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Abstract

It is shown that in the variety of orthomodular lattices every hy-
persubstitution respecting all absorption laws either leaves the lattice
operations unchanged or interchanges join and meet. Further, in a
variety of lattices with an involutory antiautomorphism a semigroup
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Keywords: hypersubstitution, proper hypersubstitution, orthomod-
ular lattice, absorption algebra.

2000 Mathematics Subject Classification: 08A40, 06C15.

∗This paper is a result of the collaboration of the authors within the framework of the
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1. Introduction

An involutory antiautomorphism of a poset (P ;≤) is a mapping ′ : P → P
with x ≤ y ⇒ x′ ≥ y′ and x′′ = x. An orthomodular lattice is an algebra
(L;∨,∧,′ , 0, 1) of type (2, 2, 1, 0, 0) where (L;∨,∧, 0, 1) is a bounded lattice,
′ is an involutory antiautomorphism of this lattice, x ∨ x′ = 1 and the
orthomodular law x ≤ y ⇒ y = x ∨ (y ∧ x′) holds.

Let τ be a type of algebras. By a hypersubstitution of type τ there is
either meant a mapping assigning to every fundamental operation symbol
of type τ a term of type τ of the same arity or there is meant the obvious
extension of this mapping to the set of all terms of type τ (see e. g. [2], [3]
and [4] for details). Let Hyp(τ) denote the set of all hypersubstitutions of
type τ . Obviously, (Hyp(τ); ◦) is a submonoid of the symmetric monoid over
the set of all terms of type τ (see [2] or [8]). Let V be a variety of type τ and
σ, σ1, σ2 hypersubstitutions of type τ . σ is said to respect the equation s = t
of type τ with respect to V if σ(s) = σ(t) holds in V . The following concept
was introduced by J. PÃlonka (cf. [5], [6]): A hypersubstitution σ is called
proper with respect to V if it respects all equations holding in V . According
to [6] σ1, σ2 are called equivalent with respect to V if σ1(t) = σ2(t) holds in
V for all terms t of type τ .

The main result of this paper is the following:

Theorem 1.1. Up to equivalence there is only one non-trivial hypersub-
stitution of type (2, 2, 1, 0, 0) which is proper with respect to the variety of
orthomodular lattices, namely the one which interchanges the binary as well
as the nullary operations and leaves the unary operation fixed.

But first we are going to characterize algebras satisfying all absorption laws.

2. Absorption algebras

Definition 2.1. By an absorption algebra we mean an algebra (L;∨,∧) of
type (2, 2) satisfying all eight absorption laws:

(x ∨ y) ∧ x = x,

(x ∨ y) ∧ y = y,

x ∧ (x ∨ y) = x,

y ∧ (x ∨ y) = y,
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(x ∧ y) ∨ x = x,

(x ∧ y) ∨ y = y,

x ∨ (x ∧ y) = x,

y ∨ (x ∧ y) = y.

In the following let L = (L;∨,∧) be an absorption algebra.

Lemma 2.1. a ∨ a = a ∧ a = a for all a ∈ L.

Proof. a ∨ a = a ∨ (a ∧ (a ∨ a)) = a and a ∧ a = a ∧ (a ∨ (a ∧ a)) = a for
all a ∈ L.

Lemma 2.2. For a, b ∈ L the following are equivalent:
(i) a ∨ b = b,

(ii) b ∨ a = b,

(iii) a ∧ b = a,

(iv) b ∧ a = a.

Proof. a ∨ b = b ⇒ a ∧ b = a ∧ (a ∨ b) = a ⇒ b ∨ a = b ∨ (a ∧ b) = b ⇒
b ∧ a = (b ∨ a) ∧ a = a ⇒ a ∨ b = (b ∧ a) ∨ b = b.

Definition 2.2. On L we define a binary relation ≤ by a ≤ b iff one of the
four equivalent conditions of Lemma 2.2 is satisfied (a, b ∈ L).

