ON THE STRUCTURE OF HALFDIAGONAL-HALFTERMINAL-SYMMETRIC CATEGORIES WITH DIAGONAL INVERSIONS

Hans-Jürgen Vogel
University of Potsdam Institute of Mathematics PF 601553 D-14415 Potsdam, Germany
e-mail: vogel@rz.uni-potsdam.de

Dedicated to Hans-Jürgen Hoehnke on the occasion of his 75th birthday.

Abstract

The category of all binary relations between arbitrary sets turns out to be a certain symmetric monoidal category Rel with an additional structure characterized by a family $d=\left(d_{A}: A \rightarrow A \otimes A|A \in| \operatorname{Rel} \mid\right)$ of diagonal morphisms, a family $t=\left(t_{A}: A \rightarrow I|A \in| \operatorname{Rel} \mid\right)$ of terminal morphisms, and a family $\nabla=\left(\nabla_{A}: A \otimes A \rightarrow A|A \in|\right.$ Rel $\left.\mid\right)$ of diagonal inversions having certain properties. Using this properties in [11] was given a system of axioms which characterizes the abstract concept of a halfdiagonal-halfterminal-symmetric monoidal category with diagonal inversions ($h d h t \nabla s$-category). Besides of certain identities this system of axioms contains two identical implications. In this paper is shown that there is an equivalent characterizing system of axioms for $h d h t \nabla s$ categories consisting of identities only. Therefore, the class of all small $h d h t \nabla$-symmetric categories (interpreted as hetrogeneous algebras of a certain type) forms a variety and hence there are free theories for relational structures.

Keywords: halfdiagonal-halfterminal-symmetric category, diagonal inversion, partial order relation, subidentity, equation.

2000 AMS Subject Classification: 18D10, 18B10, 18D20, 08A05, 08A02.

1. Defining conditions

Let K^{\bullet} be any symmetric monoidal category in the sense of Eilenberg-Kelly ([2]) with the object class $|K|$, the morphism class K, the distinguished object I, the bifunctor $\otimes: K \times K \rightarrow K$, and the families a, r, l, s of isomorphisms of K such that the following axioms are valid for all objects and all morphisms of K. By $K[A, B]$ we denote the set of all morphisms $\rho \in K$ with the domain (source) $\operatorname{dom} \rho=A$ and the codomain (target) $\operatorname{codom} \rho=B$.

Bifunctor properties:

$$
\begin{align*}
& \operatorname{dom}\left(\rho \otimes \rho^{\prime}\right)=\operatorname{dom} \rho \otimes \operatorname{dom} \rho^{\prime} \tag{F1}\\
& \operatorname{codom}\left(\rho \otimes \rho^{\prime}\right)=\operatorname{codom} \rho \otimes \operatorname{codom} \rho^{\prime}, \tag{F2}\\
& 1_{A \otimes B}=1_{A} \otimes 1_{B} \tag{F3}\\
& \left(\rho \otimes \rho^{\prime}\right)\left(\sigma \otimes \sigma^{\prime}\right)=\rho \sigma \otimes \rho^{\prime} \sigma^{\prime} \tag{F4}
\end{align*}
$$

Conditions of monoidality:

$$
\begin{align*}
& a_{A, B, C \otimes D} a_{A \otimes B, C, D}=\left(1_{A} \otimes a_{A, B, C}\right) a_{A, B \otimes C, D}\left(a_{A, B, C} \otimes 1_{D}\right), \tag{M1}\\
& a_{A, I, B}\left(r_{A} \otimes 1_{B}\right)=1_{A} \otimes l_{B}, \tag{M2}\\
& a_{A, B, C} s_{A \otimes B, C} a_{C, A, B}=\left(1_{A} \otimes s_{B, C}\right) a_{A, C, B}\left(s_{A, C} \otimes 1_{B}\right), \tag{M3}\\
& s_{A, B} s_{B, A}=1_{A \otimes B}, \tag{M4}\\
& s_{A, I} l_{A}=r_{A}, \tag{M5}\\
& \left.a_{A, B, C}(\rho \otimes \sigma) \otimes \tau\right)=(\rho \otimes(\sigma \otimes \tau)) a_{A^{\prime}, B^{\prime}, C^{\prime}}, \tag{M6}\\
& r_{A} \rho=\left(\rho \otimes 1_{I}\right) r_{A^{\prime}}, \tag{M7}\\
& s_{A, B}(\sigma \otimes \rho)=(\rho \otimes \sigma) s_{A^{\prime}, B^{\prime}} . \tag{M8}
\end{align*}
$$

Remark that the validity of an equation containing morphism compositions includes that they are defined on both sides.

An immediate consequence of the conditions above is the validity of

$$
\begin{align*}
& \forall A, B \in|K|\left(a_{I, A, B}\left(l_{A} \otimes 1_{B}\right)=l_{A \otimes B}\right), \tag{M9}\\
& \forall A, B \in|K|\left(a_{A, B, I} r_{A \otimes B}=1_{A} \otimes r_{B}\right), \tag{M10}\\
& r_{I}=l_{I}, \tag{M11}\\
& s_{I, I}=1_{I \otimes I}, \tag{M12}
\end{align*}
$$

$$
\begin{align*}
& \forall A \in|K|\left(s_{I, A} r_{A}=l_{A}\right) \tag{M13}\\
& \forall A \in|K|\left(l_{A} \rho=\left(1_{I} \otimes \rho\right) l_{A^{\prime}}\right) \tag{M14}
\end{align*}
$$

Using the denotation

$$
b_{A, B, C, D}:=a_{A \otimes B, C, D}\left(a_{A, B, C}^{-1}\left(1_{A} \otimes s_{B, C}\right) a_{A, C, B} \otimes 1_{D}\right) a_{A \otimes C, B, D}^{-1}
$$

one obtains the following properties for all objects $A, A^{\prime}, B, B^{\prime}, C, C^{\prime}, D, D^{\prime}$ of K and all morphisms $\rho \in K\left[A, A^{\prime}\right], \sigma \in K\left[B, B^{\prime}\right], \lambda \in K\left[C, C^{\prime}\right]$, $\mu \in K\left[D, D^{\prime}\right]:$

$$
\begin{align*}
& b_{A, B, C, D}\left((\rho \otimes \sigma) \otimes(\lambda \otimes \mu)=\left((\rho \otimes \lambda) \otimes(\sigma \otimes \mu) b_{A^{\prime}, B^{\prime}, C^{\prime} D^{\prime}},\right.\right. \tag{M15}\\
& b_{A, I, I, B}=1_{A \otimes I} \otimes 1_{I \otimes B}, \tag{M16}\\
& b_{A, B, C, D} b_{A, C, B, D}=1_{A \times B} \otimes 1_{C \otimes D}, \tag{M17}\\
& b_{A, B, C, D}\left(s_{A, C} \otimes s_{B, D}\right)=s_{A \otimes B, C \otimes D} b_{C, D, A, B} . \tag{M18}
\end{align*}
$$

Obviously, all morphisms $b_{A, B, C, D}$ are isomorphims in the category K^{\bullet}.
Definition 1.1 ([1]). A diagonal-terminal-symmetric category (shortly $d t s$-category) $\underline{K}=\left(K^{\bullet}, d, t\right)$ is defined as a symmetric monoidal category endowed with morphism families

$$
d=\left(d_{A}: A \rightarrow A \otimes A|A \in| K \mid\right) \text { and } t=\left(t_{A}: A \rightarrow I|A \in| K \mid\right)
$$

satisfying the following conditions for all objects $A, B, A^{\prime} \in|K|$ and all morphisms $\rho \in K\left[A, A^{\prime}\right]$.
Diagonality:

$$
\begin{align*}
& d_{A}\left(d_{A} \otimes 1_{A}\right)=d_{A}\left(1_{A} \otimes d_{A}\right) a_{A, A, A}, \tag{D1}\\
& d_{A} s_{A, A}=d_{A}, \tag{D2}\\
& d_{A \otimes B}=\left(d_{A} \otimes d_{B}\right) b_{A, A, B, B}, \tag{D3}\\
& d_{A}(\rho \otimes \rho)=\rho d_{A^{\prime}} . \tag{D4}
\end{align*}
$$

Terminality:

$$
\begin{align*}
& d_{A}\left(1_{A} \otimes t_{A}\right) r_{A}=1_{A} \tag{T1}\\
& t_{I}=1_{I} \tag{T2}\\
& \rho t_{A^{\prime}}=t_{A} \tag{T3}
\end{align*}
$$

Let A, A^{\prime}, B be arbitrary objects in K and let $\rho \in K\left[A, A^{\prime}\right]$ be any morphism in K. Then the properties

$$
\begin{align*}
& d_{A}\left(d_{A} \otimes d_{A}\right)=d_{A} d_{A \otimes A}, \tag{D5}\\
& d_{A}\left(d_{A} \otimes d_{A}\right)=d_{A}\left(d_{A} \otimes d_{A}\right) b_{A, A, A, A}, \tag{D6}\\
& t_{A} d_{I}=d_{A}\left(t_{A} \otimes t_{A}\right), \tag{D7}\\
& \left.\rho d_{A^{\prime}} d_{A^{\prime} \otimes A^{\prime}}=d_{A}\left(\rho d_{A^{\prime}} \otimes d_{A}(\rho \otimes \rho)\right)\right), \tag{D9}\\
& d_{A}\left(t_{A} \otimes 1_{A}\right) l_{A}=1_{A}, \tag{T4}\\
& d_{A \otimes B}\left(\left(1_{A} \otimes t_{B}\right) r_{A} \otimes\left(t_{A} \otimes 1_{B}\right) l_{B}\right)=1_{A \otimes B}, \tag{T5}\\
& t_{A \otimes B}=\left(t_{A} \otimes t_{B}\right) t_{I \otimes I}, \tag{T6}\\
& r_{I}=t_{I \otimes I}, \tag{T7}\\
& d_{A} t_{A \otimes A}=t_{A}, \tag{T8}\\
& \rho t_{A^{\prime}} d_{I}=d_{A}\left(\rho t_{A^{\prime}} \otimes t_{A}\right) \tag{T9}
\end{align*}
$$

are consequences of the conditions above ([1]).
The category Set of all total functions between arbitrary sets is a model of a dts-category by

$$
\begin{aligned}
& I:=\{\emptyset\}, A \otimes B:=\{\langle a, b\rangle \mid a \in A \wedge b \in B\}, \\
& \rho \in \operatorname{Set}[A, B]: \Leftrightarrow \rho=\{(a, b) \mid a \in A \wedge b=\rho(a) \in B\}, \\
& \qquad \quad \forall a \in A \exists!!b \in B(b=\rho(a)), \\
& \rho \in \operatorname{Set}[A, B], \sigma \in \operatorname{Set}[B, C] \Rightarrow \rho \circ \sigma:=\{(a, c) \mid a \in A \wedge c=\sigma(\rho(a))\}, \\
& \qquad(a, c) \in \rho \circ \sigma \Leftrightarrow \exists b \in B((a, b) \in \rho \wedge(b, c) \in \sigma), \\
& \rho \in \operatorname{Set}[A, B], \rho^{\prime} \in \operatorname{Set}\left[A^{\prime}, B^{\prime}\right] \Rightarrow \rho \otimes \rho^{\prime}:=\left\{\left(\left\langle a, a^{\prime}\right\rangle,\left\langle\rho(a), \rho^{\prime}\left(a^{\prime}\right)\right\rangle\right) \mid a \in A, a^{\prime} \in A^{\prime}\right\}, \\
& a_{A, B, C}:=\{(\langle a,\langle b, c\rangle\rangle,\langle\langle a, b\rangle, c\rangle) \mid a \in A, b \in B, c \in C\}, \\
& s_{A, B}:=\{(\langle a, b\rangle,\langle b, a\rangle) \mid a \in A, b \in B\}, \\
& r_{A}:=\{(\langle a, \emptyset\rangle, a) \mid a \in A\}, \\
& l_{A}:=\{(\langle\emptyset, a\rangle, a) \mid a \in A\}, \\
& d_{A}:=\{(a,\langle a, a\rangle) \mid a \in A\}, \\
& t_{A}:=\{(a, \emptyset) \mid a \in A\} .
\end{aligned}
$$

