CONGRUENCES ON PSEUDOCOMPLEMENTED SEMILATTICES

Zuzana Heleyová
College of Business and Management, Technical University
Technicka 2, 61669 Brno, Czech Republic
e-mail: zheleyova@iol.cz

Abstract

It is known that congruence lattices of pseudocomplemented semilattices are pseudocomplemented [4]. Many interesting properties of congruences on pseudocomplemented semilattices were described by Sankappanavar in [4], [5], [6]. Except for other results he described congruence distributive pseudocomplemented semilattices [6] and he characterized pseudocomplemented semilattices whose congruence lattices are Stone, i.e. belong to the variety $\mathcal{B}_{1}[5]$.

In this paper we give a partial solution to a more general question: Under what condition on a pseudocomplemented semilattice its congruence lattice is element of the variety $\mathcal{B}_{n}(n \geq 2)$?

In the last section we widen the Sankappanavar's result to obtain the description of pseudocomplemented semilattices with relative Stone congruence lattices. A partial solution of the description of pseudocomplemented semilattices with relative $\left(L_{n}\right)$-congruence lattices $(n \geq 2)$ is also given.

Keywords: pseudocomplemented semilattice, congruence lattice, p-algebra, Stone algebra, (relative) $\left(L_{n}\right)$-lattice.

1991 Mathematics Subject Classification: Primary 06D15, 06A99; Secondary 08A30

1. Preliminaries

A pseudocomplemented semilattice (PCS) is an algebra $S=\left\langle S ; \wedge,{ }^{*}, 0\right\rangle$, where $\langle S ; \wedge, 0\rangle$ is a \wedge-semilattice with 0 and ${ }^{*}$ is the unary operation of pseudocomplementation defined by:

$$
x \wedge a=0 \text { iff } x \leq a^{*} .
$$

0^{*} is the largest element in S and is denoted by 1. An element $a \in S$ is called closed if $a=a^{* *}$. The set of all closed elements of S is denoted $B(S)$. It is known that $\left\langle B(S) ;+, \wedge,{ }^{*}, 0,1\right\rangle$ forms a Boolean algebra in which the operation of join is defined by $a+b=\left(a^{*} \wedge b^{*}\right)^{*}$. To denote the join of subset $A \subseteq B(S)$ of closed elements we will use the symbol $\sum A$.

An element $d \in S$ is called dense if $d^{*}=0$. All dense elements form the set denoted $D(S)$ which is a filter in S.

The set of all congruences on PCS S is denoted $\operatorname{Con}(S)$. It is known that $\operatorname{Con}(S)$ is an algebraic pseudocomplemented lattice [4] with Δ and ∇ the least and the largest element, respectively.

For any pair $a, b \in S$ the symbol $\theta(a, b)$ denotes the principal congruence relation generated by a, b, i.e. the least congruence relation θ on S for which $(a, b) \in \theta$.

The congruence relation φ defined by:

$$
(x, y) \in \varphi \text { iff } x^{*}=y^{*},
$$

is called the Glivenko congruence relation.
For arbitrary filter $F \subseteq S$ we define binary relation \hat{F} :

$$
(x, y) \in \hat{F} \text { iff } x \wedge f=y \wedge f \text { for some } f \in F
$$

Clearly \hat{F} is a semilattice congruence relation on S. For arbitrary element $f \in S$ the interval $[0, f] \subseteq S$ is a PCS such that the pseudocomplement $a_{[0, f]}^{*}$ is equal to $a^{*} \wedge f$. It follows that \hat{F} is compatible also with the operation of pseudocomplementation and $\hat{F} \in \operatorname{Con}(S)$. Similarly for arbitrary element $a \in S$ we define binary relation \hat{a} by

$$
(x, y) \in \hat{a} \text { iff } x \wedge a=y \wedge a
$$

Again $\hat{a} \in \operatorname{Con}(S)$. One can easily verify that $\hat{a}=\theta(a, 1)$ for arbitrary $a \in S$.

The following two facts were proved by Sankappanavar in [4] and [6].
Lemma 1.1. Let S be a PCS. If $\psi \in \operatorname{Con}(S)$ then $\psi=([1] \psi)^{\wedge} \vee(\psi \wedge \varphi)$.

Lemma 1.2. Let S be a PCS. The following statesments are equivalent:
(1) $\operatorname{Con}(S)$ is distributive,
(2) S satisfies:

$$
\begin{equation*}
\forall x \forall y\left(x<y^{* *} \Rightarrow x \leq y \text { or } y \leq x\right) \tag{D}
\end{equation*}
$$

(3) S satisfies:
$\left(\mathrm{D}_{w}\right)$

$$
\forall x \forall y\left(x^{*}=y^{*} \Rightarrow x \leq y \text { or } y \leq x\right)
$$

and

$$
\forall x \forall y\left(\left(x=x^{* *} \text { and } x<y^{* *}\right) \Rightarrow x<y\right)
$$

(4) Con (S) is modular.

