GENERALIZED MORPHISMS OF ABELIAN m-ARY GROUPS

Alexander M. Gal'mak
Department of Mathematics, Technological Institute
Shmidt ave. 3, 212027 Mogilev, Belarus

Abstract

We prove that the set of all n-ary endomorphisms of an abelian m-ary group forms an (m, n) - ring.

Keywords and phrases: n-ary endomorphism, m-ary group, (m, n) ring.

2000 Mathematics Subject Classification: Primary 20N15; Secondary 16Y99.

The terminology and notation used in this paper is standard (see, for example, [7] and [5]). The bibliography of m-ary groups (till 1982) is given in the survey [3] prepared by K. Głazek.

Let $\left\{A_{1}, A_{2}, \ldots, A_{n-1}, A_{n}\right\}$ be the sequence of m-ary groups, where $m, n \geq 2$ are fixed. The sequence $f=\left\{f_{1}, f_{2}, \ldots, f_{n-1}\right\}$ of homomorphisms

$$
A_{1} \xrightarrow{f_{1}} A_{2} \xrightarrow{f_{2}} \ldots \xrightarrow{f_{n-2}} A_{n-1} \xrightarrow{f_{n-1}} A_{n}
$$

is called an n-ary homomorphism (cf. [2]).
If $A_{n}=A_{1}$, then this homomorphism is called an n-ary endomorphism. $\operatorname{By} \operatorname{End}\left(A_{1}, A_{2}, \ldots, A_{n-1}\right)$ we denote the set of all n-ary endomorphisms of the sequences $\left\{A_{1}, A_{2}, \ldots, A_{n-1}, A_{1}\right\}$ of m-ary groups. It is clear that f defined in such a way is an n-ary isomorphism iff all f_{i} are isomorphisms.

Let $f_{i}=\left\{f_{i 1}, f_{i 2}, \ldots, f_{i(n-1)}\right\}, i=1, \ldots, n$, be an n-ary homomorphism which corresponds to the sequence

$$
f_{i}: B_{i} \xrightarrow{f_{i 1}} A_{1} \xrightarrow{f_{i 2}} \ldots \xrightarrow{f_{i(n-2)}} A_{n-2} \xrightarrow{f_{i(n-1)}} B_{i+1},
$$

where $B_{1}, \ldots, B_{n+1}, A_{1}, \ldots, A_{n-2}$ are m-ary groups. The n-ary product of such n-ary homomorphisms is defined in the same way as E.L. Post defines the composition of m-ary permutations (cf. [5], p. 249 and [6]).
Namely:

$$
\begin{aligned}
g= & {\left[f_{1} f_{2} \ldots f_{n-1} f_{n}\right]=} \\
& =\left\{f_{11} f_{22} \ldots f_{(n-2)(n-2)} f_{(n-1)(n-1)} f_{n 1},\right. \\
& \ldots \\
& f_{1 k} f_{2(k+1) \ldots} f_{(n-k)(n-1)} f_{(n-k+1) 1 \ldots} f_{(n-1)(k-1)} f_{n k},
\end{aligned}
$$

$$
\left.f_{1(n-1)} f_{21 \ldots} f_{(n-2)(n-3)} f_{(n-1)(n-2)} f_{n(n-1)}\right\}=\left\{g_{1}, g_{2}, \ldots g_{n-1}\right\},
$$

i.e., as the skew product in the matrix $\left[f_{i j}\right]_{m \times(n-1)}$.

Such defined a product is an n-ary homomorphism of the sequence $\left\{B_{1}, A_{1}, \ldots, A_{n-2}, B_{n+1}\right\}$ because

$$
g: B_{1} \xrightarrow{g_{1}} A_{1} \xrightarrow{g_{2}} A_{2} \xrightarrow{g_{3}} \ldots \xrightarrow{g_{n-2}} A_{n-2} \xrightarrow{g_{n-1}} B_{n+1} .
$$

In [2] is proved that $<\operatorname{End}\left(A_{1}, A_{2}, \ldots, A_{n-1}\right) ;[]>$ is an n-ary semigroup. Remark that some results on m-ary transformations of commutative n-ary groups are also contained in [7].

