

2 dB

=dA(ρ⊗ ρ)pB,B
2 dB = ρdB.

The property (*6) arises from (*3) because of 1A ∈ FK for each A ∈ |K|.
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Lemma 2.12. Let K be a monoidal symmetric category endowed with mor-
phisms families d, t, (oA,B | A, B ∈ |K|), and ∇ such that all axioms of an
hdht∇s-category without (*1) are fulfilled. Moreover, let the condition (*2)
be valid. Then K is an hdht∇s-category in the defined sense as above.

Proof. It remains to show the condition (*1):

dA(dA(ρ⊗ ρ′)∇BdB(σ ⊗ σ′)∇C ⊗ dA(ρσ ⊗ ρ′σ′)∇C)∇C

= dA(ρσ ⊗ dA(ρσ ⊗ ρ′σ′)∇C)∇C ((∗2))

= dA(1A ⊗ dA)(ρσ ⊗ (ρσ ⊗ ρ′σ′))(1C ⊗∇C)∇C ((F4))

= dA(dA ⊗ 1A)a−1
A,A,A(ρσ ⊗ (ρσ ⊗ ρ′σ′))(1C ⊗∇C)∇C ((D3))

= dA(dA ⊗ 1A)((ρσ ⊗ ρσ)⊗ ρ′σ′)a−1
C,C,C(1C ⊗∇C)∇C ((M6))

= dA(dA)(ρσ ⊗ ρσ)⊗ ρ′σ′))(∇C ⊗ 1C)∇C ((∇3))

= dA(dA(ρσ ⊗ ρσ)∇C ⊗ ρ′σ′))∇C ((F4))

= dA(ρσ ⊗ ρ′σ′)∇C ((D∇))

= ρσ ((∗2))

= dA(ρ⊗ ρ′)∇BdB(σ ⊗ σ′)∇C ((∗2))

The results of the last both lemmata are important for the axiomization of
hdht∇s- categories. The system of axioms for an hdht∇s-category given in
[11] contains two identical implications, namely (21) (⇔ (*2)) and (20) (⇔
(*6)). The property (*6) is a consequence of the other properties and the
conditions (*1) and (*2) are equivalent in a monoidal symmetric category
K endowed with morphisms families d, t, (oA,B | A,B ∈ |K|), and ∇ such
that

(D1), (D2), (D3), (D5), (D7), (D8), (T1), (T2), (T6), (T9’),

(∇1), (∇2), (∇3), (∇4), (∇5), (∇6), (∇7), (D∇),

(o1), (o2), (O1)

are fulfilled. Therefore, hdht∇s-categories are axiomatizable by identities
only, hence all small hdht∇s-categories form a variety of many-sorted total
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algebras and there are free many-sorted algebras to each generating set with
respect to this variety. Especially, there are free hdht∇s-theories, i.e. free
algebraic theories for relational structures, by analogy with the existence of
free algebraic theories for partial algebras ([3], [10]).

Lemma 2.13. In any hdht∇-symmetric category the following conditions
are fulfilled for arbitrary morphisms ρ, σ:

(j) ρσ = 1A ∧ σρ ≤ 1B ⇒ dA(ρ⊗ ρ) = ρdB

(jj) ρσ ≤ 1A ∧ σρ = 1B ⇒ ∇Aρ = (ρ⊗ ρ)∇B

Proof. To show (j) we use at first the known property σdA ≤ dB(σ ⊗ σ).
Further,

dA(ρ⊗ ρ) = ρσdA(ρ⊗ ρ) ≤ ρdB(σ ⊗ σ)(ρ⊗ ρ) ≤ ρdB(1B ⊗ 1B) = ρdB,

hence dA(ρ⊗ ρ) = ρdB by ρdB ≤ dA(ρ⊗ ρ).
In a similar way one shows the statement (jj), namely because of∇Bσ ≤

(σ ⊗ σ)∇A and

(ρ⊗ ρ)∇B = (ρ⊗ ρ)∇Bσρ ≤ (ρσ ⊗ ρσ)∇Aρ ≤ ∇Aρ ≤ (ρ⊗ ρ)∇B

one has ∇Aρ = (ρ⊗ ρ)∇B.