One can easily verify the next auxiliary lemma.

Lemma 1.3. Let S be a PCS satisfying (D). Let $a, b \in S$ be such that $a<b$ and $a^{*}=b^{*}$. Then
(i) $\theta(a, b)=[a, b] \times[a, b] \cup \Delta$;
(ii) $[1] \theta^{*}(a, b)=[b, 1]$.

A (distributive) p-algebra is an algebra $L=\left\langle L ; \vee, \wedge,{ }^{*}, 0,1\right\rangle$ where $\langle L ; \vee, \wedge, 0,1\rangle$ is a bounded (distributive) lattice and * is the unary operation of pseudocomplementation. learly the congruence lattice of any congruence distributive PCS is a distributive p-algebra.

The class \mathcal{B}_{ω} of all distributive p-algebras is equational. K.B. Lee proved in [3] that the lattice of all equational subclasses of \mathcal{B}_{ω} is a chain

$$
\mathcal{B}_{-1} \subset \mathcal{B}_{0} \subset \mathcal{B}_{1} \subset \ldots \subset \mathcal{B}_{n} \subset \ldots \subset \mathcal{B}_{\omega}
$$

of type $\omega+1$, where $\mathcal{B}_{-1}, \mathcal{B}_{0}$ and \mathcal{B}_{1} denote the classes of all trivial, Boolean and Stone algebras, respectively. Moreover, he proved that for $n \geq 1, L \in \mathcal{B}_{n}$ if and only if L satisfies the identity
($\left.\mathrm{L}_{n}\right) \quad\left(x_{1} \wedge x_{2} \wedge \ldots \wedge x_{n}\right)^{*} \vee\left(x_{1}^{*} \wedge x_{2} \wedge \ldots \wedge x_{n}\right)^{*} \vee \ldots \vee\left(x_{1} \wedge x_{2} \wedge \ldots \wedge x_{n}^{*}\right)^{*}=1$.

Definition 1.4 ([2]; Definition 1). Let L be a distributive p-algebra and $n \geq 1$. L is said to be an $\left(\mathrm{L}_{n}\right)$-lattice if $L \in \mathcal{B}_{n}$.

2. Pseudocomplemented semilattices with $\left(L_{n}\right)$-congruence Lattices

In [5] H.P. Sankappanavar gave a description of those PCS S whose congruence lattice $\operatorname{Con}(S)$ is Stone, i.e. satisfies $\left(L_{1}\right)$. The aim of this paper is to continue in this direction and investigate the cases for which $\operatorname{Con}(S)$ satisfies $\left(L_{n}\right)$ for $n \geq 2$.

Theorem 2.1. Let S be a PCS. If $\operatorname{Con}(S) \in \mathcal{B}_{n}(n \geq 1)$, then $\left(\mathrm{C}_{n}\right) \quad \forall x_{i}\left(x_{i} \neq x_{i}^{* *}(i=1, \ldots, n+1)\right.$ and $\left.x_{i} \neq x_{j}(i \neq j)\right) \Rightarrow \bigwedge_{i=1}^{n+1} x_{i}=0$.

Proof. For $n=1$, the claim was proved by H.P. Sankappanavar in Theorem 3.2 of [5]. Assume that $n \geq 2$. Let $x_{1}, x_{2}, \ldots, x_{n+1} \in S$ be such that $x_{i} \neq x_{i}^{* *}(i=1,2, \ldots, n+1)$ and $x_{i} \neq x_{j}(i \neq j)$. Suppose that $w=\bigwedge_{i=1}^{n+1} x_{i}>0$.

Without loss of generality we can divide elements $x_{1}, x_{2}, \ldots, x_{n+1}$ into k disjoint groups $(1 \leq k \leq n+1)$:

$$
\left\{x_{11}, x_{12}, \ldots, x_{1 m_{1}}\right\},\left\{x_{21}, x_{22}, \ldots, x_{2 m_{2}}\right\}, \ldots,\left\{x_{k 1}, x_{k 2} \ldots, x_{k m_{k}}\right\}
$$

such that $m_{1}+m_{2}+\ldots+m_{k}=n+1$ and

$$
x_{i 1}<x_{i 2}<\ldots<x_{i m_{i}}<x_{i 1}^{* *} \quad(i=1, \ldots, k) .
$$

Let us denote

$$
\begin{aligned}
& \tau_{i}=\theta\left(x_{1 i}, x_{1 i+1}\right), \quad i=1,2, \ldots, m_{1}-1 \\
& \tau_{m_{1}}=\theta\left(x_{1 m_{1}}, x_{11}^{* *}\right), \\
& \tau_{m_{1}+j}=\theta\left(x_{2 j}, x_{2 j+1}\right), \quad j=1,2, \ldots, m_{2}-1 \\
& \tau_{m_{1}+m_{2}}=\theta\left(x_{2 m_{2}}, x_{21}^{* *}\right), \\
& \ldots \\
& \tau_{m_{1}+m_{2}+\ldots+m_{k-1}+l}=\theta\left(x_{k l}, x_{k l+1}\right), \quad l=1,2 \ldots m_{k}-1 \\
& \tau_{m_{1}+m_{2}+\ldots+m_{k}}=\tau_{n+1}=\theta\left(x_{k m_{k}}, x_{k 1}^{* *}\right) .
\end{aligned}
$$

