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Abstract

In this paper the context of independent sets J p
L is assigned to the

complete lattice (P(M),⊆) of all subsets of a non-empty set M . Some
properties of this context, especially the irreducibility and the span,
are investigated.
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Let us denote by (L,≤) a complete lattice in which ∨,∧ mean the supremum
and the infimum of any subset of L, respectively. The least and the greatest
elements in (L,≤) are denoted by 0, 1, respectively. If a, b ∈ L, then a‖b
means that a, b are incomparable in (L,≤).

For a subset A ⊆ L we put U(A) = {x ∈ L | (∀a ∈ A)[a ≤ x]} and
L(A) = {x ∈ L | (∀a ∈ A)[x ≤ a]}. Obviously, U(A) = U(∨A) and
L(A) = L(∧A). Moreover, let us put |A| := cardA and Aa := A r{a},
sa := ∨Aa, ia := ∧Aa for all a ∈ A.

Definition 1 (F. Machala, [6]). A subset A⊆L is said to be join-independent
if and only if a 6≤ sa for all a ∈ A. A subset B ⊆ L is said to be meet-
independent if and only if ib 6≤ b for all b ∈ B.
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Remark 1. The concepts of join-independent and meet-independent sets
are the special cases of the definition of independent sets in a context † (an
incidence structure) or, more precisely, in two closure spaces associated to
each context. Any complete lattice (L,≤) (and even any partially ordered
set) can be understood as the context (L,L,≤), where (under the denotation
established for contexts) A↑ = U(A), A↑↓ = LU(A) and B↓ = L(B), B↓↑ =
UL(B) for A,B ⊆ L. The closure operators are given by A 7→ A↑↓, B 7→ B↓↑

for A,B ⊆ L.
The notion of an independent set in a lattice appears in various ap-

proaches in literature (see [1], [3], [4], [7], [9] and [10]). In fact, in this
paper irredundant sets in complete lattices are discussed, but we prefer to
use the terms ”join-independent” and ”meet-independent” with respect to
connections with closure systems and incidence structures.

Remark 2. The notions of join- and meet-independent sets are dual in
complete lattices. In the following we will only investigate join-independent
sets. Analogous results for meet-independent sets can be obtained dually.

Propositions 1– 7 are easy consequences of the definitions of join- and meet-
independencies. Thus, the proofs of them are omitted.

Proposition 1. Every singleton A = {a}, a 6= 0, a ∈ L, is join-independent.

Proposition 2. A subset A ⊆ L, |A| ≥ 2, is join-independent if and only if
a||sa for all a ∈ A.

Proposition 3. If a subset A ⊆ L is join-independent, then a||b for all
a, b ∈ A, a 6= b.

Let us introduce one more denotation: If A ⊆ L, then for a ∈ A we put
XA(a) := U(sa)r U(a), Y A(a) := L(ia)r L(a).

Proposition 4. If A ⊆ L is join-independent, then XA(a)∩XA(b) = ∅ for
any a, b ∈ A, a 6= b.

Proposition 5. The subset A ⊆ L is join-independent if and only if
XA(a) 6= ∅ for all a ∈ A.

†A context is the triple (G, H, I), where G and H are sets and I ⊆ G×H (see [2]).
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Proposition 6. If the subset A ⊆ L is join-independent, then every choice
QA = {ma ∈ XA(a) | a ∈ A} is a meet-independent set.

Remark 3. Let A ⊆ L be join-independent. Then for any choice QA =
{ma ∈ XA(a) | a ∈ A} the mapping α : a 7→ ma is a one-to-one mapping of
the join-independent set A onto the meet-independent set QA. Analogously
for a meet- independent subset. This is called a norming mapping of the set
A (see [5]). If we denote by Lp

j (Lp
m) the set of all p-element join-independent

(meet-independent) sets of (L,≤) (p is any cardinal number), then it is
possible to define the context of independent sets J p

L = (Lp
j , L

p
m, Ip), where

the relation Ip is given by the following: For A ∈ Lp
j , B ∈ Lp

m we put AIpB
if and only if there exists a norming mapping α : A → B. (If Lp

j = ∅,
then Lp

m = ∅ and J p
L = (∅, ∅, ∅).) If A ∈ Lp

j , then obviously AIpSA where
SA = {sa | a ∈ A}.

