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Abstract

We prove that the set of all n-ary endomorphisms of an abelian
m-ary group forms an (m,n) - ring.
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The terminology and notation used in this paper is standard (see, for
example, [7] and [5]). The bibliography of m-ary groups (till 1982) is given
in the survey [3] prepared by K. GÃlazek.

Let {A1, A2, ..., An−1, An} be the sequence of m-ary groups, where
m,n≥2 are fixed. The sequence f = {f1, f2, ..., fn−1} of homomorphisms

A1
f1−→ A2

f2−→ ...
fn−2−→ An−1

fn−1−→ An

is called an n-ary homomorphism (cf. [2]).
If An = A1, then this homomorphism is called an n-ary endomorphism.

By End(A1, A2, ..., An−1) we denote the set of all n-ary endomorphisms of
the sequences {A1, A2, ..., An−1, A1} of m-ary groups. It is clear that f
defined in such a way is an n-ary isomorphism iff all fi are isomorphisms.

Let fi = {fi1, fi2, ..., fi(n−1)}, i = 1, ..., n, be an n-ary homomorphism
which corresponds to the sequence

fi : Bi
fi1−→ A1

fi2−→ ...
fi(n−2)−→ An−2

fi(n−1)−→ Bi+1,
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where B1, ..., Bn+1, A1, ..., An−2 are m-ary groups. The n-ary product of such
n-ary homomorphisms is defined in the same way as E.L. Post defines the
composition of m-ary permutations (cf. [5], p. 249 and [6]).
Namely:

g = [f1f2...fn−1fn] =

= {f11f22...f(n−2)(n−2)f(n−1)(n−1)fn1,

......................................

f1kf2(k+1)...f(n−k)(n−1)f(n−k+1)1...f(n−1)(k−1)fnk,

......................................

f1(n−1)f21...f(n−2)(n−3)f(n−1)(n−2)fn(n−1)} = {g1, g2, ...gn−1},

i.e., as the skew product in the matrix [fij ]m×(n−1).

Such defined a product is an n-ary homomorphism of the sequence
{B1, A1, ..., An−2, Bn+1} because

g : B1
g1−→ A1

g2−→ A2
g3−→ ...

gn−2−→ An−2
gn−1−→ Bn+1.

In [2] is proved that < End(A1, A2, ..., An−1); [ ] > is an n-ary semigroup.
Remark that some results on m-ary transformations of commutative n-ary
groups are also contained in [7].

Now, let A1, A2, ..., An−1 be abelian m-ary groups and let ϕj be the
mapping defined by the formula

aϕj = (af1jaf2j ...afmj ),

where {fi1, ..., fi(n−1)} = fi ∈ End(A1, A2, ..., An−1), i = 1, ...,m, a ∈ Aj ,
j = 1, ..., n− 1. Since such defined ϕj are homomorphisms (cf. [2]), we have

{ϕ1, ϕ2, ..., ϕn−1} = ϕ ∈ End(A1, A2, ..., An−1).
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This means that in End(A1, A2, ..., An−1) is defined an m-ary operation ( )
by the formula

(f1f2...fm) = ϕ.

Recall (cf. for example [1]) that a non-empty set A with two operations
( ) : Am → A and [ ] : An → A is said to be an (m,n)-ring if

1) < A; ( ) > is an abelian m-ary group;

2) < A; [ ] > is an n-ary semigroup;

3) [ai−1
1 (bm

1 )an
i+1] = ([ai−1

1 b1a
n
i+1]...[a

i−1
1 bman

i+1]) for all i = 1, ..., n

and a1, ..., an, b1, ..., bm ∈ A.

Theorem. If all m-ary groups A1, ..., An−1 are abelian, then

< End(A1, ..., An−1); ( ), [ ] >

is an (m,n)-ring.

In the proof of this theorem we use properties of elements formulated
in two easily verified lemmas given below.

Recall that two sequences α and β of elements from an m-ary group
< A; [ ] > are equivalent if there are sequences δ and γ of elements from A
such that [γ, α, δ] = [γ, β, δ].

Lemma 1. Let ϕ : A → B be a homomorphism of an m-ary groups. If
ai

1 and b
i+k(m−1)
1 are equivalent in A, then aϕ

1 . . . aϕ
i and bϕ

1 ...bϕ
i+k(m−1) are

equivalent in B.

Lemma 2. Let ϕ : A → B be a homomorphism of an m-ary groups. If ak
1 is

the inverse sequence for a ∈ A, then aϕaϕ
1 . . . aϕ

k and aϕ
1 . . . aϕ

k aϕ are neutral
sequences in B.

Proof of Theorem. In [2] it is proved that < End (A1, ..., An−1); [ ] > is
an n-ary semigroup.