Definition 2.14. Morphisms e ∈ K[A,A] ⊆ K with the property e ≤ 1A,
i.e. e=dA(1A ⊗ e)∇A, are called subidentities in K (compare with ([7])).

Proposition 2.15 (cf. [7]). For each morphism ρ : A → B, A,B ∈ |K|,
the morphism

α(ρ) := dA(ρ⊗ 1A)pB,A
2

is a subidentity of A in K and there holds α(ρ)ρ = ρ. Each subidentity e of
K fulfils dA(e ⊗ e) = edA, therefore the subidentities of K are the subiden-
tities of FK and satisfy the following conditions for all suitable morphims
and objects of K:
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(e1) e ≤ 1A ⇒ ee = e,

(e2) e1, e2 ≤ 1A ⇒ e1e2 = e2e1 = inf{e1, e2},
(e3) e1 ≤ e2 ≤ 1A ⇔ e1 = e1e2 ≤ 1A,

(e4) e ≤ 1A ⇔ α(e) = e,

(e5) e ≤ 1A ⇒ edA = dA(e⊗ e) = dA(e⊗ 1A),

(e6) e ≤ 1A ⇒ ∇Ae = (e⊗ e)∇A = (e⊗ 1A)∇A,

(e7) ρ, σ ∈ K[A,B] ⇒ α(ρ)σ = dA(ρ⊗σ)pB,B
2 ∧ α(σ)ρ=dA(ρ⊗σ)pB,B

1 ,

(e8) α(ρ)σ = ρ ⇒ ρ ≤ σ,

(e9) eρ = ρ ∧ e ≤ 1A ⇔ α(ρ) ≤ e ≤ 1A,

(e10) codρ = domσ ⇒ α(ρσ) ≤ α(ρ),

(e11) e ≤ 1A ⇒ α(eρ) ≤ e,

(e12) e ≤ 1A ⇒ α(eρ) = eα(ρ),

(e13) ρ ≤ σ ⇒ α(ρ) ≤ α(σ),

(e14) codρ = domσ ⇒ ρα(σ) ≤ α(ρσ)ρ,

(e15) codρ = domσ ⇒ α(ρσ) = α(ρα(σ)),

Proof. Because of ρtB ≤ tA one obtains

α(ρ) = dA(ρ⊗ 1A)pB,A
2 = dA(ρtB ⊗ 1A)lA ≤ dA(tA ⊗ 1A)lA = 1A.

Using the definition of α(ρ), properties (M14), (M15), and α(ρ) ≤ 1A one
receives α(ρ)ρ = ρ via

α(ρ)ρ = dA(ρ⊗ 1A)pB,A
2 ρ = dA(ρ⊗ ρ)pB,B

2 ≥ ρdBpB,B
2 = ρ = 1Aρ ≥ α(ρ)ρ.

Because of e ≤ 1A the property dA(e ⊗ e) = edA is a consequence of
Lemma 2.11, (*5), and the subidentities of K are exactly the subidentities of
FK , therefore, all subidentities have the properties (e1), (e2), (e3) and (e4)
(cf. [7]).
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To show property (e5) use the property (e4) e ≤ 1A ⇒ e = α(e) =
dA(e⊗ 1A)pA,A

2 :

dA(e⊗ e) = dA(e⊗dA(e⊗1A)pA,A
2 ) = dA(dA(e⊗e)⊗1A)a−1

A,A,A(1A⊗pA,A
2 )

= dA(dA(e⊗ e)pA,A
1 ⊗ 1A) = dA(e⊗ 1A).