Let $\quad \theta_{1}=\bigvee_{j=2}^{n+1} \tau_{j}$ and $\theta_{i}=\bigvee_{j=1}^{i-1} \tau_{j} \vee \bigvee_{j=i+1}^{n+1} \tau_{j}, i=2,3, \ldots, n$.
From Lemma 1.3 follows that $\theta_{i}^{*} \supseteq \tau_{i}, i=1,2, \ldots, n$.

Therefore, we have

$$
\begin{array}{ll}
\theta_{1} \wedge \theta_{2} \wedge \ldots \wedge \theta_{n} \supseteq \tau_{n+1} & \text { and }\left(\theta_{1} \wedge \theta_{2} \wedge \ldots \wedge \theta_{n}\right)^{*} \subseteq \tau_{n+1}^{*} ; \\
\theta_{1}^{*} \wedge \theta_{2} \wedge \ldots \wedge \theta_{n} \supseteq \tau_{1} & \text { and }\left(\theta_{1}^{*} \wedge \theta_{2} \wedge \ldots \wedge \theta_{n}\right)^{*} \subseteq \tau_{1}^{*} ; \\
& \ldots \\
\theta_{1} \wedge \ldots \wedge \theta_{i}^{*} \wedge \ldots \wedge \theta_{n} \supseteq \tau_{i} & \text { and }\left(\theta_{1} \wedge \ldots \wedge \theta_{i}^{*} \wedge \ldots \wedge \theta_{n}\right)^{*} \subseteq \tau_{i}^{*} ; \\
& \ldots \\
\theta_{1} \wedge \theta_{2} \wedge \ldots \wedge \theta_{n}^{*} \supseteq \tau_{n} & \text { and }\left(\theta_{1} \wedge \theta_{2} \wedge \ldots \wedge \theta_{n}^{*}\right)^{*} \subseteq \tau_{n}^{*} .
\end{array}
$$

From our assumption that $\operatorname{Con}(S) \in \mathcal{B}_{n}$, we obtain

$$
\tau_{n+1}^{*} \vee \tau_{1}^{*} \vee \tau_{2}^{*} \vee \ldots \vee \tau_{n}^{*}=\bigvee_{i=1}^{n+1} \tau_{i}^{*}=\nabla
$$

It implies that there exists a sequence $a_{0}=1, a_{1}, a_{2}, \ldots, a_{m}=0 \subseteq S$ such that $a_{i} \equiv a_{i+1}\left(\alpha_{j(i)}\right), \quad(i=0,1, \ldots, m-1)$, where $\alpha_{j(i)} \in\left\{\tau_{k}^{*}: k=\right.$ $1,2, \ldots, n+1\}$.

From Lemma 1.3, we obtain

$$
\begin{aligned}
& {[1] \tau_{1}^{*} \subseteq\left[x_{12}, 1\right] \subseteq\left[\bigwedge_{i=1}^{n+1} x_{i}, 1\right]=[w, 1],} \\
& {[1] \tau_{2}^{*} \subseteq\left[x_{13}, 1\right] \subseteq[w, 1],} \\
& \ldots \\
& {[1] \tau_{m_{1}+m_{2}+\ldots+m_{r}+j}^{*} \subseteq\left[x_{r+1 j+1}, 1\right] \subseteq[w, 1]\left(j=1,2, \ldots, m_{r+1}-1\right),} \\
& \ldots \\
& {[1] \tau_{n+1}^{*} \subseteq\left[x_{k 1}^{* *}, 1\right] \subseteq[w, 1] .}
\end{aligned}
$$

Clearly $a_{1} \geq w$ and $a_{m-1}^{*} \geq w$, since $1=a_{0} \equiv a_{1}\left(\alpha_{j(0)}\right)$ and $a_{m-1}^{*} \equiv$ $1\left(\alpha_{j(m-1)}\right), \alpha_{j(m-1)} \in\left\{\tau_{k}^{*}: k=1,2, \ldots, n+1\right\}$. If we meet elements $a_{1}, a_{2}, \ldots, a_{m-1}$ with the element a_{m-1}^{*}, we obtain a new sequence $b_{1}=$ $a_{1} \wedge a_{m-1}^{*}, b_{2}=a_{2} \wedge a_{m-1}^{*}, \ldots, b_{m-2}=a_{m-2} \wedge a_{m-1}^{*}, b_{m-1}=0$ such that $b_{i} \equiv b_{i+1}\left(\alpha_{j(i)}\right),(i=1,2, \ldots, m-2)$ and $\alpha_{j(i)} \in\left\{\tau_{k}^{*}: k=1,2, \ldots, n+1\right\}$. Again $b_{1}=a_{1} \wedge a_{m-1}^{*} \geq w$ and $b_{m-2}^{*} \geq w$. Repeating the previous step $m-2$ times we obtain $y \equiv 0\left(\alpha_{j(0)}\right), \alpha_{j(0)} \in\left\{\tau_{k}^{*}: k=1,2, \ldots, n+1\right\}$ such that $y \geq w$. Since $y^{*} \equiv 1\left(\alpha_{j(0)}\right), y^{*} \geq w$. Therefore, $w \leq y \wedge y^{*}=0$ which is a contradiction with our assumption that $w=\bigwedge_{i=1}^{n+1} x_{i}>0$.