Now, we prove that < End (A1, ..., An−1); () > is an m-ary group.
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Let

((f1f2...fm)fm+1...f2m−1) = g = {g1, g2, ..., gn−1};

(f1...fi(fi+1...fi+m)fi+m+1...f2m−1) = h

= {h1, h2, ..., hn−1}, i = 1, 2, ...., m− 1;

(f1f2...fm) = ϕ = {ϕ1, ϕ2, ..., ϕn−1};

and

(fi+1...fi+m) = ψ = {ψ1, ψ2, ..., ψn−1},

where fj = {fj1, fj2, ..., fj(n−1)}, j = 1, 2, ..., 2m− 1.
Moreover the brackets ( ) will be also denoted the derived (extended)

operation.

At first, we prove the associativity of the m-ary operation ( ). Observe
that aϕj =(af1jaf2j . . . afmj ), where a ∈ Aj , j = 1, ...n− 1, implies

agj =
(
aϕjaf(m+1)j . . . af(2m−1)j

)
=

=
((

af1jaf2j . . . afmj

)
af(m+1)j . . . af(2m−1)j

)
=

=
(
af1jaf2j . . . af(2m−1)j

)
.

Hence,

agj =
(
af1jaf2j . . . af(2m−1)j

)
.(1)

Similarly, aψj = (af(i+1)j . . . af(i+m)j ) implies

ahj =
(
af1j . . . afijaψjaf(i+m+1)j . . . af(2m−1)j

)
=

=
(
af1j . . . afij

(
af(i+1)j . . . af(i+m)j

)
af(i+m+1)j . . . af(2m−1)j

)
=

=
(
af1jaf2j . . . af(2m−1)j

)
,

i. e.,



Generalized morphisms of abelian m-ary groups 51

ahj =
(
af1jaf2j . . . af(2m−1)j

)
.(2)

From (1) and (2), we get gj = hj , for all j = 1, ..., n − 1. Therefore g = h
and, in the consequence,

(
(fm

1 ) f2m−1
m+1

)
=

(
f i
1

(
f i+m

i+1

)
f2m−1

i+m+1

)

for all i = 1, ...,m − 1, which proves that < End(A1, ..., An−1); ( ) > is an
m-ary semigroup. It is an abelian m-ary semigroup, because all m-ary
groups A1, ..., An−1 are abelian.

Now we prove that the equation

(f1f2...fm−1u) = ϕ,(3)

where

f1, f2, ..., fm−1, ϕ ∈ End(A1, ..., An−1),

fi = {fi1, fi2, ..., fi(n−1)}, i = 1, 2, ..., m− 1,

ϕ = {ϕ1, ϕ2, ..., ϕn−1},

has a solution u ∈ End(A1, ..., An−1).
Note that a1, ..., ak is the inverse sequence for aj ∈ Aj , then the mapping

uj : a →
(
a

f(m−1)j

1 . . . a
f(m−1)j

k . . . a
f1j

1 . . . a
f1j

k aϕj

)

is a homomorphism.
Indeed, if bi1, ..., bik ∈ Aj is the inverse sequence for bi ∈ Aj

(i = 1, 2, ..., m) and d1, ..., dk ∈ Aj is the inverse sequence for (b1b2...bm) ∈
Aj , then

bm1, ..., bmk, ..., b21, ..., b2k, b11, ..., b1k(4)

is an inverse sequence for (b1b2...bm). Thus d1, ..., dk and (4) are equivalent.
By Lemma 1,
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b
fij

m1, . . . , b
fij

mk, . . . , b
fij

21 , . . . , b
fij

2k , b
fij

11 , . . . , b
fij

1k and d
fij

1 , . . . , d
fij

k

are also equivalent sequences.
Using this fact and the abelianity of all m-groups A1, ..., An−1, we get

(b1b2. . . bm)uj =
(
d

f(m−1)j

1 . . . d
f(m−1)j

k . . . d
f1j

1 . . . d
f1j

k (b1b2. . . bm)ϕj

)
=

=
(
b
f(m−1)j

m1 . . . b
f(m−1)j

mk . . . b
f(m−1)j

11 . . . b
f(m−1)j

1k . . . b
f1j

m1. . . b
f1j

mk. . . b
f1j

11 . . . b
f1j

1k b
ϕj

1 b
ϕj

2 . . . b
ϕj
m

)

=
((
b
f(m−1)j

11 . . . b
f(m−1)j

1k . . . b
f1j

11 . . . b
f1j

1k b
ϕj

1

)
. . .

(
b
f(m−1)j

m1 . . . b
f(m−1)j

mk . . . b
f1j

m1. . . b
f1j

mkb
ϕj
m

))

=
(
b
uj

1 . . . b
uj
m

)
.