Remark that I is a terminal object in any dts-category \underline{K} and $\left(A \otimes B ; p_{1}^{A, B}, p_{2}^{A, B}\right)$ forms a categorical product of the objects A, B in the category K, where $p_{1}^{A, B}:=\left(1_{A} \otimes t_{B}\right) r_{A}$ and $p_{2}^{A, B}:=\left(t_{A} \otimes 1_{B}\right) l_{B}$.

Moreover, $d_{A}(\rho \otimes \sigma)=\rho d_{B}$ is equivalent to $\rho=\sigma$ for all $A, B \in|K|$ and all $\rho, \sigma \in K[A, B]$ because of

$$
\begin{aligned}
\sigma & =\sigma d_{B} p_{2}^{B, B}=d_{A}\left(\sigma t_{B} \otimes \sigma\right) l_{B}=d_{A}\left(t_{A} \otimes \sigma\right) l_{B} \\
& =d_{A}\left(\rho t_{B} \otimes \sigma\right) l_{B}=d_{A}(\rho \otimes \sigma) p_{2}^{B, B}=\rho d_{B} p_{2}^{B, B}=\rho
\end{aligned}
$$

The morphisms $p_{1}^{A, B}$ and $p_{2}^{A, B}$ are called canonical projections in the category K.

Conditions (D9) and (T9) are equivalent to
$\rho d_{A^{\prime}}=d_{A}\left(\rho d_{A^{\prime}} \otimes d_{A}(\rho \otimes \rho)\right) p_{2}^{A^{\prime}, A^{\prime}}$ and $\rho t_{A^{\prime}}=d_{A}\left(\rho t_{A^{\prime}} \otimes t_{A}\right) p_{2}^{I, I}$, respectively.
Definition 1.2. Let K^{\bullet} be again a symmetric monoidal category endowed with morhism families d and t as above. Then $\underline{K}=\left(K^{\bullet}, d, t\right)$ is called halfdiagonal-terminal-symmetric category (shortly hdts-category), if the conditions
(D1), (D2), (D3), (D5), (D7), (T1), (T2), (T3)
hold identically.
As above, the identities (T4), (T5), (T6), (T7), (T8), (T9) follow from the defining conditions in an hdts-category.
Definition 1.3. A diagonal-halfterminal-symmetric category (shortly $d h t s$-category) ([3], [7], [10]) is defined as a sequence $\underline{K}:=\left(K^{\bullet} ; d, t, O, o\right)$ such that K^{\bullet} is again a symmetric monoidal category, d and t are families as above, O is a distinguished zero-object of $K^{\bullet}, o: I \rightarrow O$ is a distinguished morphism of K^{\bullet}, and the following equations are fulfilled for all objects $A, B, A^{\prime}, B^{\prime} \in|K|$ and all morphisms $\rho \in K\left[A, A^{\prime}\right], \sigma \in K\left[B, B^{\prime}\right], \lambda \in$ $K[A, O], \kappa \in K[O, A]:$
(D4), (T1), (T4), (T5), (T6), and
(o1) $t_{A} O=\lambda$,
(o2) $\quad\left(1_{A} \otimes t_{O}\right) r_{A}=\kappa$,
(O1) $A \otimes O=O \otimes A=O$.

Remark that the conditions
(D1), (D2), (D3), (D5), (D6), (D7), (D9), (T2), (T7), (T8), (T9), and

$$
\begin{align*}
& b_{A, B, C, D}\left(1_{A \otimes C} \otimes t_{B \otimes D}\right) r_{A \otimes C}=\left(1_{A} \otimes t_{B}\right) r_{A} \otimes\left(1_{C} \otimes t_{D}\right) r_{C}, \tag{B1}\\
& b_{A, B, C, D}\left(t_{A \otimes C} \otimes 1_{B \otimes D}\right) l_{B \otimes D}=\left(t_{A} \otimes 1_{B}\right) l_{B} \otimes\left(t_{C} \otimes 1_{D}\right) l_{D} \tag{B2}
\end{align*}
$$

are consequences of the other conditions ([3], [7], [10]).
Formulas (o1), (o2), and (O1) explain that the morphism sets $K[A, O]$ and $K[O, A]$ both consist of exactly one element $o_{A, O}$ and $o_{O, A}$, respectively, and O is a zero object in K. In any $d h t s$-category there is a so-called zero-morphism $o_{A, B}$ to each pair of objects $A, B \in|K|$ with the properties

$$
\begin{align*}
& \forall \rho \in K\left[A, A^{\prime}\right], \sigma \in K\left[B, B^{\prime}\right]\left(\rho o_{A, B}=o_{A^{\prime}, B} \wedge o_{A, B} \sigma=o_{A, B^{\prime}}\right), \tag{o3}\\
& \forall \xi, \eta \in K\left(o_{A, B} \otimes \xi=o_{A, B}=\eta \otimes o_{A, B}\right), \\
& o_{O, A}=\left(1_{A} \otimes t_{O}\right) r_{A}=\left(t_{O} \otimes 1_{A}\right) l_{A} .
\end{align*}
$$

The category Par of all partial functions between arbitrary sets is a model of a dhts-category by the same fixations as above and $O=\emptyset$ (the empty set) and $o: I \rightarrow O, o_{A, O}: A \rightarrow O, o_{O, A}: O \rightarrow A, o_{A, B}: A \rightarrow B$ as the empty functions. The morphisms are given by

$$
\begin{aligned}
\rho \in K[A, B]: \Leftrightarrow & \rho=\{(a, \rho(a)) \mid a \in D(\rho) \wedge \rho(a) \in B\}, \\
& \forall a \in D(\rho) \subseteq A \exists!!b \in B(b=\rho(a)) .
\end{aligned}
$$

The following fact is of importance for the consideration of dhts-categories.

Lemma 1.4. Let \underline{K} be a symmetric monoidal category endowed with morphism families d and t as above which fulfil conditions (D4), (T1) and (T6). Then conditions (T4) and (T5) are consequences of the validity of (D2) and (D3) in \underline{K}.

Proof. Using (T1) and (D2) one obtains (T4) as follows:
$1_{A}=d_{A}\left(1_{A} \otimes t_{A}\right) r_{A}=d_{A} s_{A, A}\left(1_{A} \otimes t_{A}\right) r_{A}=d_{A}\left(t_{A} \otimes 1_{A}\right) s_{I, A} r_{A}=d_{A}\left(t_{A} \otimes 1_{A}\right) l_{A}$.

The calculation

$$
\begin{align*}
d_{A \otimes B} & \left(\left(1_{A} \otimes t_{B}\right) r_{A} \otimes\left(t_{A} \otimes 1_{B}\right) l_{B}\right) \\
& =\left(d_{A} \otimes d_{B}\right) b_{A, A, B, B}\left(\left(1_{A} \otimes t_{B}\right) r_{A} \otimes\left(t_{A} \otimes 1_{B}\right) l_{B}\right) \tag{D3}\\
& =\left(d_{A}\left(1_{A} \otimes t_{A}\right) \otimes d_{B}\left(t_{B} \otimes 1_{B}\right)\right) b_{A, I, I, B}\left(r_{A} \otimes l_{B}\right) \tag{M15}\\
& =\left(d_{A}\left(1_{A} \otimes t_{A}\right) \otimes d_{B}\left(t_{B} \otimes 1_{B}\right)\right)\left(1_{A \otimes I} \otimes 1_{I \otimes B}\right)\left(r_{A} \otimes l_{B}\right) \tag{M16}\\
& =\left(d_{A}\left(1_{A} \otimes t_{A}\right) \otimes d_{B}\left(t_{B} \otimes 1_{B}\right)\right)\left(r_{A} \otimes l_{B}\right) \tag{F3}\\
& =\left(d_{A}\left(1_{A} \otimes t_{A}\right) r_{A} \otimes d_{B}\left(t_{B} \otimes 1_{B}\right) l_{B}\right) \tag{F4}\\
& =1_{A} \otimes 1_{B} \tag{T1}
\end{align*}
$$

shows the validity of (T5).

Let \underline{K} be an arbitrary dhts-category. Then all morphisms $\rho \in K\left[A, A^{\prime}\right]$, $A, A^{\prime} \in|K|$, fulfilling $\rho t_{A^{\prime}}=t_{A}$, form a subcategory \underline{M}^{K} of \underline{K} which is even a $d t s$-caregory. Denoting by \underline{M}_{K} the smallest $d t s$-subcategory of \underline{M}^{K} containing all morphisms of the families a, r, l, s, d, t one has

$$
\underline{M}_{K} \subseteq \underline{\operatorname{Iso}}(K) \subseteq \underline{\operatorname{Cor}}(K) \subseteq \underline{M}^{K},
$$

 isomorphisms (coretractions) of K together with all terminal morphisms of K, since all coretractions and all terminal morphisms fulfil the condition (T3) (see [7], [10]).

The object $I \in|K|$ is a terminal object in the subcategories \underline{M}_{K}, $\underline{\text { Iso }}(K)$, $\operatorname{Cor}(K)$, and \underline{M}^{K} but not in the whole category \underline{K}. Morphisms of the kind $p_{1}^{A, B}=\left(1_{A} \otimes t_{B}\right) r_{A}$ and $p_{2}^{A, B}=\left(t_{A} \otimes 1_{B}\right) l_{B}$ are called canonincal projections again and $\left(A \otimes B ; p_{1}^{A, B}, p_{2}^{A, B}\right)$ is a categorical product of A and B in \underline{M}^{K}, but in general not in the whole category.