Corollary 2.2. Let S be a PCS such that $\operatorname{Con}(S) \in \mathcal{B}_{n}(n \geq 1)$.
Then $|[a] \varphi| \leq n+1$ for arbitrary $a \in S$.
Definition 2.3. Let S be a PCS. We say that S is an $\left(S_{n}\right)$-semilattice $(n \geq 1)$ iff S satisfies $\left(C_{n}\right)$ and S satisfies (D). In other words, S is an $\left(S_{n}\right)$ semilattice if and only if S is a congruence distributive pseudocomplemented semilattice which satisfies the condition $\left(C_{n}\right)$.

In the next we will often deal with non-closed elements. We find it useful to introduce now a few notations.

$$
\begin{aligned}
& N(S)=\{n \in S: n \text { is non - closed }\}, \text { i.e. } \\
& N(S)=\left\{n \in S: n \neq n^{* *}\right\} ; \\
& N^{* *}(S)=\left\{n^{* *}: n \in N(S)\right\} ; \\
& C(S)=\{c \in S: c \wedge n=0 ; \forall n \in N(S)\} ; \\
& C^{*}(S)=\left\{c^{*}: c \in C(S)\right\} .
\end{aligned}
$$

One can easily verify that $C(S)$ is an ideal in $B(S)$ and $0 \in C(S)$. Moreover, if $c \in C(S)$ and $n \in N(S)$, then $c \wedge n^{* *}=(c \wedge n)^{* *}=0$. It follows that $C(S)$ can be defined equivalently as $C(S)=\left\{c \in S: c \wedge n^{* *}=0 ; \forall n \in N(S)\right\}$. If there is no danger of confusion, we will write $N, N^{* *}, C$ and C^{*} instead of $N(S), N^{* *}(S), C(S)$ and $C^{*}(S)$, respectively.

Definition 2.4. Let S be a PCS and $\psi \in \operatorname{Con}(S)$. Then

$$
\begin{aligned}
& N_{\psi}=\left\{n \in N: \theta\left(n, n^{* *}\right) \wedge \psi \neq \Delta\right\}, \\
& N_{\psi}^{* *}=\left\{n^{* *}: n \in N_{\psi}\right\} .
\end{aligned}
$$

Clearly C_{ψ} is an ideal in $B(S), N_{\psi}=N_{\psi \wedge \varphi}$ and $N_{\varphi}=N$.

3. Properties of congruences on $\left(S_{n}\right)$-semilattices

The following lemmas were inspired by [5]. The next lemma is obvious.
Lemma 3.1. Let S be a PCS. Then

$$
\varphi=\bigvee\left\{\theta\left(n, n^{* *}\right): n \in N(S)\right\}
$$

For arbitrary $A \subseteq S$ the symbol A^{u} denotes the set of all upper bounds of A.
Lemma 3.2. Let S be a PCS. Then $\left(N^{* *}\right)^{u}=C^{*}$.

Proof. Let $n \in N$ and $c \in C$ be arbitrary. Then $c \wedge n^{* *}=0$. Therefore, $n^{* *} \leq c^{*}$ and $C^{*} \subseteq\left(N^{* *}\right)^{u}$. Take arbitrary $y \in\left(N^{* *}\right)^{u}$. Clearly $y \in B(S)$. It means that $y=y^{* *} \geq n^{* *}$ for arbitrary $n \in N$. Thus $y^{*} \leq n^{*}$ and $y^{*} \wedge n=y^{*} \wedge n^{* *}=0$. It follows that $y^{*} \in C$ and since y is a closed element $y \in C^{*}$.

Lemma 3.3. Let S be a PCS satisfying (D) and $X \subseteq N(S)=N$. Then $N_{\left(\left(X^{* *}\right)^{u}\right)^{\wedge}} \subseteq N \backslash X$.

Proof. Suppose that $n \in X \cap N_{\left(\left(X^{* *}\right)^{u}\right)^{\wedge} \text {. Then there exist } n \leq n_{1}<m_{1} \leq, ~}^{\text {. }}$ $n^{* *}$ such that $n_{1} \wedge f=m_{1} \wedge f$ and $f \in\left(X^{* *}\right)^{u}$. Since $n \in X$, it follows that $f \geq n^{* *}$. Thus $n_{1} \wedge f=n_{1}=m_{1}=m_{1} \wedge f$ contrary to our assumption $n_{1}<m_{1}$. Therefore, $N_{\left(\left(X^{* *}\right)^{u}\right)^{\wedge}} \cap X=\emptyset$ and $N_{\left(\left(X^{* *}\right)^{u}\right)^{\wedge}} \subseteq N \backslash X$.