Proposition 7. If a set A ⊆ L is join-independent, then every subset of A
is join-independent.

Now we recall some basic notions from the general theory of contexts
(see [8]):

Definition 2. Let J = (G,H, I) be a context. A sequence (g0,m0, g1,
m1, . . . , gr−1,mr−1, gr), where gi ∈ G for i ∈ {0, . . . , r}, mj ∈ H for j
∈ {0, . . . , r − 1} and gjImj , gj+1Imj for all j ∈ {0, . . . , r − 1}, is called a
path between elements g0 and gr. In a similar way we can define a path
between two elements of H.

A positive integer r is said to be a length of a path between elements
g0, gr. We suppose that the path (g,m, g) has a length 0. If a path between
two elements of G exists, then we say that they are joinable. The context
J is said to be irreducible if every two elements of G are joinable. The
minimal length of all paths between elements g, h ∈ G we call a distance
of these elements and denote by v(g, h). The maximal distance of any two
elements of G in an irreducible context J is said to be a span of G and
denoted by d(G). Similarly for the set H.

We will investigate the contexts of independent sets (their joinability,
distances, irreducibility, spans) associated to the lattice (P(M),⊆) where
P(M) denotes the power set of a non-empty set M . Thus (P(M),⊆) is the
complete (boolean) lattice of all subsets of M .
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Let us denote by M = {{a} | a ∈ M} ⊆ P(M) the set of all atoms of
(P(M),⊆). This set (and every its subset) is obviously join-independent.

Further we put N = {sa | a ∈ M} where sa = ∨M{a} = ∨(M r {{a}}).
Then N is the set of all coatoms of (P(M),⊆) and it is meet-independent
(also every its subset).

In what follows, J p
L = (Lp

j , L
p
m, Ip) denotes the context of the p-element

independent sets associated to the lattice (P(M),⊆), where M is a non-
empty set and p is any cardinal number.

Proposition 8. The following statements are equivalent:

1. |M | < p,

2. Lp
j = ∅.

Proof. 1 =⇒ 2 : Let A = {Ai | i ∈ J} ∈ Lp
j where Ai ⊆ M and |J | = p,

|M | < p. If we put Ji := J r {i}, then Ai 6⊆
⋃

j∈Ji
Aj for all i ∈ J . This

implies (Ai r
⋃

j∈Ji
Aj) = Ai 6= ∅. For each a ∈ Ai we have a /∈ Aj for

all j ∈ Ji. Then we can make a choice M ′ = {ai ∈ Ai | i ∈ J} ⊆ M and
α : ai 7→ i is a one-to-one mapping of the subset M ′ of M onto J . However,
this is a contradiction to |M | < p.

2 =⇒ 1 : Let us assume that Lp
j = ∅ and p ≤ |M |. Then there exists

a subset M′ ⊆ M such that |M′| = p. Since every subset of M is join-
independent, we get M′ ∈ Lp

j and Lp
j 6= ∅. Thus |M | < p.

Proposition 9. Let p be a finite cardinal number. Then the following state-
ments are equivalent:

1. |M | = p,

2. Lp
j = {M}.

Proof. 1 =⇒ 2 : Let A = {Ai | i ∈ J} ∈ Lp
j , Ai ⊆ M and |J | = p =

|M |. Then Ai 6⊆
⋃

j∈Ji
Aj for all i ∈ J, where Ji = Jr{i} again. Hence

Air
⋃

j∈Ji
Aj = Ai 6= ∅ for all i ∈ J .

Assume that x ∈ Ar ∩As for some r, s ∈ J, r 6= s. Then x ∈ Ar, x /∈ Aj

for all j ∈ J, j 6= r. Thus x /∈ As which is a contradiction to x ∈ As ⊆ As.
We have obtained Ai ∩Aj = ∅ for all i, j ∈ J, i 6= j.