The second part of the property (e6) is a consequence of (e2) and (e5)
owing to ∇AdA ≤ 1A⊗A, (e⊗ e) ≤ 1A⊗A, and (e⊗ 1A) ≤ 1A⊗A:

dA(e⊗ e)=dA(e⊗ 1A) ⇒∇AdA(e⊗ e) = ∇AdA(e⊗ 1A)

⇒ (e⊗ e)∇AdA = (e⊗ 1A)∇AdA ((e2))

⇒ (e⊗ e)∇AdA∇A = (e⊗ 1A)∇AdA∇A

⇒ (e⊗ e)∇A = (e⊗ 1A)∇A. ((∇1))

Because of (e⊗ e) ≤ 1A⊗A and ∇AdA ≤ 1A⊗A one has

(e⊗ e)∇A = (e⊗ e)∇AdA∇A (dA∇A = 1A)

= ∇AdA(e⊗ e)∇A ((e2))

= ∇Ae. ((D∇))

Property (e7) is an immediate consequence of (M7), (M14), (M8), and
(M13).

To show (e8) take into consideration

ρ = α(ρ)σ ≤ 1Aσ=σ.

(e9): Assuming eρ=ρ, e ≤ 1A one gets

α(ρ)=α(eρ)=dA(eρ⊗1A)pB,A
2 = dA(eρtB⊗1A)lA ≤ dA(etA⊗1A)lA =α(e)=e.

Conversely, α(ρ) ≤ e ≤ 1A yields

ρ = α(ρ)ρ ≤ eρ ≤ 1Aρ = ρ.

Condition (e10) is true, since

α(ρσ) = dA(ρσ ⊗ 1A)pC,A
2 = dA(ρσtC ⊗ 1A)lA ≤ dA(ρtB ⊗ 1A)lA = α(ρ).
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Condition (e11) arises from α(eρ) ≤ α(e) = e.

Property (e12) is a consequence of (e5) as follows:

α(eρ) = dA(eρ⊗ 1A)pB,A
2 = dA(e⊗ 1A)(ρ⊗ 1A)pB,A

2

= dA(e⊗ e)(ρ⊗ 1A)pB,A
2 = edA(ρ⊗ 1A)pB,A

2

= eα(ρ).

To show (e13) use the definitions of ≤ and α(ρ) (ρ : A → B , σ : B → C):

α(ρ)=dA(ρ⊗ 1A)pB,A
2 = dA(dA(ρ⊗ σ)∇B ⊗ 1A)pB,A

2 (ρ ≤ σ)

≤ dA(dA(ρ⊗ σ)pB,B
2 ⊗ 1A)pB,A

2 (∇B ≤ pB,B
2 )

= dA(dA(ρ⊗ 1A)pB,A
2 σ ⊗ 1A)pB,A

2 ((M14))

= dA(α(ρ)σ ⊗ 1A)pB,A
2

≤ dA(σ ⊗ 1A)pB,A
2 = α(σ). (α(ρ)σ ≤ σ)

Assertion (e14) is true since

ρα(σ) = ρdB(σ ⊗ 1B)pC,B
2 ≤ dA(ρσ ⊗ ρ)pC,B

2 = α(ρσ)ρ.

Condition (e15) follows by (e10), (e13), and (e14):

Let ρ and σ be as above. Then one has

α(ρσ) = α(ρα(σ)σ) ≤ α(ρα(σ)),

hence
α(ρσ) ≤ α(ρα(σ)) ≤ α(α(ρσ)ρ) ≤ α(α(ρσ)α(ρ))

≤ α(α(ρσ)1A) = α(α(ρσ)) = α(ρσ).

Remark that, as an easy example shows, in Rel the opposite implication
to (e8) is not true: Let be given A = {a}, B = {b1, b2}, ρ = {(a, b1)}, σ =
{(a, b1), (a, b2)}. Then ρ ≤ σ and ρ < α(ρ)σ = σ.

Furthermore, the equality in (e14) is not true in general. For this let be
the sets A and B as above and let be C = {x}. For the relations σ as above
and τ = {(b1, x)} one obtains σα(τ) = {(a, b1)} and στ = {(a, x)}, hence
α(στ) = {(a, a)}, consequently α(στ)σ = {(a, b1), (a, b2)} = σ 6= σα(τ).
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