Lemma 2.3. The relation ≤ is reflexive and antisymmetric, and a ∧ b ≤
a, b ≤ a ∨ b for a, b ∈ L.

Proof. Reflexivity of ≤ follows from Lemma 2.1 Now let a, b ∈ L. If
a ≤ b ≤ a, then a = a ∧ b = b. This shows antisymmetry of ≤. Now

(a ∧ b) ∨ a = a ⇒ a ∧ b ≤ a,

(a ∧ b) ∨ b = b ⇒ a ∧ b ≤ b,

(a ∨ b) ∧ a = a ⇒ a ≤ a ∨ b,

(a ∨ b) ∧ b = b ⇒ b ≤ a ∨ b.
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Definition 2.3. Let B be a set, ≤ a reflexive and antisymmetric binary
relation on B and M ⊆ B. The elements a, b of B are said to be mutually
comparable if a ≤ b or b ≤ a (or both). Otherwise a and b are said to be
mutually incomparable. An element c of B is called a lower bound of M if
c ≤ d for all d ∈ M . Dually, c is called an upper bound of M if c ≥ d for all
d ∈ M .

Definition 2.4. Let B be a set, ≤ be a reflexive and antisymmetric binary
relation on B, and ∨ and ∧ be binary operations on B such that for every
ordered pair (a, b) of elements of B a ∨ b (resp. a ∧ b) is an upper (resp.
lower) bound of a and b defined in such a way that a ∨ b = b and a ∧ b = a
provided a ≤ b, whereas a ∨ b = a and a ∧ b = b provided a ≥ b. Then the
quadruple (B;≤,∨,∧) is called a bound structure.

Definition 2.5. For every absorption algebra L = (L;∨,∧) put B(L) :=
(L;≤,∨,∧), where ≤ is the binary relation on L defined by a ≤ b iff a∨b = b
for a, b ∈ L, and for every bound structure B = (B;≤,∨,∧) put L(B) :=
(B;∨,∧).

Theorem 2.1. The mappings L 7→ B(L) and B 7→ L(B) are mutually
inverse bijections between the set of all absorption algebras and the set of all
bound structures both over the same fixed base set.

Proof. If L is an absorption algebra, then B(L) is a bound structure ac-
cording to Lemmas 2.2 and 2.3. Conversely, let B = (B;≤,∨,∧) be a bound
structure. If a, b ∈ B, then a ≤ a ∨ b, and hence (a ∨ b) ∧ a = a. The
other seven absorption laws can be proved analogously. Hence L(B) is an
absorption algebra. If L = (L;∨,∧) is an absorption algebra, then obviously
L(B(L)) = L(L;≤ ∨,∧) = L. Conversely, let B= (B;≤,∨,∧) be a bound
structure, B(L(B)) = (B,v,∨,∧) and a, b ∈ B. If a ≤ b, then a ∨ b = b
and hence a v b. Conversely, if a v b, then a ∨ b = b, which together with
a ≤ a ∨ b implies a ≤ b. Hence, B(L(B)) = B completing the proof of the
theorem.

Remark 2.1. Theorem 2.1 says that absorption algebras may be considered
as sets with a reflexive and antisymmetric binary relation such that every
two elements have an upper and a lower bound.

Example 2.1. The six-element algebra ({0, a, b, c, d, 1},∨,∧) with opera-
tion tables
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∨ 0 a b c d 1
0 0 a b c d 0
a a a c c d 1
b b d b c d 1
c c c c c 1 1
d d d d 1 d 1
1 0 1 1 1 1 1

and

∧ 0 a b c d 1
0 0 0 0 0 0 1
a 0 a 0 a a a

b 0 0 b b b b

c 0 a b c b c

d 0 a b a d d

1 1 a b c d 1

is an absorption algebra. The operations ∨ and ∧ are neither commutative
(a ∨ b = c 6= d = b ∨ a and c ∧ d = b 6= a = d ∧ c) nor associative
((a ∨ b) ∨ d = c ∨ d = 1 6= d = a ∨ d = a ∨ (b ∨ d) and (c ∧ d) ∧ a = b ∧ a =
0 6= a = c ∧ a = c ∧ (d ∧ a)).