Now, let $A_{1}, A_{2}, \ldots, A_{n-1}$ be abelian m-ary groups and let φ_{j} be the mapping defined by the formula

$$
a^{\varphi_{j}}=\left(a^{f_{1 j}} a^{f_{2 j}} \ldots a^{f_{m j}}\right),
$$

where $\left\{f_{i 1}, \ldots, f_{i(n-1)}\right\}=f_{i} \in \operatorname{End}\left(A_{1}, A_{2}, \ldots, A_{n-1}\right), i=1, \ldots, m, a \in A_{j}$, $j=1, \ldots, n-1$. Since such defined φ_{j} are homomorphisms (cf. [2]), we have

$$
\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n-1}\right\}=\varphi \in \operatorname{End}\left(A_{1}, A_{2}, \ldots, A_{n-1}\right)
$$

GENERALIZED MORPHISMS OF ABELIAN m-ARY GROUPS

This means that in $\operatorname{End}\left(A_{1}, A_{2}, \ldots, A_{n-1}\right)$ is defined an m-ary operation () by the formula

$$
\left(f_{1} f_{2} \ldots f_{m}\right)=\varphi
$$

Recall (cf. for example [1]) that a non-empty set A with two operations ()$: A^{m} \rightarrow A$ and []$: A^{n} \rightarrow A$ is said to be an (m, n)-ring if

1) $\langle A$; () \rangle is an abelian m-ary group;
2) $<A$; [] $>$ is an n-ary semigroup;
3) $\left[a_{1}^{i-1}\left(b_{1}^{m}\right) a_{i+1}^{n}\right]=\left(\left[a_{1}^{i-1} b_{1} a_{i+1}^{n}\right] \ldots\left[a_{1}^{i-1} b_{m} a_{i+1}^{n}\right]\right)$ for all $i=1, \ldots, n$ and $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m} \in A$.

Theorem. If all m-ary groups A_{1}, \ldots, A_{n-1} are abelian, then

$$
<\operatorname{End}\left(A_{1}, \ldots, A_{n-1}\right) ;(),[]>
$$

is an (m, n)-ring.
In the proof of this theorem we use properties of elements formulated in two easily verified lemmas given below.

Recall that two sequences α and β of elements from an m-ary group $<A ;[]>$ are equivalent if there are sequences δ and γ of elements from A such that $[\gamma, \alpha, \delta]=[\gamma, \beta, \delta]$.

Lemma 1. Let $\varphi: A \rightarrow B$ be a homomorphism of an m-ary groups. If a_{1}^{i} and $b_{1}^{i+k(m-1)}$ are equivalent in A, then $a_{1}^{\varphi} \ldots a_{i}^{\varphi}$ and $b_{1}^{\varphi} \ldots b_{i+k(m-1)}^{\varphi}$ are equivalent in B.

Lemma 2. Let $\varphi: A \rightarrow B$ be a homomorphism of an m-ary groups. If a_{1}^{k} is the inverse sequence for $a \in A$, then $a^{\varphi} a_{1}^{\varphi} \ldots a_{k}^{\varphi}$ and $a_{1}^{\varphi} \ldots a_{k}^{\varphi} a^{\varphi}$ are neutral sequences in B.

Proof of Theorem. In [2] it is proved that $\left\langle\operatorname{End}\left(A_{1}, \ldots, A_{n-1}\right) ;[]\right\rangle$ is an n-ary semigroup.

Now, we prove that $<$ End $\left(A_{1}, \ldots, A_{n-1}\right) ;()>$ is an m-ary group.

Let

$$
\begin{aligned}
& \left(\left(f_{1} f_{2} \ldots f_{m}\right) f_{m+1} \ldots f_{2 m-1}\right)=g=\left\{g_{1}, g_{2}, \ldots, g_{n-1}\right\} ; \\
& \left(f_{1} \ldots f_{i}\left(f_{i+1} \ldots f_{i+m}\right) f_{i+m+1} \ldots f_{2 m-1}\right)=h \\
& =\left\{h_{1}, h_{2}, \ldots, h_{n-1}\right\}, i=1,2, \ldots, m-1 ; \\
& \left(f_{1} f_{2} \ldots f_{m}\right)=\varphi=\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n-1}\right\}
\end{aligned}
$$

and

$$
\left(f_{i+1} \ldots f_{i+m}\right)=\psi=\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{n-1}\right\},
$$

where $\quad f_{j}=\left\{f_{j 1}, f_{j 2}, \ldots, f_{j(n-1)}\right\}, j=1,2, \ldots, 2 m-1$.
Moreover the brackets () will be also denoted the derived (extended) operation.