This proves that uj is a homomorphism for every j = 1, ..., n − 1. Hence
u = {u1, ..., un−1} ∈ End(A1, ..., An−1). Moreover, by Lemma 2, we get

(
af1j . . . af(m−1)jauj

)
=

(
af1j . . . af(m−1)j

(
a

f(m−1)j

1 . . . a
f(m−1)j

k . . . a
f1j

1 . . . a
f1j

k aϕj

))
=

=


af1ja

f1j

1 . . . a
f1j

k︸ ︷︷ ︸
neutral

... af(m−1)ja
f(m−1)j

1 . . . a
f(m−1)j

k︸ ︷︷ ︸
neutral

aϕj


 = aϕj

Therefore, we have (3). Since, the operation ( ) defined on End(A1, ..., An−1),
is abelian, we have that < End(A1, ..., An−1); () > is an abelian m-ary group.

Now, we prove the identity

[
f i−1
1 (gm

1 )fn
i+1

]
=

([
f i−1
1 g1f

n
i+1

]
...

[
f i−1
1 gmfn

i+1

])
,(5)

where i = 1, ..., n.
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Let
[
f i−1
1 (gm

1 ) fn
i+1

]
= {s1, s2, ..., sn−1};

([
f i−1
1 g1f

n
i+1

]
...

[
f i−1
1 gmfn

i+1

])
= {r1, r2, ..., rn−1};

fk = {fk1, fk2, ..., fk(n−1)}, k = 1, ..., n;

gj = {gj1, gj2, ..., gj(n−1)}, j = 1, ...,m;

[
f i−1
1 gjf

n
i+1

]
= {tj1, tj2, ..., tj(n−1)}, j = 1, ..., m;

and

(gm
1 ) = {ϕ1, ϕ2, ..., ϕn−1}.

It is clear that identity (5) is satisfied only in the case when sk = rk for all
k = 1, ..., n− 1.

For 1 ≤ i ≤ n− k, we have

ask =

af1k...f(i−1)(i+k−2)ϕif(i+1)(i+k)...f(n−k)(n−1)f(n−k+1)1...f(n−1)(k−1)fnk

=
(
af1k...f(i−1)(i+k−2)g1i . . . af1k...f(i−1)(i+k−2)gmi

)
f(i+1)(i+k)...f(n−k)(n−1)f(n−k+1)1...f(n−k)(k−1)fnk

=
(
af1k...f(i−1)(n+k−2)g1if(i+1)(i+k)...f(n−k)(n−1)f(n−k+1)1...f(n−1)(k−1)fnk . . .

. . . af1k...f(i−1)(i+k−2)gmif(i+1)(i+k)...f(n−k)(n−1)f(n−k+1)1...f(n−1)(k−1)fnk

)

and

ark =
(
at1k . . . atmk

)
=

=
(
af1k...f(i−1)(i+k−2)g1if(i+1)(i+k)...f(n−k)(n−1)f(n−k+1)1...f(n−1)(k−1)fnk ...

...af1k...f(i−1)(i+k−2)gmif(i+1)(i+k)...f(n−k)(n−1)f(n−k+1)1...f(n−1)(k−1)fnk

)
.
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Thus, ask = ark and, in the consequence, sk = rk.
If n− k < i ≤ n, then

ask = af1k...f(n−k)(n−1)f(n−k+1)1...f(i−1)(i+k−n−1)ϕif(i+1)(i+k−n+1)...f(n−1)(k−1)fnk =

=
(
af1k...f(n−k)(n−1)f(n−k+1)1...f(i−1)(i+k−n−1)g1i ...

af1k...f(n−1)(k−1)f(n−k+1)1...f(i−1)(i+k−n−1)gmi

)f(i+1)(i+k−n+1)...f(n−1)(k−1)fnk
=

=
(
af1k...f(n−k)(n−1)f(n−k+1)1...f(i−1)(i+k−n−1)g1if(i+1)(i+k−n+1)...f(n−1)(k−1)fnk ...

...af1k...f(n−k)(n−1)f(n−k+1)1...f(i−1)(i+k−n−1)gmif(i+1)(i+k−n+1)...f(n−1)(k−1)fnk

)

and

ark =
(
at1k . . . atmk

)
=

=
(
af1k...f(n−k)(n−1)f(n−k+1)1...f(i−1)(i+k−n−1)g1if(i+1)(i+k−n+1)...f(n−1)(k−1)fnk ...

...af1k...f(n−k)(n−1)f(n−k+1)1...f(i−1)(i+k−n−1)gmif(i+1)(i+k−n+1)...f(n−1)(k−1)fnk

)
,

which – similarly as in the previous case – give, sk = rk.
This completes the proof.

Corollary 1. If < A1; +,−, 0 >, ..., < An−1; {+,−, 0} > are abelian groups,
then < End(A1, ..., An−1); {+,−, Θ, [ ]} > is the multiring, where Θ=(0, ..., 0).

Corollary 2 ([4]). The set of all endomorphisms of an abelian m-ary group
forms an (m, 2)-ring.
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