Schreckenberger had proved ([7]) that

$$
\rho \leq \sigma: \Leftrightarrow d_{A}(\rho \otimes \sigma)=\rho d_{A^{\prime}} \quad\left(\rho, \sigma \in K\left[A, A^{\prime}\right]\right)
$$

defines a partial order relation which is stable under composition and \otimes-operation. Moreover, the following are equivaent:

$$
\begin{align*}
& d_{A}(\rho \otimes \sigma)=\rho d_{A^{\prime}}, \tag{i}\\
& d_{A}(\rho \otimes \sigma) p_{2}^{A^{\prime}, A^{\prime}}=\rho, \tag{ii}\\
& d_{A}(\sigma \otimes \rho) p_{1}^{A^{\prime}, A^{\prime}}=\rho . \tag{iii}
\end{align*}
$$

Hoehnke had shown ([3]) the validity of the identical implication

$$
\rho=d_{A}(\rho \otimes \sigma) p_{2}^{A^{\prime}, A^{\prime}} \Rightarrow \rho=d_{A}(\rho \otimes \sigma) p_{1}^{A^{\prime}, A^{\prime}}
$$

The relation \leq in the $d h t s$-category Par describes exactly the usual inclusion \subseteq.

Morphisms $e_{A} \in K[A, A]$ of any dhts-category \underline{K} fulfilling $e_{A} \leq 1_{A}$ for any $A \in|K|$ are called subidentities ([7]). Especially, for each $\rho \in K[A, B]$, the morphism

$$
\alpha(\rho):=d_{A}\left(\rho \otimes 1_{A}\right) p_{2}^{B, A}\left(=d_{A}\left(1_{A} \otimes \rho\right) p_{1}^{A, B}\right)
$$

is a subidentity of $A \in|K|$, since

$$
\begin{aligned}
d_{A}\left(d_{A}\left(\rho \otimes 1_{A}\right) p_{2}^{B, A} \otimes 1_{A}\right) p_{2}^{A, A} & =d_{A}\left(\rho \otimes d_{A}\left(1_{A} \otimes 1_{A}\right)\right) a_{B, A, A}\left(p_{2}^{B, A} \otimes 1_{A}\right) p_{2}^{A, A} \\
& =d_{A}\left(\rho \otimes d_{A}\right)\left(1_{B} \otimes p_{2}^{A, A}\right) p_{2}^{B, A} \\
& =d_{A}\left(\rho \otimes d_{A} p_{2}^{A, A}\right) p_{2}^{B, A}=d_{A}\left(\rho \otimes 1_{A}\right) p_{2}^{B, A} .
\end{aligned}
$$

Important properties of subidentities are described in [7], [13], [15].
Definition 1.5. A diagonal-halfterminal-symmetric category with diagonal inversion ∇ (shortly $\operatorname{dht} \nabla$ s-category, $[10]$) is, by definition, a sequence $\underline{K}:=$ $\left(K^{\bullet} ; d, t, \nabla, O, o\right)$ such that $\left(K^{\bullet} ; d, t, O, o\right)$ is a $d h t s$-category endowed with a morphism family $\nabla=\left(\nabla_{A}|A \in| K \mid\right)$ satisfying the following for all $A \in|K|$:
$(\nabla 1) \quad d_{A} \nabla_{A}=1_{A}$,
$(\nabla 2) \quad \nabla_{A} d_{A} d_{A \otimes A}=d_{A \otimes A}\left(\nabla_{A} d_{A} \otimes 1_{A \otimes A}\right)$.
The category Par is also a model of a $d h t \nabla s$-category, where

$$
\nabla_{A}:=\{(\langle a, a\rangle, a) \mid a \in A\}, A \in|\operatorname{Par}| .
$$

The properties
$(\nabla 3) \quad a_{A, A, A}\left(\nabla_{A} \otimes 1_{A}\right) \nabla_{A}=\left(1_{A} \otimes \nabla_{A}\right) \nabla_{A}$,
$(\nabla 4) \quad s_{A, A} \nabla_{A}=\nabla_{A}$,
$(\nabla 5) \quad \nabla_{A \otimes B}=b_{A, B, A, B}\left(\nabla_{A} \otimes \nabla_{B}\right)$,
$(\nabla 6) \quad \nabla_{A} d_{A}=\left(d_{A} \otimes 1_{A}\right) a_{A, A, A}^{-1}\left(1_{A} \otimes \nabla_{A}\right)$,
$(\nabla 7) \quad \nabla_{A} d_{A}=\left(1_{A} \otimes d_{A}\right) a_{A, A, A}\left(\nabla_{A} \otimes 1_{A}\right)$,
$(\nabla 8) \quad \nabla_{A} d_{A}=\left(d_{A} \otimes d_{A}\right) \nabla_{A \otimes A}$,
$(\nabla 9) \quad \nabla_{A} \rho d_{A^{\prime}}=d_{A \otimes A}\left(\nabla_{A} \rho \otimes(\rho \otimes \rho) \nabla_{A^{\prime}}\right)$,
$\left(\nabla 9^{\prime}\right) \quad \nabla_{A} \rho=d_{A \otimes A}\left(\nabla_{A} \rho \otimes(\rho \otimes \rho) \nabla_{A^{\prime}}\right) \nabla_{A^{\prime}}$,
$(\nabla 10) \quad \nabla_{A \otimes A} \nabla_{A}=\left(\nabla_{A} \otimes \nabla_{A}\right) \nabla_{A}$,

$$
\rho=d_{A}(\rho \otimes \rho) \nabla_{A^{\prime}}
$$

follow from the axioms and the other properties of a $d h t \nabla s$-category for all $A, A^{\prime}, B \in|K|$ and all $\rho \in K\left[A, A^{\prime}\right]$ (see [13]).

By the definition of the partial order relation, (T9) is equivalent to $\rho t_{A^{\prime}} \leq t_{A},(\nabla 2)$ is equivalent to $\nabla_{A} d_{A} \leq 1_{A^{2}}$, and $(\nabla 9)$ is equivalent to $\nabla_{A} \rho \leq(\rho \otimes \rho) \nabla_{A^{\prime}}$ for $\rho \in K\left[A, A^{\prime}\right]$.

Moreover, one has the following important property in any $d h t \nabla s$-category $\underline{K}([11])$:
$(\mathrm{P} \nabla) \forall A, A^{\prime} \in|K| \forall \rho, \sigma \in K\left[A, A^{\prime}\right]\left(d_{A}(\rho \otimes \sigma) p_{2}^{A^{\prime}, A^{\prime}}=\rho \Leftrightarrow d_{A}(\rho \otimes \sigma) \nabla_{A^{\prime}}=\rho\right)$.
In any $d h t \nabla s$-category, conditions (D9), (T9), and ($\nabla 9$) result in (D9'), (T9'), and ($\nabla 9^{\prime}$), respectively.

2. $h d h t \nabla s$-categories

Definition 2.1 ([10]). A sequence $\underline{K}=\left(K^{\bullet} ; d, t, \nabla, o\right)$ is called halfdiagonal-halfterminal-symmetric monoidal category with diagonal inversion ∇ (shortly $h d h t \nabla s$-category), iff K^{\bullet} is a symmetric monoidal category as above,
$\left(d_{A}: A \rightarrow A \otimes A|A \in| K \mid\right),\left(t_{A}: A \rightarrow I|A \in| K \mid\right),\left(\nabla_{A}: A \otimes A \rightarrow A|A \in| K \mid\right)$ are families of morphisms of K, and $o: I \rightarrow O \quad(I \neq O \in|K|)$ is a distinguished morphism of K such that for all objects and all morphisms of the underlying category K the conditions
(D1), (D2), (D3), (D5), (D7), (D8),
(T1), (T2), (T6), (T9'),
$(\nabla 1),(\nabla 2),(\nabla 3),(\nabla 4), \quad(\nabla 5),(\mathrm{D} \nabla)$,
(o1), (o2), (O1),
and

$$
\begin{align*}
& d_{A}\left(\rho \otimes \rho^{\prime}\right) \nabla_{B} d_{B}\left(\sigma \otimes \sigma^{\prime}\right) \nabla_{C} \tag{*1}\\
& \quad=d_{A}\left(d_{A}\left(\rho \otimes \rho^{\prime}\right) \nabla_{B} d_{B}\left(\sigma \otimes \sigma^{\prime}\right) \nabla_{C} \otimes d_{A}\left(\rho \sigma \otimes \rho^{\prime} \sigma^{\prime}\right) \nabla_{C}\right) \nabla_{C}
\end{align*}
$$

are fulfilled.
The system of axioms given in this definition is free of contradictions, because the category Rel of all binary relations between sets is a model of it, i.e. Rel fulfils all the axioms of an $h d h t \nabla s$-category, where \mid Rel \mid is the class of all sets, the morphisms are characterized by
$\rho \in \operatorname{Rel}\left[A, A^{\prime}\right]: \Leftrightarrow \rho=\left\{\left(a, a^{\prime}\right) \mid a \in D(\rho) \subseteq A \wedge a^{\prime} \in W(\rho) \subseteq A^{\prime} \wedge H\left(a, a^{\prime}\right)\right\}$,
where $H(x, y)$ is a sentence form in two variables, the distinguished objects are $I=\{\emptyset\}$ and $O=\emptyset$, the operation \otimes for objects is given as in Set, the composition and the \otimes-operation of morphisms are described by
$\rho \in \operatorname{Rel}[A, B], \sigma \in \operatorname{Rel}[B, C] \Rightarrow \rho \circ \sigma=\{(a, c) \mid \exists b \in B((a, b) \in \rho \wedge(b, c) \in \sigma)\}$,
$\rho \in \operatorname{Rel}[A, B], \rho^{\prime} \in \operatorname{Rel}\left[A^{\prime}, B^{\prime}\right] \Rightarrow \rho \otimes \rho^{\prime}=\left\{\left(\left\langle a, a^{\prime}\right\rangle,\left\langle b, b^{\prime}\right\rangle\right) \mid(a, b) \in \rho \wedge\left(a^{\prime}, b^{\prime}\right) \in \rho^{\prime}\right\}$,
and the morphisms of the families $a, r, l, s, b, d, t, \nabla,\left(0_{A, B}|A, B \in| \operatorname{Rel} \mid\right)$ are as in Par.