Lemma 3.4. Let S be a PCS satisfying (D) and $\beta \in \operatorname{Con}(S)$ be such that $\beta \subseteq \varphi$. Then $\left(\left(N_{\beta}^{* *}\right)^{u}\right)^{\wedge} \subseteq \beta^{*}$.
Proof. Let $(x, y) \in \beta \wedge\left(\left(N_{\beta}^{* *}\right)^{u}\right)^{\wedge}$. Without loss of generality we can assume that $x<y \leq x^{* *}$. Then $x \wedge f=y \wedge f$ for some $f \in\left(N_{\beta}^{* *}\right)^{u}$. Since $(x, y) \in \beta$, we obtain that $\theta\left(x, x^{* *}\right) \wedge \beta \neq \Delta$ and $x \in N_{\beta}$. It implies that $f \geq x^{* *} \geq y>x$ and $x \wedge f=x=y=y \wedge f$ contrary to our assumption $x<y$. So, we can conclude that $\left(\left(N_{\beta}^{* *}\right)^{u}\right)^{\wedge} \subseteq \beta^{*}$.

Corollary 3.5. Let S be a PCS satisfying (D). Then $\varphi^{*}=\left(\left(N^{* *}\right)^{u}\right)^{\wedge}=$ $\left(C^{*}\right)^{\wedge}$.

Lemma 3.6. Let S be an $\left(S_{n}\right)$-semilattice $(n \geq 1)$. Let $\psi \in C o n(S)$ be such that $|[1] \psi \cap N| \geq n$. Then $\psi^{*}=\Delta$.
Proof. Two cases can occur: $|[1] \psi \cap N| \geq n+1$ or $|[1] \psi \cap N|=n$. In the first case $\psi=\nabla$ since S is an $\left(S_{n}\right)$-semilattice. Thus $\psi^{*}=\Delta$.

In the second case we first claim that $\varphi \subseteq \psi$. If $N \subseteq[1] \psi$ then it is true. Assume that $N \varsubsetneqq[1] \psi$. Let $[1] \psi \cap N=\left\{n_{i}: i=1, \ldots, n\right\}$. Let $s \in N \backslash[1] \psi$. Since $\bigwedge_{i=1}^{n} n_{i} \equiv 1(\psi)$ and S is an $\left(S_{n}\right)$-semilattice, we obtain that $s \wedge \bigwedge_{i=1}^{n} n_{i}=0 \equiv s(\psi)$. Therefore, $s \equiv s^{* *}(\psi)$ for arbitrary $s \in N$ and $\varphi \subseteq \psi$.

To complete the proof it suffices to show that also $\varphi^{*} \subseteq \psi$. Let $f \in$ $\left(N^{* *}\right)^{u}$. Then $f \geq n_{i}^{* *}$ for any $n_{i} \in[1] \psi \cap N$. It implies that $\left(N^{* *}\right)^{u} \subseteq[1] \psi$. Thus $\varphi^{*}=\left(\left(N^{* *}\right)^{u}\right)^{\wedge} \subseteq([1] \psi)^{\wedge} \subseteq \psi$. Hence $\varphi \vee \varphi^{*} \subseteq \psi$. Therefore, we obtain $\psi^{*} \subseteq\left(\varphi \vee \varphi^{*}\right)^{*}=\varphi^{*} \wedge \varphi^{* *}=\Delta$ proving the lemma.

Definition 3.7 Let S be a PCS satisfying (D) and $A \subseteq C$. Then we define

$$
d_{C}(A)=\{c \in C: c \wedge a=0, a \in A\} .
$$

Lemma 3.8. Let S be a PCS satisfying (D) and $I \subseteq C$ be an ideal in $B(S)$. Then $\left(N^{* *} \cup I \cup d_{C}(I)\right)^{u}=\{1\}$.
Proof. Let $f \in\left(N^{* *} \cup I \cup d_{C}(I)\right)^{u}$. Then

$$
\begin{array}{lll}
f \geq n^{* *}\left(n^{* *} \in N^{* *}\right) & \text { and } & f^{*} \wedge n^{* *}=0 ; \\
f \geq a(a \in I) & \text { and } & f^{*} \wedge a=0 ; \\
f \geq c\left(c \in d_{C}(I)\right) & \text { and } & f^{*} \wedge c=0 .
\end{array}
$$