Theorem 2.2. Every absorption algebra is congruence distributive. Every
finite absorption algebra has a finite basis of identities.

Proof. It can be easily checked that ((x∨y)∧(x∨z))∧(y∨z) is a majority
term. From this fact the first assertion follows. The rest follows by using
the so-called Baker’s Finite Base Theorem (see, e.g., [1], p. 135).

3. Hypersubstitutions in orthomodular lattices

In this section let τ denote the type (2, 2, 1, 0, 0) with operation symbols
(∨,∧,′ , 0, 1).

It is well-known that in the variety of orthomodular lattices there are
exactly 2 nullary terms, namely 0 and 1, 4 unary terms, namely 0, x, x′ and
1, and 96 binary terms, namely

∨
i∈I ti,

∨
i∈I ti ∨ (c′ ∧ x),

∨
i∈I ti ∨ (c′ ∧ x′),∨

i∈I ti ∨ (c′ ∧ y),
∨

i∈I ti ∨ (c′ ∧ y′) and
∨

i∈I ti ∨ c′ where I ⊆ {1, . . . , 4},
t1 := x ∧ y, t2 := x ∧ y′, t3 := x′ ∧ y, t4 := x′ ∧ y′ and c := t1 ∨ . . . ∨ t4.
Hence it follows that in the variety of orthomodular lattices there are up to
equivalence exactly 147456 hypersubstitutions. The following assertion is a
strengthening of those in [5] and [6]:

Proposition 3.1. Within the variety of orthomodular lattices every hyper-
substitution respecting all absorption laws either leaves the lattice operations
unchanged or interchanges the lattice operations.
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Proof. Let σ ∈ Hyp(τ) and assume that it respects all absorption laws.
We consider σ only up to equivalence with respect to the variety of ortho-
modular lattices. Put (t,u) := (σ(∨), σ(∧)) and let (xty)∧c =

∨
i∈J ti and

(x u y) ∧ c =
∨

i∈K ti with J,K ⊆ {1, . . . , 4}. If (L;∨,∧,′ , 0, 1) is an ortho-
modular lattice, then (L;t,u) is an absorption algebra. Hence, it follows
x t x = x u x = x. Because of 0 t 0 = 0 u 0 = 0, we have 4 6∈ J,K, whereas
from 1 t 1 = 1 u 1 = 1, it follows 1 ∈ J,K. Since 0 t 1 ∈ {0, 1}, we either
have both 0 t 1 = 1 t 0 = 0 and 0 u 1 = 1 u 0 = 1 or both 0 t 1 = 1 t 0 = 1
and 0 u 1 = 1 u 0 = 0. In the first case J = {1} and K = {1, 2, 3}, whereas
in the second case J = {1, 2, 3} and K = {1}.

Let MO2:= {0, a, a′, b, b′, 1} denote the six-element orthomodular lattice
with atoms a, a′, b, b′. Now we consider the first case. Then we have:

x t y = t1 ∨ (c′ ∧ x) ⇒ b t (a t b) = b 6= a = a t b, a contradiction,

x t y = t1 ∨ (c′ ∧ x′) ⇒ (a t b) t b = a 6= a′ = a t b, a contradiction,

x t y = t1 ∨ (c′ ∧ y) ⇒ (a t b) t a = a 6= b = a t b, a contradiction,

x t y = t1 ∨ (c′ ∧ y′) ⇒ (a t b) t a = a′ 6= b′ = a t b, a contradiction,

x u y = t1 ∨ t2 ∨ t3 ∨ (c′ ∧ x) ⇒ b u (a u b) = b 6= a = a u b, a contradiction,

x u y = t1 ∨ t2 ∨ t3 ∨ (c′ ∧ x′) ⇒ (a u b) u b = a 6=a′= a u b, a contradiction,

x u y = t1 ∨ t2 ∨ t3 ∨ (c′ ∧ y) ⇒ (a u b) u a = a 6= b = a u b, a contradiction,

x u y = t1 ∨ t2 ∨ t3 ∨ (c′ ∧ y′) ⇒ (a u b) u a = a′ 6=b′=a u b, a contradiction.