Lemma 2.2. The relation \leq defined by

$$
\rho \leq \sigma: \Leftrightarrow d_{A}(\rho \otimes \sigma) \nabla_{B}=\rho
$$

is a partial order relation in any hdht ∇-symmetric category which is compatible with compostion and \otimes-operation for morphisms. Moreover, the greatest
lower bound of two morphisms $\lambda, \mu \in K[A, B]$ with respect to the canonical order relation \leq is given by

$$
d_{A}(\lambda \otimes \mu) \nabla_{B}=\inf \{\lambda, \mu\} .
$$

Proof. Condition $(D \nabla)$ shows the reflexivity of \leq. The relation is antisymmetric because of

$$
\begin{align*}
\rho \leq \sigma \wedge \sigma \leq \rho \Rightarrow \sigma & =d_{A}(\sigma \otimes \rho) \nabla_{B} \\
& =d_{A} s_{A, A}(\sigma \otimes \rho) \nabla_{B} \tag{D2}\\
& =d_{A}(\rho \otimes \sigma) s_{B, B} \nabla_{B} \tag{M8}\\
& =d_{A}(\rho \otimes \sigma) \nabla_{B} \\
& =\rho .
\end{align*}
$$

The implication

$$
\begin{align*}
\rho \leq \sigma \wedge \sigma \leq \tau \Rightarrow \rho & =d_{A}(\rho \otimes \sigma) \nabla_{B} \\
& =d_{A}\left(\rho \otimes d_{A}(\sigma \otimes \tau) \nabla_{B}\right) \nabla_{B} \\
& =d_{A}\left(1_{A} \otimes d_{A}\right)(\rho \otimes(\sigma \otimes \tau))\left(1_{B} \otimes \nabla_{B}\right) \nabla_{B} \\
& =d_{A}\left(d_{A} \otimes 1_{A}\right)((\rho \otimes \sigma) \otimes \tau) a_{B, B, B}^{-1}\left(1_{B} \otimes \nabla_{B}\right) \nabla_{B} \quad((M 6),(D 1)) \\
& =d_{A}\left(d_{A}(\rho \otimes \sigma) \otimes \tau\right)\left(\nabla_{B} \otimes 1_{B}\right) \nabla_{B} \\
& =d_{A}\left(d_{A}(\rho \otimes \sigma) \nabla_{B} \otimes \tau\right) \nabla_{B} \\
& =d_{A}(\rho \otimes \tau) \nabla_{B} \\
\Rightarrow \rho & \leq \tau
\end{align*}
$$

yields the transitivity of the relation \leq.
Now suppose $\rho \leq \sigma, \quad \lambda \leq \mu$, and $\operatorname{cod} \rho=\operatorname{dom} \lambda$. Then $\rho \lambda \leq \sigma \mu$ follows via the definition of \leq by condition $(* 1)$:

$$
\begin{aligned}
& \rho \leq \sigma \wedge \lambda \leq \mu \Rightarrow \quad d_{A}(\rho \otimes \sigma) \nabla_{B}=\rho \wedge d_{B}(\lambda \otimes \mu) \nabla_{C}=\lambda \\
& \Rightarrow \rho \lambda=d_{A}(\rho \otimes \sigma) \nabla_{B} d_{B}(\lambda \otimes \mu) \nabla_{C} \\
&=d_{A}\left(d_{A}(\rho \otimes \sigma) \nabla_{B} d_{B}(\lambda \otimes \mu) \nabla_{C} \otimes d_{A}(\rho \lambda \otimes \sigma \mu) \nabla_{C}\right) \nabla_{C} \\
&=d_{A}\left(\rho \lambda \otimes d_{A}(\rho \lambda \otimes \sigma \mu) \nabla_{C}\right) \nabla_{C} \\
&=d_{A}\left(d_{A}(\rho \lambda \otimes \rho \lambda) \otimes \sigma \mu\right) a_{C, C, C}^{-1}\left(1_{C} \otimes \nabla_{C}\right) \nabla_{C} \\
&\left.=d_{A}(\rho \lambda \otimes \rho \lambda) \nabla_{C} \otimes \sigma \mu\right) \nabla_{C} \\
&=d_{A}(\rho \lambda \otimes \sigma \mu) \nabla_{C} \\
& \Rightarrow \quad \rho \lambda \leq \sigma \mu .
\end{aligned}
$$

For morphisms $\rho \leq \sigma \in K[A, B]$ and $\rho^{\prime} \leq \sigma^{\prime} \in K\left[A^{\prime}, B^{\prime}\right]$ one obtains

$$
\rho=d_{A}(\rho \otimes \sigma) \nabla_{B} \quad \text { and } \quad \rho^{\prime}=d_{A^{\prime}}\left(\rho^{\prime} \otimes \sigma^{\prime}\right) \nabla_{B^{\prime}},
$$

hence

$$
\begin{align*}
\rho \otimes \rho^{\prime} & =d_{A}(\rho \otimes \sigma) \nabla_{B} \otimes d_{A^{\prime}}\left(\rho^{\prime} \otimes \sigma^{\prime}\right) \nabla_{B^{\prime}} \\
& =\left(d_{A} \otimes d_{A^{\prime}}\right)\left((\rho \otimes \sigma) \otimes\left(\rho^{\prime} \otimes \sigma^{\prime}\right)\right)\left(\nabla_{B} \otimes \nabla_{B^{\prime}}\right) \\
& =d_{A \otimes A^{\prime}}\left(\left(\rho \otimes \rho^{\prime}\right) \otimes\left(\sigma \otimes \sigma^{\prime}\right)\right) b_{B, B^{\prime}, B, B^{\prime}}\left(\nabla_{B} \otimes \nabla_{B^{\prime}}\right) \quad((D 3),(M 18)) \\
& =d_{A \otimes A^{\prime}}\left(\left(\rho \otimes \rho^{\prime}\right) \otimes\left(\sigma \otimes \sigma^{\prime}\right)\right) \nabla_{B \otimes B^{\prime}}
\end{align*}
$$

therefore $\rho \otimes \rho^{\prime} \leq \sigma \otimes \sigma^{\prime}$.

Now let λ and μ be morphisms from A into B. Then

$$
\begin{align*}
d_{A}(\lambda \otimes \mu) \nabla_{B} & =d_{A}\left(d_{A}(\lambda \otimes \lambda) \nabla_{B} \otimes \mu\right) \nabla_{B} \\
& =d_{A}\left(\lambda \otimes d_{A}(\lambda \otimes \mu) \nabla_{B}\right) \nabla_{B} \tag{D1}\\
& =d_{A} s_{A, A}\left(\lambda \otimes d_{A}(\lambda \otimes \mu) \nabla_{B}\right) \nabla_{B} \tag{D2}\\
& =d_{A}\left(d_{A}(\lambda \otimes \mu) \nabla_{B} \otimes \lambda\right) s_{B, B} \nabla_{B} \tag{M8}\\
& =d_{A}\left(d_{A}(\lambda \otimes \mu) \nabla_{B} \otimes \lambda\right) \nabla_{B}
\end{align*}
$$

hence $d_{A}(\lambda \otimes \mu) \nabla_{B} \leq \lambda$. In the same manner one shows $d_{A}(\lambda \otimes \mu) \nabla_{B} \leq \mu$.

Further let be $\tau \leq \lambda$ and $\tau \leq \mu$. Then it follows
$\tau=d_{A}(\tau \otimes \mu) \nabla_{B}=d_{A}\left(d_{A}(\tau \otimes \lambda) \nabla_{B} \otimes \mu\right) \nabla_{B}=d_{A}\left(\tau \otimes d_{A}(\lambda \otimes \mu) \nabla_{B}\right) \nabla_{B}$, therefore $\tau \leq d_{A}(\lambda \otimes \mu) \nabla_{B}$. Consequently, $d_{A}(\lambda \otimes \mu) \nabla_{B}$ is the greatest lower bound of λ and μ with respect to the partial order relation.

Lemma 2.3. Any hdht ∇ s-category \underline{K} has the following properties:

$$
\begin{array}{ll}
\forall A \in|K| & \left(\nabla_{A} d_{a} \leq 1_{A \otimes A}\right), \\
\forall A, A^{\prime} \in|K| \forall \rho \in K\left[A, A^{\prime}\right] & \left(\rho d_{A^{\prime}} \leq d_{A}(\rho \otimes \rho)\right), \\
\forall A, A^{\prime} \in|K| \forall \rho \in K\left[A, A^{\prime}\right] & \left(\nabla_{A} \rho \leq(\rho \otimes \rho) \nabla_{A^{\prime}}\right) .
\end{array}
$$

Proof. Composing the equation in condition $(\nabla 2)$ with $\nabla_{A^{\prime}, A^{\prime}}$ and using $(\nabla 1)$ one obtains

$$
\nabla_{A} d_{A}=\nabla_{A} d_{A} d_{A \otimes A} \nabla_{A^{\prime} \otimes A^{\prime}}=d_{A \otimes A}\left(\nabla_{A} d_{A} \otimes 1_{A \otimes A}\right) \nabla_{A \otimes A},
$$

hence $\nabla_{A} d_{A} \leq 1_{A \otimes A}$ by the definition of \leq.
Condition ($\mathrm{D} \nabla$) gives rise to

$$
\begin{aligned}
& \rho d_{A^{\prime}}=\left(d_{A}(\rho \otimes \rho) \nabla_{A^{\prime}}\right) d_{A^{\prime}}=\left(d_{A}(\rho \otimes \rho)\right)\left(\nabla_{A^{\prime}} d_{A^{\prime}}\right) \leq d_{A}(\rho \otimes \rho) \quad \text { and } \\
& \nabla_{A} \rho=\nabla_{A}\left(d_{A}(\rho \otimes \rho) \nabla_{A^{\prime}}\right)=\left(\nabla_{A} d_{A}\right)\left((\rho \otimes \rho) \nabla_{A^{\prime}}\right) \leq(\rho \otimes \rho) \nabla_{A^{\prime}},
\end{aligned}
$$

respectively.
Corollary 2.4. By the definition of the partial order relation,

$$
\begin{equation*}
\rho d_{A^{\prime}}=d_{A}\left(\rho d_{A^{\prime}} \otimes d_{A}(\rho \otimes \rho)\right) \nabla_{A^{\prime} \otimes A^{\prime}} \text { and } \tag{D9'}
\end{equation*}
$$

$$
\nabla_{A} \rho=d_{A \otimes A}\left(\nabla_{A} \rho \otimes(\rho \otimes \rho) \nabla_{A^{\prime}}\right) \nabla_{A^{\prime}}
$$

are identities in each hdht ∇ s-category \underline{K}.
Theorem 2.5. Let \underline{K} be an $h d h t \nabla s$-category as defined above. Then the class

$$
F^{K}:=\left\{\rho \in K \mid d_{\operatorname{dom} \rho}(\rho \otimes \rho)=\rho d_{\operatorname{cod} \rho}\right\}
$$

of so-called functional morphisms forms an hdht ∇ s-subcategory \underline{F}^{K} of \underline{K} which is even a dht ∇ s-category.