At first, we prove the associativity of the m-ary operation (). Observe that $a^{\varphi_{j}}=\left(a^{f_{1 j}} a^{f_{2 j}} \ldots a^{f_{m j}}\right)$, where $a \in A_{j}, j=1, \ldots n-1$, implies

$$
\begin{aligned}
& a^{g_{j}}=\left(a^{\varphi_{j}} a^{f_{(m+1) j}} \ldots a^{f_{(2 m-1) j}}\right)= \\
& =\left(\left(a^{f_{1 j}} a^{f_{2 j}} \ldots a^{f_{m j}}\right) a^{f_{(m+1) j}} \ldots a^{f_{(2 m-1) j}}\right)= \\
& =\left(a^{f_{1 j}} a^{f_{2 j}} \ldots a^{f_{(2 m-1) j}}\right) .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
a^{g_{j}}=\left(a^{f_{1 j}} a^{f_{2 j}} \ldots a^{f_{(2 m-1) j}}\right) . \tag{1}
\end{equation*}
$$

Similarly, $a^{\psi_{j}}=\left(a^{f_{(i+1) j}} \ldots a^{f_{(i+m) j}}\right)$ implies

$$
\begin{aligned}
& a^{h_{j}}=\left(a^{f_{1 j}} \ldots a^{f_{i j}} a^{\psi_{j}} a^{f_{(i+m+1) j}} \ldots a^{f_{(2 m-1) j}}\right)= \\
& =\left(a^{f_{1 j}} \ldots a^{f_{i j}}\left(a^{f_{(i+1) j}} \ldots a^{f_{(i+m) j}}\right) a^{f_{(i+m+1) j}} \ldots a^{f_{(2 m-1) j}}\right)= \\
& =\left(a^{f_{1 j}} a^{f_{2 j}} \ldots a^{f_{(2 m-1) j}}\right),
\end{aligned}
$$

i. e.,

$$
\begin{equation*}
a^{h_{j}}=\left(a^{f_{1 j}} a^{f_{2 j}} \ldots a^{f_{(2 m-1) j}}\right) \tag{2}
\end{equation*}
$$

From (1) and (2), we get $g_{j}=h_{j}$, for all $j=1, \ldots, n-1$. Therefore $g=h$ and, in the consequence,

$$
\left(\left(f_{1}^{m}\right) f_{m+1}^{2 m-1}\right)=\left(f_{1}^{i}\left(f_{i+1}^{i+m}\right) f_{i+m+1}^{2 m-1}\right)
$$

for all $i=1, \ldots, m-1$, which proves that $<\operatorname{End}\left(A_{1}, \ldots, A_{n-1}\right) ;()>$ is an m-ary semigroup. It is an abelian m-ary semigroup, because all m-ary groups A_{1}, \ldots, A_{n-1} are abelian.

Now we prove that the equation

$$
\begin{equation*}
\left(f_{1} f_{2} \ldots f_{m-1} u\right)=\varphi \tag{3}
\end{equation*}
$$

where

$$
\begin{gathered}
f_{1}, f_{2}, \ldots, f_{m-1}, \varphi \in \operatorname{End}\left(A_{1}, \ldots, A_{n-1}\right) \\
f_{i}=\left\{f_{i 1}, f_{i 2}, \ldots, f_{i(n-1)}\right\}, i=1,2, \ldots, m-1, \\
\varphi=\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n-1}\right\},
\end{gathered}
$$

has a solution $u \in \operatorname{End}\left(A_{1}, \ldots, A_{n-1}\right)$.
Note that a_{1}, \ldots, a_{k} is the inverse sequence for $a_{j} \in A_{j}$, then the mapping

$$
u_{j}: a \rightarrow\left(a_{1}^{f_{(m-1) j}} \ldots a_{k}^{f_{(m-1) j}} \ldots a_{1}^{f_{1 j}} \ldots a_{k}^{f_{1 j}} a^{\varphi_{j}}\right)
$$