Put

x
∨

y := (x ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y),

x
∧

y := (x ∨ y) ∧ (x ∨ y′) ∧ (x′ ∨ y).

Then

x ∨ y = t1 ∨ t2 ∨ t3 ∨ c′,

x
∨

y = t1 ∨ t2 ∨ t3,

x ∧ y = t1,

x
∧

y = t1 ∨ c′.
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From the above considerations it follows that (t,u) ∈ {∧,
∧}×{∨,

∨}. Since
in MO2, we have

(a
∧

b) ∧ a = 0 ∧ a = 0 6= a,

(a
∧

b)
∨

a = 0
∧

a = 0 6= a,

(a
∨

b) ∨ a = 1 ∨ a = 1 6= a,

therefore it follows (t,u) = (∧,∨). In the second case it follows (t,u) =
(∨,∧) in an analogous way.

We are now able to prove Theorem 1.1.

Proof of Theorem 1.1. Let σ ∈ Hyp(τ) be proper with respect to the
variety of orthomodular lattices. We consider σ only up to equivalence
with respect to the variety of orthomodular lattices. Then, σ either leaves
the lattice operations unchanged or it interchanges the lattice operations
according to Proposition 3.1. In the first case, we have

x ∨ 0 = x ⇒ x ∨ σ(0) = x ⇒ σ(0) 6= 1 ⇒ σ(0) = 0,

x ∧ 1 = x ⇒ x ∧ σ(1) = x ⇒ σ(1) 6= 0 ⇒ σ(1) = 1,

x ∨ x′ = 1 ⇒ x ∨ σ(x′) = 1 ⇒ σ(x′) 6= 0, x, and

x ∧ x′ = 0 ⇒ x ∧ σ(x′) = 0 ⇒ σ(x′) 6= x, 1.

Hence σ(x′) = x′. In the second case, we have

x ∨ 0 = x ⇒ x ∧ σ(0) = x ⇒ σ(0) 6= 0 ⇒ σ(0) = 1,

x ∧ 1 = x ⇒ x ∨ σ(1) = x ⇒ σ(1) 6= 1 ⇒ σ(1) = 0,

x ∨ x′ = 1 ⇒ x ∧ σ(x′) = 0 ⇒ σ(x′) 6= x, 1, and

x ∧ x′ = 0 ⇒ x ∨ σ(x′) = 1 ⇒ σ(x′) 6= 0, x.

From this it again follows σ(x′)=x′ completing the proof of the theorem.
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4. Hypersubstitutions in bounded lattices with an involutory
antiautomorphism

In this section let τ denote the type (2, 2, 1, 0, 0) with operation symbols
(∨,∧,′ , 0, 1) and W the variety of bounded lattices with an involutory
dual-automorphism.

Definition 4.1. Let σ1, . . . , σ4 ∈ Hyp(τ) be defined by

σ1(x ∨ y) := (x ∨ y) ∧ (x′ ∨ y′),

σ2(x ∨ y) := (x ∧ y′) ∨ (x′ ∧ y),

σ3(x ∨ y) := (x ∧ y) ∨ (x′ ∧ y′),

σ4(x ∨ y) := (x ∨ y′) ∧ (x′ ∨ y),

σi(x ∧ y) := x ∧ y, σi(x′) := x′, σi(0) := 0 and σi(1) := 1 for i = 1, . . . , 4.

