In this paper the context of independent sets $J^{p}_{L}$ is assigned to the complete lattice (P(M),⊆) of all subsets of a non-empty set M. Some properties of this context, especially the irreducibility and the span, are investigated.
Department of Algebra and Geometry, Palacký University, Tomkova 40, 779 00 Olomouc, Czech Republic
Bibliografia
[1] V. Dlab, Lattice formulation of general algebraic dependence, Czechoslovak Math. Journal 20 (1970), 603-615.
[2] B. Ganter, R. Wille, Formale Begriffsanalyse - Mathematische Grundlagen, Springer-Verlag, Berlin 1996. (English version: 1999).
[3] K. Głazek, Some old and new problems in the independence theory, Colloq. Math. 42 (1979), 127-189.
[4] G. Gratzer, General Lattice Theory, Birkhäuser-Verlag, Basel 1998.
[5] F. Machala, Incidence structures of independent sets, Acta Univ. Palacki Olomuc., Fac. Rerum Natur., Math. 38 (1999), 113-118.
[6] F. Machala, Join-independent and meet-independent sets in complete lattices, Order (submitted).
[7] E. Marczewski, Concerning the independence in lattices, Colloq. Math. 10 (1963), 21-23.
[8] V. Slezák, Span in incidence structures defined on projective spaces, Acta Univ. Palack. Olomuc., Fac. Rerum Natur., Mathematica 39 (2000), 191-202.
[9] G. Szász, Introduction to Lattice Theory, Akadémiai Kiadó, Budapest 1963.
[10] G. Szász, Marczewski independence in lattices and semilattices, Colloq. Math. 10 (1963), 15-20.