is a homomorphism.
Indeed, if $b_{i 1}, \ldots, b_{i k} \in A_{j}$ is the inverse sequence for $b_{i} \in A_{j}$ $(i=1,2, \ldots, m)$ and $d_{1}, \ldots, d_{k} \in A_{j}$ is the inverse sequence for $\left(b_{1} b_{2} \ldots b_{m}\right) \in$ A_{j}, then

$$
\begin{equation*}
b_{m 1}, \ldots, b_{m k}, \ldots, b_{21}, \ldots, b_{2 k}, b_{11}, \ldots, b_{1 k} \tag{4}
\end{equation*}
$$

is an inverse sequence for $\left(b_{1} b_{2} \ldots b_{m}\right)$. Thus d_{1}, \ldots, d_{k} and (4) are equivalent. By Lemma 1,

$$
b_{m 1}^{f_{i j}}, \ldots, b_{m k}^{f_{i j}}, \ldots, b_{21}^{f_{i j}}, \ldots, b_{2 k}^{f_{i j}}, b_{11}^{f_{i j}}, \ldots, b_{1 k}^{f_{i j}} \text { and } d_{1}^{f_{i j}}, \ldots, d_{k}^{f_{i j}}
$$

are also equivalent sequences.
Using this fact and the abelianity of all m-groups A_{1}, \ldots, A_{n-1}, we get

$$
\begin{aligned}
& \left(b_{1} b_{2} \ldots b_{m}\right)^{u_{j}}=\left(d_{1}^{f_{(m-1) j}} \ldots d_{k}^{f_{(m-1) j}} \ldots d_{1}^{f_{1 j}} \ldots d_{k}^{f_{1 j}}\left(b_{1} b_{2} \ldots b_{m}\right)^{\varphi_{j}}\right)= \\
& =\left(b_{m 1}^{f_{(m-1) j}} \ldots b_{m k}^{f_{(m-1) j}} \ldots b_{11}^{f_{(m-1) j}} \ldots b_{1 k}^{f_{(m-1) j}} \ldots b_{m 1}^{f_{1 j}} \ldots b_{m k}^{f_{1 j}} \ldots b_{11}^{f_{1 j}} \ldots b_{1 k}^{\left.f_{1 j} b_{1}^{\varphi_{j}} b_{2}^{\varphi_{j}} \ldots b_{m}^{\varphi_{j}}\right)}\right. \\
& =\left(\left(b_{11}^{f_{(m-1) j}} \ldots b_{1 k}^{f_{(m-1) j}} \ldots b_{11}^{f_{1 j}} \ldots b_{1 k}^{f_{1 j}} b_{1}^{\varphi_{j}}\right) \ldots\left(b_{m 1}^{f_{(m-1) j}} \ldots b_{m k}^{f_{(m-1) j}} \ldots b_{m 1}^{f_{1 j}} \ldots b_{m k}^{f_{1 j}} b_{m}^{\varphi_{j}}\right)\right) \\
& =\left(b_{1}^{u_{j}} \ldots b_{m}^{u_{j}}\right) .
\end{aligned}
$$

This proves that u_{j} is a homomorphism for every $j=1, \ldots, n-1$. Hence $u=\left\{u_{1}, \ldots, u_{n-1}\right\} \in \operatorname{End}\left(A_{1}, \ldots, A_{n-1}\right)$. Moreover, by Lemma 2, we get

$$
\begin{aligned}
& \left(a^{f_{1 j}} \ldots a^{f_{(m-1) j}} a^{u_{j}}\right)= \\
& \left(a^{f_{1 j}} \ldots a^{f_{(m-1) j}}\left(a_{1}^{f_{(m-1) j}} \ldots a_{k}^{f_{(m-1) j}} \ldots a_{1}^{f_{1 j}} \ldots a_{k}^{f_{1 j}} a^{\varphi_{j}}\right)\right)= \\
& =(\underbrace{a^{f_{1 j}} a_{1}^{f_{1 j}} \ldots a_{k}^{f_{1 j}}}_{\text {neutral }} \ldots \underbrace{a^{f_{(m-1) j}} a_{1}^{f_{(m-1) j}} \ldots a_{k}^{f_{(m-1) j}}}_{\text {neutral }} a^{\varphi_{j}})=a^{\varphi_{j}}
\end{aligned}
$$

Therefore, we have (3). Since, the operation () defined on $\operatorname{End}\left(A_{1}, \ldots, A_{n-1}\right)$, is abelian, we have that $<\operatorname{End}\left(A_{1}, \ldots, A_{n-1}\right) ;()>$ is an abelian m-ary group.