Theorem 4.1. In the variety W the algebra ({σ1, . . . , σ4}; ◦, σ1) is a monoid
generated (as a semigroup) by {σ3, σ4} and having the operation table

◦ σ1 σ2 σ3 σ4

σ1 σ1 σ2 σ3 σ4

σ2 σ2 σ2 σ4 σ4

σ3 σ3 σ3 σ1 σ1

σ4 σ4 σ3 σ2 σ1

Moreover, σ2
j = σ1 and

(σiσj)σj = σi = σj(σjσi)

for i = 1, . . . , 4 and j = 1, 3, 4. This semigroup has exactly six (non-empty)
subsemigroups.

Proof. The first assertions can be easily checked. The identity σ2
j = σ1 for

j = 1, 3, 4 is evident from the table and

(σiσj)σj = σi(σjσj) = σiσ1 = σi



Hypersubstitutions in orthomodular lattices 91

for i = 1, . . . , 4 and j = 1, 3, 4, analogously for the second equality. It turns
out that this semigroup has the following (non-empty) subsemigroups: {σ1},
{σ2}, {σ1, σ2}, {σ1, σ3}, {σ1, σ4} and the whole semigroup {σ1, σ2, σ3, σ4}.
For the sake of brevity, denote by +i the binary term of type τ defined by

x +i y := σi(x ∨ y)

for i = 1, . . . , 4. Moreover, for every i = 1, . . . , 4 denote by Ti the clone of
terms of type τ generated by the set {+i,∧,′ , 0, 1} and by id, the identity
element of the monoid Hyp(τ).

Theorem 4.2. Let σ1, . . . , σ4 ∈ Hyp(τ) as introduced by Definition 4.1.
Then for every i ∈ {1, . . . , 4} there exists a mapping ρi from Ti to Ti such
that the identity ρi ◦σi = id holds in W . In particular, for the generators of
Ti we can put

ρ1(x +1 y) := 1 +1 ((1 +1 x) ∧ (1 +1 y)),

ρ2(x +2 y) := 1 +2 ((1 +2 x) ∧ (1 +2 y)),

ρ3(x +3 y) := 0 +3 ((0 +3 x) ∧ (0 +3 y)),

ρ4(x +4 y) := 0 +4 ((0 +4 x) ∧ (0 +4 y)),

ρi(x ∧ y) := x ∧ y, ρi(x′) := x′, ρi(0) := 0 and ρi(1) := 1 for i = 1, . . . , 4.

Proof. It is easy to derive 1 +1 x = (1 ∨ x) ∧ (1′ ∨ x′) = x′ in the variety
W and, analogously, also 1 +2 x = x′, 0 +3 x = x′ and 0 +4 x = x′. Now

ρ1(σ1(x ∨ y)) = ρ1(x +1 y) = 1 +1 ((1 +1 x) ∧ (1 +1 y)) = (x′ ∧ y′)′ = x ∨ y

in W and, of course ρ1(σ1(x ∧ y)) = x ∧ y, ρ1(σ1(x′)) = x′, ρ1(σ1(0)) = 0
and ρ1(σ1(1)) = 1, i. e. ρ1 ◦ σ1 = id. The rest of the proof follows in an
analogous way.
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Olomouc 1994.

[6] J. PÃlonka, On hyperidentities of some varieties, p. 199–213 in: “General Alge-
bra and Discrete Mathematics (Potsdam 1993)”, Heldermann-Verlag, Lemgo
1995.

[7] Z. Szylicka, Proper hypersubstitutions of normalizations and externalizations
of varieties, p. 144–155 in: “General Algebra and Ordered Sets (Horni Lipová
1994)”, Palacký University, Olomouc 1994.

[8] W. Taylor, Hyperidentities and hypervarieties, Aequationes Math. 23 (1981),
30–49.

Received 1 February 2000