The partial order relation in the dht ∇-symmetric category \underline{F}^{K} is the restriction of \leq in the hdht ∇-symmetric category \underline{K}.

Proof. The conditions (D5), (D7), and (D8) show that the class F^{K} contains all morphisms of the families d, t, and ∇, respectively.

Let $\rho \in K[A, B]$ be an isomorphism in \underline{K}. Then there is a $\rho^{-1} \in K[B, A]$ such that $\rho^{-1} d_{A} \leq d_{B}\left(\rho^{-1} \otimes \rho^{-1}\right)$ and $\rho d_{B} \leq d_{A}(\rho \otimes \rho)$, hence $d_{A}(\rho \otimes \rho) \leq$ $\rho d_{B} \leq d_{A}(\rho \otimes \rho)$, i.e. $\rho d_{B}=d_{A}(\rho \otimes \rho)$. Therefore, each isomorphism of \underline{K} belongs to F^{K}, especially, all identities and all morphisms of the families $a, a^{-1}, r, r^{-1}, l, l^{-1}, s, s^{-1}, b, b^{-1}$ are in F^{K}. All zero morphisms $o_{A, B}, A, B \in|K|, o=o_{I, O}$, are elements of F^{K} since $o_{A, B} d_{B}=o_{A, B \otimes B}=$ $d_{A}\left(o_{A, B} \otimes o_{A, B}\right)$.

Let $\rho \in K[A, B] \cap F^{K}$ and $\sigma \in K[B, C] \cap F^{K}$. Then
$(\rho \sigma) d_{C}=\rho\left(\sigma d_{C}\right)=\rho\left(d_{B}(\sigma \otimes \sigma)\right)=\left(\rho d_{B}\right)(\sigma \otimes \sigma)=d_{A}(\rho \otimes \rho)(\sigma \otimes \sigma)=d_{A}(\rho \sigma \otimes \rho \sigma)$, hence F^{K} is closed under composition.

If $\rho \in K[A, B]$ and $\rho^{\prime} \in K\left[A^{\prime}, B^{\prime}\right]$ are morphisms of F^{K}, then $\left(\rho \otimes \rho^{\prime}\right) \in$ $K\left[A \otimes A^{\prime}, B \otimes B^{\prime}\right]$ is in F^{K} too, since

$$
\begin{aligned}
\left(\rho \otimes \rho^{\prime}\right) d_{B \otimes B^{\prime}} & =\left(\rho \otimes \rho^{\prime}\right)\left(d_{B} \otimes d_{B^{\prime}}\right) b_{B, B, B^{\prime}, B^{\prime}} \\
& =\left(d_{A}(\rho \otimes \rho) \otimes d_{A^{\prime}}\left(\rho^{\prime} \otimes \rho^{\prime}\right) b_{B, B, B^{\prime}, B^{\prime}}\right. \\
& =\left(d_{A} \otimes d_{A^{\prime}}\right) b_{A, A, A^{\prime}, A^{\prime}}\left(\left(\rho \otimes \rho^{\prime}\right) \otimes\left(\rho \otimes \rho^{\prime}\right)\right) \\
& =d_{A \otimes A^{\prime}}\left(\left(\rho \otimes \rho^{\prime}\right) \otimes\left(\rho \otimes \rho^{\prime}\right)\right) .
\end{aligned}
$$

With respect to the axioms of an $h d h t \nabla s$-category, which are identities only, and because of the defining condition of $F^{K} \subseteq K$, one has a $d h t \nabla s$-category \underline{F}^{K}.

The partial order relation \leq in \underline{K} is defined by $\rho \leq \sigma \Leftrightarrow \rho=d_{A}(\rho \otimes$ $\sigma) \nabla_{A^{\prime}}$ for morphisms $\rho, \sigma \in K\left[A, A^{\prime}\right]$. By property $(\mathrm{P} \nabla)$, this condition is equivalent to $\rho=d_{A}(\rho \otimes \sigma) p_{2}^{A^{\prime}, A^{\prime}}$ for morphisms ρ, σ of F^{K}, hence $\rho \leq \sigma$ with respect to the partial order relation in the $d h t \nabla s$-category \underline{F}^{K}.
Proposition 2.6. All morphisms $\rho \in K[A, B], A, B \in|K|$, of an $h d h t \nabla s$-category \underline{K} fulfilling the condition $\rho t_{B}=t_{A}$ (so-called total morphisms) form a symmetric monoidal subcategory $T^{K \bullet}$ which contains all coretractions of \underline{K} and all morphims $t_{A}, \quad A \in|K|$.

Moreover, $\underline{T}^{K}:=\left(T^{K \bullet}, d, t\right)$ is an hdts-category.
Proof. Obviously, all identity morphisms $1_{A}, \quad A \in|K|$, are in T^{K}. Because of

$$
\rho t_{B}=t_{A} \wedge \sigma t_{C}=t_{B} \Rightarrow(\rho \sigma) t_{c}=\rho\left(\sigma t_{C}\right)=\rho t_{B}=t_{A}
$$

and
$\rho t_{B}=t_{A} \wedge \rho^{\prime} t_{B^{\prime}}=t_{A^{\prime}} \Rightarrow\left(\rho \otimes \rho^{\prime}\right) t_{B \otimes B^{\prime}}=\left(\rho \otimes \rho^{\prime}\right)\left(t_{B} \otimes t_{B^{\prime}}\right) t_{I \otimes I}=\left(t_{A} \otimes t_{A^{\prime}}\right) t_{I \otimes I}=t_{A \otimes A^{\prime}}$ the class T^{K} is closed under composition and \otimes-operation.

Let $\rho \in K[A, B]$ be a coretraction in \underline{K}. Then there is $\rho^{*} \in K[B, A]$ such that $\rho \rho^{*}=1_{A}$. So, one has (see [6], p. 12)

$$
\begin{align*}
\rho t_{B}=1_{A} \rho t_{B} & =d_{A}\left(1_{A} \otimes t_{A}\right) r_{A} \rho t_{B} \tag{T1}\\
& =d_{A}\left(\rho t_{B} \otimes t_{A}\right) r_{I} \tag{M7}\\
& =d_{A}(\rho \otimes \rho)\left(t_{B} \otimes \rho^{*} t_{A}\right) r_{I} \tag{*}\\
& \geq \rho d_{B}\left(t_{B} \otimes 1_{B}\right)\left(1_{I} \otimes \rho^{*} t_{A}\right) l_{I} \tag{2.3}\\
& =\rho d_{b}\left(t_{B} \otimes 1_{B}\right) l_{B} \rho^{*} t_{A} \tag{M14}\\
& =\rho 1_{B} \rho^{*} t_{A} \tag{T4}\\
& =t_{A} \geq \rho t_{B},
\end{align*}
$$

therefore $\rho t_{B}=t_{A}$, hence $\rho \in T^{K}$.
Because of $t_{A} t_{I}=t_{A} 1_{I}=t_{A}, \quad A \in|K|, d_{A} \nabla_{A}=1_{A}, \quad A \in|K|$, and each isomorphism is just a coretraction, all morphisms of the families $a, a^{-1}, r, r^{-1}, l, l^{-1}, s, s^{-1}, b, b^{-1}, d$, and t belong to T^{K}.

Since arbitrary suitable morphisms and objects of \underline{K} fulfil the identities (D1), (D2), (D3), (D5), (D6), (D7), (T1), (T2), (T3), (T4), (T5), (T6), (T7), (T8), (T9), the sequence ($T^{K \bullet}, d, t$) is an hdts-category.

Corollary 2.7. Let \underline{K} be any hdht ∇s-category. Then all morphisms of the families $1, a, r, l, s, b, d, t, \nabla$, and $\left(o_{A, B}|A, B \in| K \mid\right)$ possess all properties of such morhisms in a dht ∇s-category, especially the following identities are valid:
(D8), (T4), (T5), (T7), (T8), (B1), (B2), (o3), (o4), (o5),
$(\nabla 6), \quad \nabla 7),(\nabla 8),(\nabla 10)$,

$$
\begin{aligned}
& \nabla_{I} d_{I}=1_{I \otimes I}, \\
& t_{I \otimes I}=\nabla_{I}=l_{I}=r_{I}=d_{I}^{-1}, \\
& d_{I}=r_{I}^{-1}=l_{I}^{-1}, \\
& d_{I} \otimes d_{I}=d_{I \otimes I} .
\end{aligned}
$$

Lemma 2.8. Let \underline{K} be an $h d h t \nabla s$-category. Then one has

$$
\begin{equation*}
\rho t_{A^{\prime}} d_{I}=d_{A}\left(\rho t_{A^{\prime}} \otimes t_{A}\right) \tag{T9}
\end{equation*}
$$

for all objects $A, A^{\prime} \in|K|$ and all morphisms $\rho \in K\left[A, A^{\prime}\right]$.
Moreover:

$$
\begin{array}{r}
\forall A, A^{\prime} \in|K| \forall \rho \in K\left[A, A^{\prime}\right]\left(\rho d_{A^{\prime}} d_{A^{\prime} \otimes A^{\prime}}=d_{A}\left(\rho d_{A^{\prime}} \otimes d_{A}(\rho \otimes \rho)\right)\right. \tag{i}\\
\left.\Rightarrow \rho d_{A^{\prime}}=d_{A}\left(\rho d_{A^{\prime}} \otimes d_{A}(\rho \otimes \rho)\right) \nabla_{A^{\prime} \otimes A^{\prime}}\right),
\end{array}
$$

(ii) $\forall A, A^{\prime} \in|K| \forall \rho \in K\left[A, A^{\prime}\right]\left(\nabla_{A} \rho d_{A^{\prime}}=d_{A}\left(\nabla_{A} \rho \otimes(\rho \otimes \rho) \nabla_{A^{\prime}}\right)\right.$

$$
\left.\Rightarrow \nabla_{A} \rho=d_{A}\left(\nabla_{A} \rho \otimes(\rho \otimes \rho) \nabla_{A^{\prime}}\right) \nabla_{A^{\prime}}\right),
$$

(iii) $\forall A, A^{\prime} \in|K| \forall \rho \in K\left[A, A^{\prime}\right]\left(\rho t_{A^{\prime}} d_{I}=d_{A}\left(\rho t_{A^{\prime}} \otimes t_{A}\right)\right.$

$$
\left.\Leftrightarrow \rho t_{A^{\prime}}=d_{A}\left(\rho t_{A^{\prime}} \otimes t_{A}\right) \nabla_{I}\right) .
$$

Proof. Because of $\nabla_{I} d_{I}=1_{I \otimes I}$ and $\nabla_{I}=r_{I}=l_{I}=t_{I \otimes I}$ the equation

$$
\begin{aligned}
d_{A}\left(\rho t_{A^{\prime}} \otimes t_{A}\right) & =d_{A}\left(\rho t_{A^{\prime}} \otimes t_{A}\right) \nabla_{I} d_{I}=d_{A}\left(\rho t_{A^{\prime}} \otimes t_{A}\right) r_{I} d_{I} \\
& =d_{A}\left(1_{A} \otimes t_{A}\right) r_{A} \rho t_{A^{\prime}} d_{I}=\rho t_{A^{\prime}} d_{I}
\end{aligned}
$$

is valid for each $\rho \in K\left[A, A^{\prime}\right]$ and all $A, A^{\prime} \in|K|$, hence \underline{K} fulfils condition (T9).

