The maximal column rank of an m by n matrix is the maximal number of the columns of A which are linearly independent. We compare the maximal column rank with rank of matrices over a nonbinary Boolean algebra. We also characterize the linear operators which preserve the maximal column ranks of matrices over nonbinary Boolean algebra.
Department of Mathematics, Gyeongsang National University, Chinju, 660-701, South-Korea
Bibliografia
[1] L.B. Beasley and N.J. Pullman, Boolean rank-preserving operators and Boolean rank-1 spaces, Linear Algebra Appl. 59 (1984), 55-77.
[2] L.B. Beasley and N.J. Pullman, Semiring rank versus column rank, Linear Algebra Appl. 101 (1988), 33-48.
[3] S.G. Hwang, S.J. Kim and S.Z. Song, Linear operators that preserve maximal column rank of Boolean matrices, Linear and Multilinear Algebra 36 (1994), 305-313.
[4] S. Kirkland and N. J. Pullman, Linear operators preserving invariants of nonbinary matrices, Linear and Multilinear Algebra 33 (1992), 295-300.
[5] S.Z. Song, Linear operators that preserve Boolean column ranks, Proc. Amer. Math. Soc. 119 (1993), 1085-1088.
[6] J.H.M. Wedderburn, Boolean linear associative algebra, Ann. of Math. 35 (1934), 185-194.