From $f^{*} \wedge n^{* *}=0$ follows $f^{*} \in C$. Since $f^{*} \wedge a=0$ for all $a \in I$, it follows $f^{*} \in d_{C}(I)$. Since $f^{*} \wedge c=0$ for all $c \in d_{C}(I)$, we obtain that also $f^{*} \wedge f^{*}=f^{*}=0$. Hence, f is a dense element. $f \in\left(N^{* *}\right)^{u}$ implies that f is closed. So we can conclude $f=1$ proving the lemma.
By taking $I=\{0\}$, we immediately obtain
Corollary 3.9. Let S be a PCS satisfying (D). Then $\left\{N^{* *} \cup C\right\}^{u}=\{1\}$.
Lemma 3.10. Let S be a PCS satisfying (D) and $F \subseteq S$ be a Boolean filter, i.e. $F \subseteq B(S)$. Then $F \subseteq\left(\left(N^{* *} \backslash N_{\hat{F}}^{* *}\right) \cup d_{C}\left(C_{\hat{F}}\right)\right)^{u}$.

Proof. Let $f \in F$ be such that $f \notin\left(N^{* *} \backslash N_{\tilde{F}}^{* *}\right)^{u}$. Thus $f \nsupseteq n^{* *}$ for some $n^{* *} \in N^{* *} \backslash N_{\tilde{F}}^{* *}$. Then $f \wedge n^{* *}<n^{* *}$ and, since $\operatorname{Con}(S)$ is distributive, two possibilities may occure.

First suppose that $f \wedge n^{* *} \leq n<n^{* *}$. Since $f \equiv 1(\hat{F}), f \wedge n^{* *} \equiv$ $n^{* *}(\hat{F})$, we obtain that $n \equiv n^{* *}(\hat{F})$. Hence, $\theta\left(n, n^{* *}\right) \wedge \hat{F} \neq \Delta$. Therefore, $n \in N_{\hat{F}}, n^{* *} \in N_{\hat{F}}^{* *}$ contrary to assumption $n^{* *} \in N^{* *} \backslash N_{\hat{F}}^{* *}$. Now suppose that $n \leq f \wedge n^{* *}<n^{* *}$. Since $f \equiv 1(\hat{F}), f \wedge n^{* *} \equiv n^{* *}(\hat{F})$, we again obtain that $\theta\left(n, n^{* *}\right) \wedge \hat{F} \neq \Delta$. Therefore, $n \in N_{\hat{F}}, n^{* *} \in N_{\hat{F}}^{* *}$ contrary to assumption $n^{* *} \in N^{* *} \backslash N_{\hat{F}}^{* *}$. Thus $F \subseteq\left(N^{* *} \backslash N_{\hat{F}}^{* *}\right)^{u}$.

Let $f \in F$ and $y \in d_{C}\left(C_{\hat{F}}\right)$. Since $f^{*} \wedge f=0 \wedge f$, we have $f^{*} \equiv 0(\hat{F})$ and also $f^{*} \wedge y \equiv 0(\hat{F})$. Thus, $f^{*} \wedge y \in C_{\hat{F}}$. From this, we get $\left(f^{*} \wedge y\right) \wedge y=$ $f^{*} \wedge y=0$. Hence, $y \leq f^{* *}=f$ proving that $F \subseteq d_{C}\left(C_{\hat{F}}\right)^{u}$. So we can conclude that $F \subseteq\left(\left(N^{* *} \backslash N_{\hat{F}}^{* *}\right) \cup d_{C}\left(C_{\hat{F}}\right)\right)^{u}$.

Lemma 3.11. Let S be a PCS satisfying (D) and let $F \subseteq S$ be a Boolean filter. Then $\left(\left(N_{\hat{F}}^{* *} \cup C_{\hat{F}}\right)^{u}\right)^{\wedge} \subseteq(\hat{F})^{*}$.

Proof. Let $(x, y) \in \hat{F} \wedge\left(\left(N_{\hat{F}}^{* *} \cup C_{\hat{F}}\right)^{u}\right)^{\wedge}, x<y$. It means that $x \wedge f=y \wedge f$ for some $f \in F$ and $x \wedge h=y \wedge h$ for some $h \in\left(N_{\hat{F}}^{* *} \cup C_{\hat{F}}\right)^{u}$. Therefore, $x^{* *} \wedge f$ $=y^{* *} \wedge f$ and $x^{* *} \wedge h^{* *}=y^{* *} \wedge h^{* *}$. Since $x^{* *}, y^{* *}, f, h^{* *} \in B(S)$, it follows that $x^{* *} \wedge\left(f+h^{* *}\right)=y^{* *} \wedge\left(f+h^{* *}\right)$. Since $f \in F \subseteq\left(\left(N^{* *} \backslash N_{\hat{F}}^{* *}\right) \cup d_{C}\left(C_{\hat{F}}\right)\right)^{u}$ and $h^{* *} \in\left(N_{\hat{F}}^{* *} \cup C_{\hat{F}}\right)^{u}$, from the two previous lemmas we obtain that $f+h^{* *} \in\left\{\left(N^{* *} \backslash N_{\hat{F}}^{* *}\right) \cup d_{C}\left(C_{\hat{F}}\right) \cup N_{\hat{F}}^{* *} \cup C_{\hat{F}}\right\}^{u}=\left(N^{* *} \cup C_{\hat{F}} \cup d_{C}\left(C_{\hat{F}}\right)\right)^{u}=\{1\}$. Thus, we see that $x^{* *}=y^{* *}$. Since $(x, y) \in \hat{F}, x<y$ and $x^{*}=y^{*}$ we obtain that $\theta\left(x, x^{* *}\right) \wedge \hat{F} \neq \Delta$ and $x \in N_{\hat{F}}$. Therefore, $h \geq x^{* *} \geq y>x$ and $x \wedge h=x=y=y \wedge h$ which is a contradiction with our assumption $x<y$. Thus the lemma is proved.

