ArticleOriginal scientific text

Title

On the structure of halfdiagonal-halfterminal-symmetric categories with diagonal inversions

Authors 1

Affiliations

  1. University of Potsdam Institute of Mathematics, PF 60 15 53 D-14415 Potsdam, Germany

Abstract

The category of all binary relations between arbitrary sets turns out to be a certain symmetric monoidal category Rel with an additional structure characterized by a family d=(dA:AAA|A|Rel) of diagonal morphisms, a family t=(tA:AI|A|Rel) of terminal morphisms, and a family =(A:AAA|A|Rel) of diagonal inversions having certain properties. Using this properties in [11] was given a system of axioms which characterizes the abstract concept of a halfdiagonal-halfterminal-symmetric monoidal category with diagonal inversions (hdht∇s-category). Besides of certain identities this system of axioms contains two identical implications. In this paper is shown that there is an equivalent characterizing system of axioms for hdht∇s-categories consisting of identities only. Therefore, the class of all small hdht∇-symmetric categories (interpreted as hetrogeneous algebras of a certain type) forms a variety and hence there are free theories for relational structures.

Keywords

halfdiagonal-halfterminal-symmetric category, diagonal inversion, partial order relation, subidentity, equation

Bibliography

  1. L. B and H.-J. H, Automaten und Funktoren, Akademie-Verlag, Berlin 1975.
  2. S. E and G.M. K, Closed categories, 'Proceedings of the Conference on Categorical Algebra (La Jolla, 1965)', Springer-Verlag, New York 1966, 421-562.
  3. H.-J. H, On partial algebras, Colloquia Mathematica Societatis János Bolyai, 29 ('Universal Algebra, Esztergom (Hungary) 1977'), North-Holland, Amsterdam 1981, 373-412.
  4. G.M. K, On MacLane's condition for coherence of natural associativities, commutativities, etc, J. Algebra 1 (1964), 397-402.
  5. S. M, Kategorien, Begriffssprache und mathematische Theorie, Springer-Verlag, Berlin-New York 1972.
  6. J. S, Über dht-symmetrische Kategorien, Semesterarbeit Päd. Hochschule Köthen, Köthen 1978.
  7. J. S, Über die Einbettung von dht-symmetrischen Kategorien in die Kategorie der partiellen Abbildungen zwischen Mengen, AdW DDR Berlin, Zentralinstitut f. Mathematik und Mechanik, Preprint P-12/8 (1980).
  8. J. S, Zur Theorie der dht-symmetrischen Kategorien, Dissertation (B), eingereicht an der Math.-Naturwiss. Fak. d. Wiss. Rates d. Pädag. Hochschule 'Karl Liebknecht', Potsdam 1984.
  9. J. S, Zur Axiomatik von Kategorien partieller Morphismen, Beiträge Algebra Geom. (Halle/Saale) 24 (1987), 83-98.
  10. H.-J. V, Eine kategorientheoretische Sprache zur Beschreibung von Birkhoff-Algebren, AdW DDR, Institut f. Mathematik, Report R-MATH-06/84, Berlin (1984).
  11. H.-J. V, Relations as morphisms of a certain monoidal category, 'General Algebra and Applications in Discrete Mathematics', Shaker Verlag, Aachen 1997, 205-217.
  12. H.-J. V, On functors between dhtŃ-symmetric categories, Discuss. Math. - Algebra & Stochastic Methods 18 (1998), 131-147.
  13. H.-J. V, On Properties of dhtŃ-symmetric categories, Contributions to General Algebra 11 (1999), 211-223.
  14. H.-J. V, Halfdiagonal-halfterminal-symmetric monoidal categories with inversions, 'General Algebra and Discrete Mathematics', Shaker Verlag, Aachen 1999, 189-204.
  15. H.-J. V, On morphisms between prtial algebras, 'Algebras and Combinatorics. An International Congress, ICAC '97, Hong Kong', Springer-Verlag, Singapore 1999, 427-453.
Pages:
139-163
Main language of publication
English
Received
2000-12-06
Published
2001
Exact and natural sciences