If we make a choice M ′ = {ai ∈ Ai | i ∈ J} ⊆ M , then α : ai 7→ i
is a bijection of M ′ onto J and because of |M | = |J | we have M ′ = M .
Therefore |Ai| = 1 for all i ∈ J . Let At = {a} for a certain t ∈ J . Then
a ∈ At. If b ∈ At, b 6= a, then at the same time b ∈ Au for a certain u 6= t.
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This yields b /∈ At which is a contradiction. Hence, |Ai| = 1 for all i ∈ J . We
have proved that Ai = {ai} for all i ∈ J . It means that the only p-element
join-independent set is M.

2 =⇒ 1 : According to the previous proposition, p ≤ |M |. Every
p-element set of atoms {{ai} | i ∈ I} ⊆ P(M), |I| = p, is join-independent.
If p < |M |, then there exist at least two distinct p-element sets of atoms.
Thus |Lp

j | > 1.

Example. If |M | = 3, then |L2
j | = 9 and |L3

j | = 1. If |M | = 4, then
|L2

j | = 55, |L3
j | = 26 and |L4

j | = 1.

Proposition 10. The set {Ai | i ∈ J} is join-independent in (P(M),⊆) if
and only if the set {MrAi | i ∈ J} is meet-independent in (P(M),⊆).

Proof. For all i ∈ J we put Ji = Jr{i}. Then it is easy to see that

Ai 6⊆
⋃

j∈Ji

Aj ⇔ Mr
⋃

j∈Ji

Aj 6⊆ MrAi ⇔
⋂

j∈Ji

(MrAj) 6⊆ MrAi.

Remark 4. It follows from Propositions 8 – 10 that p > |M | if and only if
J p

L = (∅, ∅, ∅), and p = |M | if and only if |Lp
j | = |Lp

m| = 1. Also in the case
p < |M | we get |Lp

j | = |Lp
m|.

Proposition 11. Let A,B ∈ Lp
j , A = {Ai | i ∈ J}, B = {Bi | i ∈ J},

|J | = p. If we denote C = {MrAi | i ∈ J}, D = {MrBi | i ∈ J}, then
v(A, B) = 1 if and only if v(C,D) = 1.

Proof. Assume that v(A,B) = 1. Then there exists Ā ∈ Lp
m such that

AIpĀ, BIpĀ. Let us put Ā = {Āi | i ∈ J} and Ji = Jr{i}. Under a
suitable enumeration we get Āi ∈ XA(Ai) ∩ XB(Bi) for all i ∈ J . Thus⋃

j∈Ji
Aj ⊆ Āi, Ai 6⊆ Āi and

⋃
j∈Ji

Bj ⊆ Āi, Bi 6⊆ Āi for all i ∈ J . Let us
put C̄i = M−rĀi. Then we have C̄i = MrĀi ⊆ Mr

⋃
j∈Ji

Aj , C̄i 6⊆ MrAi,
C̄i ⊆ Mr

⋃
j∈Ji

Bj , C̄i 6⊆ MrBi. This yields C̄i ∈ Y C(MrAi) and C̄i ∈
Y D(MrBi), thus C̄i ∈ Y C(MrAi)∩ Y D(MrBi) for all i ∈ J . If we denote
C̄ = {C̄i | i ∈ J}, then C̄IpC, C̄IpD and v(C, D) = 1. Similarly for the
converse assertion.

Proposition 12. The sets A = {Ai | i ∈ J}, B = {Bi | i ∈ J} ∈ Lp
j are

joinable in J p
L if and only if the sets C = {MrAi | i ∈ J}, D = {MrBi |

i ∈ J} are joinable in J p
L .
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Proof. The sets A,B ∈ Lp
j are joinable if and only if there exist sets

A′1, . . . , A′r ∈ Lp
j , A′′1, . . . , A′′r+1 ∈ Lp

m such that AIpA′′1, A′1IpA′′1, A′1IpA′′2,
A′2IpA′′2, . . . , A′rIpA′′r , A′rIpA′′r+1, BIpA′′r+1. Thus, v(A,A′1) = v(A′1, A′2) =
. . . = v(A′r, B) = 1. It follows from propositions 10 and 11 that there ex-
ist meet-independent sets Ā′1, Ā′2, . . . , Ā′r such that v(C, Ā′1) = v(Ā′1, Ā′2) =
. . . = v(Ā′r, D) = 1. Hence, the sets C, D are joinable. Similarly for the
converse assertion.