Theorem 3.12. Let S be an $\left(S_{n}\right)$-semilattice $(n \geq 1)$ such that $B(S)$ is a complete Boolean algebra. Then Con (S) is an $\left(L_{n}\right)$-lattice.

Proof. For $n=1$ the claim follows from [5] (see Theorem 3.27). Assume that $n \geq 2$. Let $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$ be arbitrary elements of $\operatorname{Con}(S)$. For the sake of simplicity let us denote

$$
\begin{aligned}
& \alpha_{0}=\theta_{1} \wedge \theta_{2} \wedge \ldots \wedge \theta_{n}, \\
& \alpha_{1}=\theta_{1}^{*} \wedge \theta_{2} \wedge \ldots \wedge \theta_{n}, \\
& \ldots \\
& \alpha_{i}=\theta_{1} \wedge \ldots \wedge \theta_{i}^{*} \wedge \ldots \wedge \theta_{n}, \\
& \ldots \\
& \alpha_{n}=\theta_{1} \wedge \theta_{2} \wedge \ldots \wedge \theta_{n}^{*} .
\end{aligned}
$$

We want to prove that $\alpha_{0}^{*} \vee \alpha_{1}^{*} \vee \ldots \vee \alpha_{n}^{*}=\nabla$. From Lemma 1.1, follows that $\alpha_{i}^{*}=\left(\alpha_{i} \wedge \varphi\right)^{*} \wedge\left(\left([1] \alpha_{i}\right)^{\wedge}\right)^{*}(i=0,1, \ldots, n)$. Three possibilities may occur:
(1) $[1] \alpha_{i} \cap N \neq \emptyset$ for $i=0,1, \ldots, n$;
(2) $[1] \alpha_{i} \subseteq B(S)$ for $i=0,1, \ldots, n$;
(3) There exist $I, J \subseteq\{0,1, \ldots, n\}$ such that $I \neq \emptyset \neq J, I \cap J=\emptyset$, $I \cup J=\{0,1, \ldots, n\}$ and $[1] \alpha_{i} \subseteq B(S)$ for $i \in I$ and $[1] \alpha_{j} \cap N \neq \emptyset$ for $j \in J$.

Ad (1): Suppose that $n_{i} \in[1] \alpha_{i} \cap N(i=0,1, \ldots, n)$. It means that $\theta\left(n_{i}, 1\right) \subseteq \alpha_{i}$. Since $\alpha_{i} \wedge \alpha_{j}=\Delta$ for $i, j \in\{0,1, \ldots, n\}, i \neq j$, we obtain
that $\theta\left(n_{i}, 1\right) \subseteq \alpha_{j}^{*}$ for arbitrary $j \neq i$. It follows that

$$
\alpha_{0}^{*} \vee \alpha_{1}^{*} \vee \ldots \vee \alpha_{n}^{*} \supseteq \bigvee_{i=0}^{n} \theta\left(n_{i}, 1\right)
$$

Let $\bigvee_{i=0}^{n} \theta\left(n_{i}, 1\right)=\theta$. Then $n_{i} \equiv 1(\theta)(i=0,1, \ldots, n)$ and therefore $\bigwedge_{i=0}^{n} n_{i} \equiv 1(\theta)$. Since $\alpha_{i}(i=0,1, \ldots, n)$ are pairwise disjoint, congruences $n_{i}(i=0,1, \ldots, n)$ are pairwise different nonclosed elements. From the assumption that S is an $\left(S_{n}\right)$-semilattice we obtain $\bigwedge_{i=0}^{n} n_{i}=0 \equiv 1(\theta)$ hence $\alpha_{0}^{*} \vee \alpha_{1}^{*} \vee \ldots \vee \alpha_{n}^{*}=\nabla$.