The condition ($\mathrm{T} 9^{\prime}$) is equivalent to (T9), since

$$
d_{A}\left(\rho t_{A^{\prime}} \otimes t_{A}\right)=\rho t_{A^{\prime}} d_{I} \Rightarrow d_{A}\left(\rho t_{A^{\prime}} \otimes t_{A}\right) \nabla_{I}=\rho t_{A^{\prime}}
$$

by $d_{I} \nabla_{I}=1_{I}$ and

$$
d_{A}\left(\rho t_{A^{\prime}} \otimes t_{A}\right) \nabla_{I}=\rho t_{A^{\prime}} \Rightarrow d_{A}\left(\rho t_{A^{\prime}} \otimes t_{A}\right)=\rho t_{A^{\prime}} d_{I}
$$

by $\nabla_{I} d_{I}=1_{I \otimes I}$, hence property (iii) is shown.

The implications (i) and (ii) are satisfied because of the general property

$$
\xi d_{B}=d_{A}(\xi \otimes \eta) \Rightarrow \xi=\xi d_{B} \nabla_{B}=d_{A}(\xi \otimes \eta) \nabla_{B}
$$

Remark 2.9. The opposite of the implications (i) and (ii), respectively, is not true in general, since there are conterexamples in Rel.

Remark 2.10. As in any $d h t \nabla s$-category, the morphisms

$$
\begin{aligned}
& p_{1}^{A, B}:=\left(1_{A} \otimes t_{B}\right) r_{A} \in K[A \otimes B, A] \cap F^{K}, \\
& p_{2}^{A, B}:=\left(t_{A} \otimes 1_{B}\right) l_{B} \in K[A \otimes B, B] \cap F^{K}
\end{aligned}
$$

of an arbitrary $h d h t \nabla s$-category \underline{K} are called canonical projections again and one has

$$
\nabla_{A}=\inf \left\{p_{1}^{A, A}, p_{2}^{A, A}\right\}=d_{A}\left(p_{1}^{A, A} \otimes p_{2}^{A, A}\right) \nabla_{A}
$$

for all $A \in|K|$.
Remark that $\left(A \otimes B ; p_{1}^{A, B}, p_{2}^{A, B}\right)$ is not a categorical product in the whole category \underline{K}, but in the subcategory T^{K}

The family $\nabla=\left(\nabla_{A}|A \in| K \mid\right)$ is uniquely determined by the family $d=\left(d_{A}|A \in| K \mid\right)$ and the conditions $(\nabla 1)$ and $(\nabla 2)$.

Lemma 2.11. Let \underline{K} be an arbitrary hdht ∇s-category. Then there holds:

$$
\begin{array}{r}
(* 2) \quad \forall A, B, C \in|K| \forall \rho, \rho^{\prime} \in K[A, B] \forall \sigma, \sigma^{\prime} \in K[B, C]\left(d_{A}\left(\rho \otimes \rho^{\prime}\right) \nabla_{B}=\rho\right. \tag{*2}\\
\left.\wedge d_{B}\left(\sigma \otimes \sigma^{\prime}\right) \nabla_{C}=\sigma \Rightarrow d_{A}\left(\rho \sigma \otimes \rho^{\prime} \sigma^{\prime}\right) \nabla_{C}=\rho \sigma\right), \\
(* 3) \quad \forall A, B \in|K| \forall \rho, \sigma \in K[A, B]\left(d_{A}(\rho \otimes \sigma) \nabla_{B}=\rho \wedge d_{A}(\sigma \otimes \sigma)=\sigma d_{B}\right. \\
\left.\Rightarrow d_{A}(\rho \otimes \sigma) p_{i}^{B, B}=\rho(i \in\{1,2\})\right),
\end{array}
$$

(*4) $\forall A, B \in|K| \forall \rho \in K[A, B]\left(d_{A}(\rho \otimes \rho) p_{i}^{B, B}=\rho(i \in\{1,2\})\right)$,
$(* 5) \quad \forall A, B \in|K| \forall \rho, \sigma \in K[A, B]\left(d_{A}(\rho \otimes \sigma) \nabla_{B}=\rho \wedge d_{A}(\sigma \otimes \sigma)=\sigma d_{B}\right.$

$$
\left.\Rightarrow d_{A}(\rho \otimes \rho)=\rho d_{B}\right),
$$

(*6) $\forall A \in|K| \forall \rho \in K[A, A]\left(d_{A}\left(1_{A} \otimes \rho\right) \nabla_{A}=\rho\right.$

$$
\left.\Rightarrow d_{A}\left(1_{A} \otimes \rho\right) p_{1}^{A, A}=d_{A}\left(1_{A} \otimes \rho\right) p_{2}^{A, A}=\rho\right) .
$$

Proof. Axiom (*1) implies condition ($* 2$) because of $\rho \leq \rho^{\prime} \wedge \sigma \leq$ $\sigma^{\prime} \Rightarrow \rho \sigma \leq \rho^{\prime} \sigma^{\prime}$. To show (*3) not that $d_{A}(\rho \otimes \sigma) \nabla_{B}=\rho \Leftrightarrow \rho \leq \sigma$ and $d_{A}(\sigma \otimes \sigma)=\sigma d_{B} \Leftrightarrow \sigma \in F^{K}$. So one obtains

$$
\begin{array}{rlr}
d_{A}(\rho \otimes \sigma) p_{i}^{B, B} & =d_{A}\left(d_{A}(\rho \otimes \sigma) \nabla_{B} \otimes \sigma\right) p_{i}^{B, B} & (\rho \leq \sigma) \\
& =d_{A}\left(\rho \otimes d_{A}(\sigma \otimes \sigma)\right) a_{B, B, B}\left(\nabla_{B} \otimes 1_{B}\right) p_{i}^{B, B} & \left(\sigma \in F_{K}\right) \\
& =d_{A}(\rho \otimes \sigma)\left(1_{B} \otimes d_{B}\right) a_{B, B, B}\left(\nabla_{B} \otimes 1_{B}\right) p_{i}^{B, B} & ((F 4)) \\
& =d_{A}(\rho \otimes \sigma) \nabla_{B} d_{B} p_{i}^{B, B} & \\
& =d_{A}(\rho \otimes \sigma) \nabla_{B}=\rho & (\nabla 7)) \\
\end{array}
$$

with respect to the axioms of an $h d h t \nabla s$-category.
The property ($* 4$) is a consequence of ($\mathrm{D} 9^{\prime}$) and (T^{\prime}):

$$
\begin{aligned}
\rho & =\rho d_{B} p_{i}^{B, B} \leq d_{A}(\rho \otimes \rho) p_{i}^{B, B} \wedge \rho t_{B} \leq t_{A} \\
& \Rightarrow d_{A}(\rho \otimes \rho) p_{1}^{B, B}=d_{A}\left(\rho \otimes \rho t_{B}\right) r_{B} \leq d_{A}\left(\rho \otimes t_{A}\right) r_{B}=d_{A}\left(1_{A} \otimes t_{A}\right) r_{A} \rho=\rho \\
& \wedge d_{A}(\rho \otimes \rho) p_{2}^{B, B}=d_{A}\left(\rho t_{B} \otimes \rho\right) l_{B} \leq d_{A}\left(t_{A} \otimes \rho\right) l_{B}=d_{A}\left(t_{A} \otimes 1_{A}\right) l_{A} \rho=\rho .
\end{aligned}
$$

$\left({ }^{*} 5\right)$: Using the previous results and the assumption one obtains

$$
\begin{aligned}
d_{A}(\rho \otimes \rho) & \left.=d_{A}\left(d_{A}(\rho \otimes \sigma) p_{2}^{B, B} \otimes d_{A}(\rho \otimes \sigma)\right) p_{2}^{B, B}\right) \\
& =d_{A}\left(d_{A} \otimes d_{A}\right)\left((\rho \otimes \sigma) \otimes(\rho \otimes \sigma)\left(p_{2}^{B, B} \otimes p_{2}^{B, B}\right)\right. \\
& =d_{A} d_{A \otimes A}((\rho \otimes \sigma) \otimes(\rho \otimes \sigma))\left(p_{2}^{B, B} \otimes p_{2}^{B, B}\right) \\
& =d_{A}\left(d_{A}(\rho \otimes \rho) \otimes d_{A}(\sigma \otimes \sigma)\right) b_{B, B, B, B}\left(p_{2}^{B, B} \otimes p_{2}^{B, B}\right) \\
& =d_{A}\left(d_{A}(\rho \otimes \rho) \otimes \sigma d_{B}\right) p_{2}^{B \otimes B, B \otimes B} \\
& =d_{A}\left(\rho \otimes d_{A}(\rho \otimes \sigma)\right) a_{B, B, B}\left(1_{B \otimes B} \otimes d_{B}\right) p_{2}^{B \otimes B, B \otimes B} \\
& =d_{A}\left(\rho \otimes d_{A}(\rho \otimes \sigma)\right) a_{B, B, B} p_{2}^{B \otimes B, B} d_{B} \\
& =d_{A}\left(\rho \otimes d_{A}(\rho \otimes \sigma)\right)\left(1_{B} \otimes p_{2}^{B, B}\right) p_{2}^{B, B} d_{B} \\
& =d_{A}\left(\rho \otimes d_{A}(\rho \otimes \sigma) p_{2}^{B, B}\right) p_{2}^{B, B} d_{B} \\
& =d_{A}(\rho \otimes \rho) p_{2}^{B, B} d_{B}=\rho d_{B} .
\end{aligned}
$$

The property (${ }^{*} 6$) arises from $\left({ }^{*} 3\right)$ because of $1_{A} \in F^{K}$ for each $A \in|K|$.

Lemma 2.12. Let \underline{K} be a monoidal symmetric category endowed with morphisms families d, $t,\left(o_{A, B}|A, B \in| K \mid\right)$, and ∇ such that all axioms of an $h d h t \nabla s$-category without (${ }^{*} 1$) are fulfilled. Moreover, let the condition (${ }^{*}$ 2) be valid. Then \underline{K} is an $h d h t \nabla s$-category in the defined sense as above.