Remark 5. If A ⊆M (the subset of atoms), then for {a} ∈ A we will write
just XA(a), Aa, U(a) etc. instead of (more correct) XA({a}), A{a}, U({a})
etc. Then XA(a) = U(∨Aa)rU(a) and hence, Ya ∈ XA(a) if and only if
Aa ⊆ Ya, a /∈ Ya.

Proposition 13. If A,B ⊆M, A 6= B, |A| = |B| = p, then v(A,B) = 1.

Proof. Let us denote C = A ∩ B. There exists a bijective mapping
ϕ :A→B such that ϕ(c)=c for all c ∈ C. Further we put Ya =Aa∪Bϕ(a) for
all a ∈ A. If a ∈ C, then a = ϕ(a) and a /∈ Aa, Ba. Thus a /∈ Ya. If a /∈ C,
then a /∈ B and a /∈ Ya. Similarly, ϕ(a) /∈ A and ϕ(a) /∈ Ya. It follows that
Ya ∈ XA(a)∩XB(ϕ(a)). If we put Y = {Ya | a ∈ A}, then A → Y : a 7→ Ya

and B → Y : ϕ(a) 7→ Ya are norming mappings. Thus, AIpY,BIpY and
v(A,B) = 1.

Proposition 14. If A,B ⊆ N , A 6= B, |A| = |B| = p, then v(A,B) = 1.

Proof. Dual to the previous one.

Theorem 1. Let J p
L be a context of independent sets associated to the com-

plete lattice (P(M),⊆), where M is a non-empty set and p is a cardinal
number with the property 3 ≤ p < |M |. Then J p

L is irreducible and (the
span) d(Lp

j ) = 2.

Proof. Consider join-independent sets A = {Ai | i ∈ J}, B = {Bi | i ∈ J},
where Ai, Bi ⊆ M for all i ∈ J , |J | = p. For each i ∈ J, we put Ji = Jr{i}
and Ai =

⋃
j∈Ji

Aj . Then Y ∈ XA(Ai) if and only if Ai ⊆ Y, Ai 6⊆ Y . Since
A is join-independent, we have Ai 6⊆ Ai for all i ∈ J . It follows that there
always exists an element ai ∈ Ai such that ai /∈ Ai. Then Ai ⊆ Mai = sai .
From ai /∈ sai , we get Ai 6⊆ sai and hence sai ∈ XA(Ai). We can make a
choice Y1 = {sai | i ∈ J}. The set Y1 ⊆ N is meet-independent and AIpY1.
In a similar way, we can proceed in the case of the set B and we obtain



On the special context of independent sets 121

BIpY2 for a certain set Y2 ⊆ N . According to Proposition 14, there exists
a set C ⊆M, |C| = p such that CIpY1, CIpY2. Thus v(A,B) ≤ 2.

It remains to find join-independent sets A={Ai | i∈J}, B={Bi | i∈J},
|J | = p, such that v(A,B) = 2. We determine them in the following way:
Consider three distinct elements a, b, c ∈ M . Let us put A1 = {a, b} = B1,
A2 = {a, c}, B2 = {b, c} and Ai = Bi = {xi} for the other sets where
xi ∈ M are pairwise distinct elements not equal to a, b, c. Moreover, we
denote C = {a, b, c} and X = {xi | i ∈ J ′}.

It is easy to verify that the sets A,B defined above are join-independent.
Obviously, XA(xi) = XB(xi) for all i ∈ J ′ and XA(A2) = XB(B2). It is
also clear that Y ⊆ XA(A1) if and only if {a, c}∪X ⊆ Y , A1 6⊆ Y, and Y ⊆
XB(B1) if and only if {b, c} ∪X ⊆ Y , B1 6⊆ Y . Let Y ∈ XA(A1)∩XB(B1).
Then C ∪X ⊆ Y which is a contradiction to A1, B1 ⊆ Y . Therefore, there
is no meet-independent set Z such that AIpZ, BIpZ. Thus v(A,B) = 2.

Remark 6. Dually we can prove that also every two meet-independent sets
are joinable and d(Lp

m) = 2.
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