Now, we prove the identity

$$
\begin{equation*}
\left[f_{1}^{i-1}\left(g_{1}^{m}\right) f_{i+1}^{n}\right]=\left(\left[f_{1}^{i-1} g_{1} f_{i+1}^{n}\right] \ldots\left[f_{1}^{i-1} g_{m} f_{i+1}^{n}\right]\right), \tag{5}
\end{equation*}
$$

where $i=1, \ldots, n$.

Let

$$
\begin{aligned}
& {\left[f_{1}^{i-1}\left(g_{1}^{m}\right) f_{i+1}^{n}\right]=\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}} \\
& \left(\left[f_{1}^{i-1} g_{1} f_{i+1}^{n}\right] \ldots\left[f_{1}^{i-1} g_{m} f_{i+1}^{n}\right]\right)=\left\{r_{1}, r_{2}, \ldots, r_{n-1}\right\} \\
& f_{k}=\left\{f_{k 1}, f_{k 2}, \ldots, f_{k(n-1)}\right\}, k=1, \ldots, n \\
& g_{j}=\left\{g_{j 1}, g_{j 2}, \ldots, g_{j(n-1)}\right\}, j=1, \ldots, m \\
& {\left[f_{1}^{i-1} g_{j} f_{i+1}^{n}\right]=\left\{t_{j 1}, t_{j 2}, \ldots, t_{j(n-1)}\right\}, j=1, \ldots, m}
\end{aligned}
$$

and

$$
\left(g_{1}^{m}\right)=\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n-1}\right\} .
$$

It is clear that identity (5) is satisfied only in the case when $s_{k}=r_{k}$ for all $k=1, \ldots, n-1$.

For $1 \leq i \leq n-k$, we have

$$
\begin{aligned}
& a^{s_{k}}= \\
& a^{f_{1 k} \ldots f_{(i-1)(i+k-2)} \varphi_{i} f_{(i+1)(i+k)} \ldots f_{(n-k)(n-1)} f_{(n-k+1) 1} \ldots f_{(n-1)(k-1)} f_{n k}} \\
& =\left(a^{f_{1 k} \ldots f_{(i-1)(i+k-2)} g_{1 i}} \ldots a^{\left.f_{1 k} \cdots f_{(i-1)(i+k-2)} g_{m i}\right)} f_{(i+1)(i+k) \ldots f_{(n-k)(n-1)} f_{(n-k+1) 1} \ldots f_{(n-k)(k-1)} f_{n k}}\right. \\
& =\left(a^{f_{1 k} \cdots f_{(i-1)(n+k-2)} g_{1 i} f_{(i+1)(i+k)} \ldots f_{(n-k)(n-1)} f_{(n-k+1) 1} \ldots f_{(n-1)(k-1)} f_{n k} \ldots}\right. \\
& \left.\quad \ldots a^{f_{1 k} \ldots f_{(i-1)(i+k-2)} g_{m i} f_{(i+1)(i+k)} \ldots f_{(n-k)(n-1)} f_{(n-k+1) 1} \ldots f_{(n-1)(k-1)} f_{n k}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& a^{r_{k}}=\left(a^{t_{1 k}} \ldots a^{t_{m k}}\right)= \\
& =\left(a^{f_{1 k} \ldots f_{(i-1)(i+k-2)} g_{1 i} f_{(i+1)(i+k)} \ldots f_{(n-k)(n-1)} f_{(n-k+1) 1} \ldots f_{(n-1)(k-1)} f_{n k}} \ldots\right. \\
& \quad \ldots a^{\left.f_{1 k} \ldots f_{(i-1)(i+k-2)} g_{m i} f_{(i+1)(i+k) \ldots f_{(n-k)(n-1)} f_{(n-k+1) 1} \ldots f_{(n-1)(k-1)} f_{n k}}\right) .} \begin{array}{l}
\end{array} . \\
&
\end{aligned}
$$