Proof. It remains to show the condition (${ }^{*}$):

$$
\begin{align*}
& d_{A}\left(d_{A}\right.\left.\left(\rho \otimes \rho^{\prime}\right) \nabla_{B} d_{B}\left(\sigma \otimes \sigma^{\prime}\right) \nabla_{C} \otimes d_{A}\left(\rho \sigma \otimes \rho^{\prime} \sigma^{\prime}\right) \nabla_{C}\right) \nabla_{C} \\
& \quad=d_{A}\left(\rho \sigma \otimes d_{A}\left(\rho \sigma \otimes \rho^{\prime} \sigma^{\prime}\right) \nabla_{C}\right) \nabla_{C} \tag{*2}\\
& \quad=d_{A}\left(1_{A} \otimes d_{A}\right)\left(\rho \sigma \otimes\left(\rho \sigma \otimes \rho^{\prime} \sigma^{\prime}\right)\right)\left(1_{C} \otimes \nabla_{C}\right) \nabla_{C} \tag{F4}\\
& \quad=d_{A}\left(d_{A} \otimes 1_{A}\right) a_{A, A, A}^{-1}\left(\rho \sigma \otimes\left(\rho \sigma \otimes \rho^{\prime} \sigma^{\prime}\right)\right)\left(1_{C} \otimes \nabla_{C}\right) \nabla_{C} \tag{D3}\\
& \quad=d_{A}\left(d_{A} \otimes 1_{A}\right)\left((\rho \sigma \otimes \rho \sigma) \otimes \rho^{\prime} \sigma^{\prime}\right) a_{C, C, C}^{-1}\left(1_{C} \otimes \nabla_{C}\right) \nabla_{C} \tag{M6}\\
&\left.\left.\quad=d_{A}\left(d_{A}\right)(\rho \sigma \otimes \rho \sigma) \otimes \rho^{\prime} \sigma^{\prime}\right)\right)\left(\nabla_{C} \otimes 1_{C}\right) \nabla_{C} \\
&\left.\quad=d_{A}\left(d_{A}(\rho \sigma \otimes \rho \sigma) \nabla_{C} \otimes \rho^{\prime} \sigma^{\prime}\right)\right) \nabla_{C} \tag{F4}\\
& \quad=d_{A}\left(\rho \sigma \otimes \rho^{\prime} \sigma^{\prime}\right) \nabla_{C} \\
& \quad=\rho \sigma \tag{*2}\\
& \quad=d_{A}\left(\rho \otimes \rho^{\prime}\right) \nabla_{B} d_{B}\left(\sigma \otimes \sigma^{\prime}\right) \nabla_{C} \tag{*2}
\end{align*}
$$

The results of the last both lemmata are important for the axiomization of $h d h t \nabla s$ - categories. The system of axioms for an $h d h t \nabla s$-category given in [11] contains two identical implications, namely (21) ($\Leftrightarrow\left({ }^{*} 2\right)$) and (20) (\Leftrightarrow $\left.\left({ }^{*} 6\right)\right)$. The property $\left({ }^{*} 6\right)$ is a consequence of the other properties and the conditions (${ }^{*} 1$) and (${ }^{*} 2$) are equivalent in a monoidal symmetric category \underline{K} endowed with morphisms families $d, t,\left(o_{A, B}|A, B \in| K \mid\right)$, and ∇ such that
(D1), (D2), (D3), (D5), (D7), (D8), (T1), (T2), (T6), (T9'),
$(\nabla 1),(\nabla 2),(\nabla 3),(\nabla 4),(\nabla 5),(\nabla 6),(\nabla 7),(D \nabla)$,
(o1), (o2), (O1)
are fulfilled. Therefore, $h d h t \nabla s$-categories are axiomatizable by identities only, hence all small $h d h t \nabla s$-categories form a variety of many-sorted total
algebras and there are free many-sorted algebras to each generating set with respect to this variety. Especially, there are free $h d h t \nabla s$-theories, i.e. free algebraic theories for relational structures, by analogy with the existence of free algebraic theories for partial algebras ([3], [10]).

Lemma 2.13. In any hdht ∇-symmetric category the following conditions are fulfilled for arbitrary morphisms ρ, σ :

$$
\begin{align*}
\rho \sigma=1_{A} & \wedge \sigma \rho \leq 1_{B} \Rightarrow d_{A}(\rho \otimes \rho)=\rho d_{B} \tag{j}\\
\rho \sigma \leq 1_{A} & \wedge \sigma \rho=1_{B} \Rightarrow \nabla_{A} \rho=(\rho \otimes \rho) \nabla_{B} \tag{jj}
\end{align*}
$$

Proof. To show (j) we use at first the known property $\sigma d_{A} \leq d_{B}(\sigma \otimes \sigma)$. Further,

$$
d_{A}(\rho \otimes \rho)=\rho \sigma d_{A}(\rho \otimes \rho) \leq \rho d_{B}(\sigma \otimes \sigma)(\rho \otimes \rho) \leq \rho d_{B}\left(1_{B} \otimes 1_{B}\right)=\rho d_{B},
$$

hence $d_{A}(\rho \otimes \rho)=\rho d_{B}$ by $\rho d_{B} \leq d_{A}(\rho \otimes \rho)$.
In a similar way one shows the statement (jj), namely because of $\nabla_{B} \sigma \leq$ $(\sigma \otimes \sigma) \nabla_{A}$ and

$$
(\rho \otimes \rho) \nabla_{B}=(\rho \otimes \rho) \nabla_{B} \sigma \rho \leq(\rho \sigma \otimes \rho \sigma) \nabla_{A} \rho \leq \nabla_{A} \rho \leq(\rho \otimes \rho) \nabla_{B}
$$

one has $\nabla_{A} \rho=(\rho \otimes \rho) \nabla_{B}$.

Definition 2.14. Morphisms $e \in K[A, A] \subseteq K$ with the property $e \leq 1_{A}$, i.e. $e=d_{A}\left(1_{A} \otimes e\right) \nabla_{A}$, are called subidentities in \underline{K} (compare with $([7])$).

Proposition 2.15 (cf. [7]). For each morphism $\rho: A \rightarrow B, A, B \in|K|$, the morphism

$$
\alpha(\rho):=d_{A}\left(\rho \otimes 1_{A}\right) p_{2}^{B, A}
$$

is a subidentity of A in \underline{K} and there holds $\alpha(\rho) \rho=\rho$. Each subidentity e of \underline{K} fulfils $d_{A}(e \otimes e)=e d_{A}$, therefore the subidentities of \underline{K} are the subidentities of \underline{F}^{K} and satisfy the following conditions for all suitable morphims and objects of K :
(e1) $e \leq 1_{A} \quad \Rightarrow \quad e e=e$,

$$
\begin{equation*}
e_{1}, e_{2} \leq 1_{A} \quad \Rightarrow \quad e_{1} e_{2}=e_{2} e_{1}=\inf \left\{e_{1}, e_{2}\right\} \tag{e2}
\end{equation*}
$$

$$
\begin{equation*}
e_{1} \leq e_{2} \leq 1_{A} \quad \Leftrightarrow \quad e_{1}=e_{1} e_{2} \leq 1_{A} \tag{e3}
\end{equation*}
$$

$$
\begin{equation*}
e \leq 1_{A} \quad \Leftrightarrow \quad \alpha(e)=e, \tag{e4}
\end{equation*}
$$

$$
\begin{equation*}
e \leq 1_{A} \quad \Rightarrow \quad e d_{A}=d_{A}(e \otimes e)=d_{A}\left(e \otimes 1_{A}\right) \tag{e5}
\end{equation*}
$$

$$
\text { (e6) } \quad e \leq 1_{A} \quad \Rightarrow \quad \nabla_{A} e=(e \otimes e) \nabla_{A}=\left(e \otimes 1_{A}\right) \nabla_{A} \text {, }
$$

$$
\text { (e7) } \quad \rho, \sigma \in K[A, B] \quad \Rightarrow \alpha(\rho) \sigma=d_{A}(\rho \otimes \sigma) p_{2}^{B, B} \wedge \alpha(\sigma) \rho=d_{A}(\rho \otimes \sigma) p_{1}^{B, B} \text {, }
$$

$$
\begin{equation*}
\alpha(\rho) \sigma=\rho \quad \Rightarrow \quad \rho \leq \sigma, \tag{e8}
\end{equation*}
$$

$$
\begin{equation*}
e \rho=\rho \wedge e \leq 1_{A} \Leftrightarrow \alpha(\rho) \leq e \leq 1_{A}, \tag{e9}
\end{equation*}
$$

$$
(\mathrm{e} 10) \quad \operatorname{cod} \rho=\operatorname{dom} \sigma \quad \Rightarrow \alpha(\rho \sigma) \leq \alpha(\rho),
$$

$$
\text { (e11) } e \leq 1_{A} \quad \Rightarrow \alpha(e \rho) \leq e,
$$

$$
\text { (e12) } e \leq 1_{A} \quad \Rightarrow \alpha(e \rho)=e \alpha(\rho)
$$

$$
\text { (e13) } \rho \leq \sigma \quad \Rightarrow \quad \alpha(\rho) \leq \alpha(\sigma),
$$

$$
(\mathrm{e} 14) \operatorname{cod} \rho=\operatorname{dom} \sigma \quad \Rightarrow \rho \alpha(\sigma) \leq \alpha(\rho \sigma) \rho,
$$

$$
\text { (e15) } \quad \operatorname{cod} \rho=\operatorname{dom} \sigma \quad \Rightarrow \alpha(\rho \sigma)=\alpha(\rho \alpha(\sigma))
$$

Proof. Because of $\rho t_{B} \leq t_{A}$ one obtains

$$
\alpha(\rho)=d_{A}\left(\rho \otimes 1_{A}\right) p_{2}^{B, A}=d_{A}\left(\rho t_{B} \otimes 1_{A}\right) l_{A} \leq d_{A}\left(t_{A} \otimes 1_{A}\right) l_{A}=1_{A} .
$$

Using the definition of $\alpha(\rho)$, properties (M14), (M15), and $\alpha(\rho) \leq 1_{A}$ one receives $\alpha(\rho) \rho=\rho$ via

$$
\alpha(\rho) \rho=d_{A}\left(\rho \otimes 1_{A}\right) p_{2}^{B, A} \rho=d_{A}(\rho \otimes \rho) p_{2}^{B, B} \geq \rho d_{B} p_{2}^{B, B}=\rho=1_{A} \rho \geq \alpha(\rho) \rho
$$

Because of $e \leq 1_{A}$ the property $d_{A}(e \otimes e)=e d_{A}$ is a consequence of Lemma 2.11, (*5), and the subidentities of \underline{K} are exactly the subidentities of \underline{F}^{K}, therefore, all subidentities have the properties (e1), (e2), (e3) and (e4) (cf. [7]).

To show property (e5) use the property (e4) $e \leq 1_{A} \Rightarrow e=\alpha(e)=$ $d_{A}\left(e \otimes 1_{A}\right) p_{2}^{A, A}:$

$$
\begin{aligned}
d_{A}(e \otimes e) & =d_{A}\left(e \otimes d_{A}\left(e \otimes 1_{A}\right) p_{2}^{A, A}\right)=d_{A}\left(d_{A}(e \otimes e) \otimes 1_{A}\right) a_{A, A, A}^{-1}\left(1_{A} \otimes p_{2}^{A, A}\right) \\
& =d_{A}\left(d_{A}(e \otimes e) p_{1}^{A, A} \otimes 1_{A}\right)=d_{A}\left(e \otimes 1_{A}\right) .
\end{aligned}
$$

The second part of the property (e6) is a consequence of (e2) and (e5) owing to $\nabla_{A} d_{A} \leq 1_{A \otimes A},(e \otimes e) \leq 1_{A \otimes A}$, and $\left(e \otimes 1_{A}\right) \leq 1_{A \otimes A}$:

$$
\begin{align*}
d_{A}(e \otimes e)=d_{A}\left(e \otimes 1_{A}\right) & \Rightarrow \nabla_{A} d_{A}(e \otimes e)=\nabla_{A} d_{A}\left(e \otimes 1_{A}\right) \\
& \Rightarrow(e \otimes e) \nabla_{A} d_{A}=\left(e \otimes 1_{A}\right) \nabla_{A} d_{A} \tag{e2}\\
& \Rightarrow(e \otimes e) \nabla_{A} d_{A} \nabla_{A}=\left(e \otimes 1_{A}\right) \nabla_{A} d_{A} \nabla_{A} \\
& \Rightarrow(e \otimes e) \nabla_{A}=\left(e \otimes 1_{A}\right) \nabla_{A} .
\end{align*}
$$

Because of $(e \otimes e) \leq 1_{A \otimes A}$ and $\nabla_{A} d_{A} \leq 1_{A \otimes A}$ one has

$$
\begin{array}{rlr}
(e \otimes e) \nabla_{A} & =(e \otimes e) \nabla_{A} d_{A} \nabla_{A} & \left(d_{A} \nabla_{A}=1_{A}\right) \\
& =\nabla_{A} d_{A}(e \otimes e) \nabla_{A} \\
& =\nabla_{A} e . & ((\mathrm{e} 2)) \\
& ((D \nabla))
\end{array}
$$

Property (e7) is an immediate consequence of (M7), (M14), (M8), and (M13).

To show (e8) take into consideration

$$
\rho=\alpha(\rho) \sigma \leq 1_{A} \sigma=\sigma .
$$

(e9): Assuming $e \rho=\rho, e \leq 1_{A}$ one gets

$$
\alpha(\rho)=\alpha(e \rho)=d_{A}\left(e \rho \otimes 1_{A}\right) p_{2}^{B, A}=d_{A}\left(e \rho t_{B} \otimes 1_{A}\right) l_{A} \leq d_{A}\left(e t_{A} \otimes 1_{A}\right) l_{A}=\alpha(e)=e .
$$

Conversely, $\alpha(\rho) \leq e \leq 1_{A}$ yields

$$
\rho=\alpha(\rho) \rho \leq e \rho \leq 1_{A} \rho=\rho .
$$

Condition (e10) is true, since

$$
\alpha(\rho \sigma)=d_{A}\left(\rho \sigma \otimes 1_{A}\right) p_{2}^{C, A}=d_{A}\left(\rho \sigma t_{C} \otimes 1_{A}\right) l_{A} \leq d_{A}\left(\rho t_{B} \otimes 1_{A}\right) l_{A}=\alpha(\rho)
$$

Condition (e11) arises from $\alpha(e \rho) \leq \alpha(e)=e$.
Property (e12) is a consequence of (e5) as follows:

$$
\begin{aligned}
\alpha(e \rho) & =d_{A}\left(e \rho \otimes 1_{A}\right) p_{2}^{B, A}=d_{A}\left(e \otimes 1_{A}\right)\left(\rho \otimes 1_{A}\right) p_{2}^{B, A} \\
& =d_{A}(e \otimes e)\left(\rho \otimes 1_{A}\right) p_{2}^{B, A}=e d_{A}\left(\rho \otimes 1_{A}\right) p_{2}^{B, A} \\
& =e \alpha(\rho) .
\end{aligned}
$$

To show (e13) use the definitions of \leq and $\alpha(\rho)(\rho: A \rightarrow B, \sigma: B \rightarrow C)$:

$$
\begin{array}{rlr}
\alpha(\rho)=d_{A}\left(\rho \otimes 1_{A}\right) p_{2}^{B, A} & =d_{A}\left(d_{A}(\rho \otimes \sigma) \nabla_{B} \otimes 1_{A}\right) p_{2}^{B, A} & (\rho \leq \sigma) \\
& \leq d_{A}\left(d_{A}(\rho \otimes \sigma) p_{2}^{B, B} \otimes 1_{A}\right) p_{2}^{B, A} & \left(\nabla_{B} \leq p_{2}^{B, B}\right) \\
& =d_{A}\left(d_{A}\left(\rho \otimes 1_{A}\right) p_{2}^{B, A} \sigma \otimes 1_{A}\right) p_{2}^{B, A} & ((M 14)) \\
& =d_{A}\left(\alpha(\rho) \sigma \otimes 1_{A}\right) p_{2}^{B, A} & \\
& \leq d_{A}\left(\sigma \otimes 1_{A}\right) p_{2}^{B, A}=\alpha(\sigma) . & (\alpha(\rho) \sigma \leq \sigma)
\end{array}
$$

Assertion (e14) is true since

$$
\rho \alpha(\sigma)=\rho d_{B}\left(\sigma \otimes 1_{B}\right) p_{2}^{C, B} \leq d_{A}(\rho \sigma \otimes \rho) p_{2}^{C, B}=\alpha(\rho \sigma) \rho .
$$

Condition (e15) follows by (e10), (e13), and (e14):
Let ρ and σ be as above. Then one has

$$
\alpha(\rho \sigma)=\alpha(\rho \alpha(\sigma) \sigma) \leq \alpha(\rho \alpha(\sigma))
$$

hence

$$
\begin{aligned}
\alpha(\rho \sigma) & \leq \alpha(\rho \alpha(\sigma)) \quad \leq \alpha(\alpha(\rho \sigma) \rho) \leq \alpha(\alpha(\rho \sigma) \alpha(\rho)) \\
& \leq \alpha\left(\alpha(\rho \sigma) 1_{A}\right)=\alpha(\alpha(\rho \sigma))=\alpha(\rho \sigma) .
\end{aligned}
$$

Remark that, as an easy example shows, in Rel the opposite implication to (e8) is not true: Let be given $A=\{a\}, B=\left\{b_{1}, b_{2}\right\}, \rho=\left\{\left(a, b_{1}\right)\right\}, \sigma=$ $\left\{\left(a, b_{1}\right),\left(a, b_{2}\right)\right\}$. Then $\rho \leq \sigma$ and $\rho<\alpha(\rho) \sigma=\sigma$.

Furthermore, the equality in (e14) is not true in general. For this let be the sets A and B as above and let be $C=\{x\}$. For the relations σ as above and $\tau=\left\{\left(b_{1}, x\right)\right\}$ one obtains $\sigma \alpha(\tau)=\left\{\left(a, b_{1}\right)\right\}$ and $\sigma \tau=\{(a, x)\}$, hence $\alpha(\sigma \tau)=\{(a, a)\}$, consequently $\alpha(\sigma \tau) \sigma=\left\{\left(a, b_{1}\right),\left(a, b_{2}\right)\right\}=\sigma \neq \sigma \alpha(\tau)$.

References

[1] L. Budach and H.-J. Hoehnke, Automaten und Funktoren, Akademie-Verlag, Berlin 1975.
[2] S. Eilenberg and G.M. Kelly, Closed categories, p. 421-562 in:"Proceedings of the Conference on Categorical Algebra (La Jolla, 1965)", Springer-Verlag, New York 1966.
[3] H.-J. Hoehnke, On partial algebras, p. 373-412 in: Colloquia Mathematica Societatis János Bolyai, 29 ("Universal Algebra, Esztergom (Hungary) 1977"), North-Holland, Amsterdam 1981.
[4] G.M. Kelly, On MacLane's condition for coherence of natural associativities, commutativities, etc., J. Algebra 1 (1964), 397-402.
[5] S. Maclane, Kategorien, Begriffssprache und mathematische Theorie, Springer-Verlag, Berlin-New York 1972.
[6] J. Schreckenberger, Über dht-symmetrische Kategorien, Semesterarbeit Päd. Hochschule Köthen, Köthen 1978.
[7] J. Schreckenberger, Über die Einbettung von dht-symmetrischen Kategorien in die Kategorie der partiellen Abbildungen zwischen Mengen, AdW DDR Berlin, Zentralinstitut f. Mathematik und Mechanik, Preprint P-12/8 (1980).
[8] J. Schreckenberger, Zur Theorie der dht-symmetrischen Kategorien, Dissertation (B), eingereicht an der Math.-Naturwiss. Fak. d. Wiss. Rates d. Pädag. Hochschule "Karl Liebknecht", Potsdam 1984.
[9] J. Schreckenberger, Zur Axiomatik von Kategorien partieller Morphismen, Beiträge Algebra Geom. (Halle/Saale) 24 (1987), 83-98.
[10] H.-J. Vogel, Eine kategorientheoretische Sprache zur Beschreibung von Birkhoff-Algebren, AdW DDR, Institut f. Mathematik, Report R-MATH06/84, Berlin (1984).
[11] H.-J. Vogel, Relations as morphisms of a certain monoidal category, p. 205-217, in: "General Algebra and Applications in Discrete Mathematics", Shaker Verlag, Aachen 1997.
[12] H.-J. Vogel, On functors between dht ∇-symmetric categories, Discuss. Math. - Algebra \& Stochastic Methods 18 (1998), 131-147.
[13] H.-J. Vogel, On Properties of dht ∇-symmetric categories, Contributions to General Algebra 11 (1999), 211-223.
[14] H.-J. Vogel, Halfdiagonal-halfterminal-symmetric monoidal categories with inversions, p. 189-204 in: "General Algebra and Discrete Mathematics", Shaker Verlag, Aachen 1999.
[15] H.-J. Vogel, On morphisms between prtial algebras, p. 427-453 in: "Algebras and Combinatorics. An International Congress, ICAC '97, Hong Kong", Springer-Verlag, Singapore 1999.

Received 6 December 2000