Thus, $a^{s_{k}}=a^{r_{k}}$ and, in the consequence, $s_{k}=r_{k}$.
If $n-k<i \leq n$, then

$$
\begin{aligned}
& a^{s_{k}}=a^{f_{1 k \cdots} \ldots f_{(n-k)(n-1)} f_{(n-k+1) 1} \ldots f_{(i-1)(i+k-n-1)} \varphi_{i} f_{(i+1)(i+k-n+1)} \ldots f_{(n-1)(k-1)} f_{n k}}= \\
& =\left(a^{f_{1 k} \ldots f_{(n-k)(n-1)} f_{(n-k+1) 1} \ldots f_{(i-1)(i+k-n-1)} g_{1 i}} \ldots\right. \\
& \left.\quad a^{f_{1 k} \cdots f_{(n-1)(k-1)} f_{(n-k+1) 1} \ldots f_{(i-1)(i+k-n-1)} g_{m i}}\right)^{f_{(i+1)(i+k-n+1)} \ldots f_{(n-1)(k-1)} f_{n k}}= \\
& =\left(a^{f_{1 k} \ldots f_{(n-k)(n-1)} f_{(n-k+1) 1} \ldots f_{(i-1)(i+k-n-1)} g_{1 i} f_{(i+1)(i+k-n+1)} \ldots f_{(n-1)(k-1)} f_{n k}} \ldots\right. \\
& \left.\quad \ldots a^{f_{1 k} \ldots f_{(n-k)(n-1)} f_{(n-k+1) 1} \ldots f_{(i-1)(i+k-n-1)} g_{m i} f_{(i+1)(i+k-n+1)} \ldots f_{(n-1)(k-1)} f_{n k}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& a^{r_{k}}=\left(a^{t_{1 k}} \ldots a^{t_{m k}}\right)= \\
& =\left(a^{f_{1 k} \ldots f_{(n-k)(n-1)} f_{(n-k+1) 1} \ldots f_{(i-1)(i+k-n-1)} g_{1 i} f_{(i+1)(i+k-n+1)} \ldots f_{(n-1)(k-1)} f_{n k}} \ldots\right. \\
& \left.\quad \ldots a^{f_{1 k} \ldots f_{(n-k)(n-1)} f_{(n-k+1) 1} \ldots f_{(i-1)(i+k-n-1)} g_{m i} f_{(i+1)(i+k-n+1)} \ldots f_{(n-1)(k-1)} f_{n k}}\right),
\end{aligned}
$$

which - similarly as in the previous case - give, $s_{k}=r_{k}$.
This completes the proof.
Corollary 1. If $<A_{1} ;+,-, 0>, \ldots,<A_{n-1} ;\{+,-, 0\}>$ are abelian groups, then $<\operatorname{End}\left(A_{1}, \ldots, A_{n-1}\right) ;\{+,-, \Theta,[]\}>$ is the multiring, where $\Theta=(0, \ldots, 0)$.

Corollary 2 ([4]). The set of all endomorphisms of an abelian m-ary group forms an (m,2)-ring.

References

[1] G. Crombez, On (n, m)-rings, Abh. Math. Sem. Univ. Hamburg 37 (1972), 180-199.
[2] A.M. Gal'mak, Generalized morphisms of algebraic systems (Russian), Voprosy Algebry 12 (1998), 36-46.
[3] K. Głazek, Bibliography of n-groups (polyadic groups) and some group-like n-ary systems, p. 253-289 in: "Proc. Symp. on n-ary Structures (Skopje 1982)", Macedonian Academy of Sciences and Arts, Skopje 1982.
[4] K. Głazek and B. Gleichgewicht, Abelian n-groups, p. 321-329 in: Colloq. Math. Soc. J. Bolyai, no. 29 ("Universal Algebra, Esztergom (Hungary) 1977'), North-Holland, Amsterdam 1981.
[5] E.L. Post, Polyadic groups, Trans. Amer. Math. Soc. 48 (1940), 208-350.
[6] S.A. Rusakov, Sequences of mappings and the existence of symmetric n-ary groups (Russian), p. 120-134 in: "The Arithmetic and Subgroup Structure of Finite Groups" (Russian), Navuka i Tehnika, Minsk 1986.
[7] S.A. Rusakov, Algebraic n-ary systems (Russian), Navuka i Tehnika, Minsk 1992.
[8] J. Timm, Kommutative n-Gruppen, Dissertation, Univ. Hamburg 1967.
Received 27 June 1999
Revised 22 September 1999
Revised 2 August 2000
Revised 5 March 2001