Ad (2): Suppose that $[1] \alpha_{i} \subseteq B(S)$ for $i=0,1, \ldots, n$. From Lemma 3.4 and Lemma 3.11 follows that $\alpha_{i}^{*} \supseteq\left(\left(N_{\alpha_{i} \wedge \varphi}^{* *}\right)^{u}\right)^{\wedge} \wedge\left(\left(N_{\left([1] \alpha_{i}\right)^{\wedge}}^{* *} \cup\right.\right.$ $C_{\left.\left.\left([1] \alpha_{i}\right)^{\wedge}\right)^{u}\right)^{\wedge},}, i=0,1, \ldots, n$. Let $\sum N_{\alpha_{i} \wedge \varphi}^{* *}=a_{i}, \sum N_{\left([1] \alpha_{i}\right)^{\wedge}}^{* *}=b_{i}$, $\sum C_{\left([1] \alpha_{i}\right)^{\wedge}}=c_{i},(i=0,1, \ldots, n)$. Since $\left([1] \alpha_{i}\right)^{\wedge} \subseteq \alpha_{i}$ and $N_{\alpha_{i} \wedge \varphi}^{* *}=N_{\alpha_{i}}^{* *}$, we have $a_{i}=\sum N_{\alpha_{i}}^{* *} \geq \sum N_{\left([1] \alpha_{i}\right)^{\wedge}}^{* *}=b_{i}(i=0,1, \ldots, n)$. Hence, $\alpha_{i}^{*} \supseteq$ $\hat{a_{i}} \wedge\left(b_{i}+c_{i}\right)^{\wedge}=\theta\left(a_{i}, 1\right) \wedge \theta\left(b_{i}+c_{i}, 1\right) \supseteq \theta\left(a_{i}+b_{i}+c_{i}, 1\right)=\theta\left(a_{i}+c_{i}, 1\right)$ $(i=0,1, \ldots, n)$. Therefore, we have $\bigvee_{i=0}^{n} \alpha_{i}^{*} \supseteq \bigvee_{i=0}^{n} \theta\left(a_{i}+c_{i}, 1\right)=$ $\theta\left(\bigwedge_{i=0}^{n}\left(a_{i}+c_{i}\right), 1\right)$. We claim that $a_{i} \wedge c_{j}=0$ for arbitrary $i, j \in\{0,1, \ldots, n\}$.

From the assumption that $B(S)$ is a complete Boolean algebra, it follows that $B(S)$ satisfies the join infinite distributive identity and its dual meet infinite distributive identity. Let $\sum N^{* *}=m$. Since $c \wedge n^{* *}=0$ for arbitrary $c \in C, n \in N$, we obtain that $m=\sum N^{* *} \leq c^{*}$ and therefore $c \leq m^{*}$ for arbitrary $c \in C$. Thus $\sum C \leq m^{*}$. It follows that $a_{i} \wedge c_{j}=\sum N_{\alpha_{i}}^{* *} \wedge$ $\sum C_{\left([1] \alpha_{j}\right)} \leq \sum N^{* *} \wedge \sum C \leq m \wedge m^{*}=0$. Thus we obtain that $\bigwedge_{i=0}^{n}\left(a_{i}+\right.$ $\left.c_{i}\right)=\bigwedge_{i=0}^{n} a_{i}+\bigwedge_{j=0}^{n} c_{j}$.

We claim that $\bigwedge_{j=0}^{n} c_{j}=0$. Take arbitrary $i, j \in\{0,1, \ldots, n\}$ such that $i \neq j$. Then $c_{i} \wedge c_{j}=\sum C_{\left([1] \alpha_{i}\right)^{\wedge}} \wedge \sum C_{\left([1] \alpha_{j}\right)^{\wedge}}=\sum\{d \wedge e: d \in$ $C_{\left([1] \alpha_{i}\right) \wedge}$ and $e \in C_{\left([1] \alpha_{j}\right)}$ ^\}. Since $\left([1] \alpha_{i}\right)^{\wedge} \wedge\left([1] \alpha_{j}\right)^{\wedge}=\Delta$, we have $d \wedge e=0$ for arbitrary $d \in C_{\left([1] \alpha_{i}\right)^{\wedge}}$ and $\left.e \in C_{\left([1] \alpha_{j}\right)}\right)^{\wedge}$. Hence, $c_{i} \wedge c_{j}=0$.

Next we will prove that $\bigwedge_{i=0}^{n} a_{i}=0$. Using the fact that $B(S)$ satisfies both the join and meet infinite distributive identities we obtain that $\bigwedge_{i=0}^{n} a_{i}=\bigwedge_{i=0}^{n} \sum N_{\alpha_{i}}^{* *}=\sum\left\{\bigwedge_{i=0}^{n} n_{i}^{* *}: n_{i}^{* *} \in N_{\alpha_{i}}^{* *}\right\}$. Take arbitrary $(n+1)$-tuple ($n_{i}^{* *}: n_{i}^{* *} \in N_{\alpha_{i}}^{* *}, i=0,1, \ldots, n$). Clearly some elements $n_{i}^{* *}(i=0,1, \ldots, n)$ may coincide. Suppose that $n_{i}^{* *}=m^{* *}$ for $i \in I \subseteq\{0,1, \ldots, n\}$. It means that there exist elements r_{i}, s_{i} such that $r_{i}<s_{i}, r_{i}^{* *}=s_{i}^{* *}=m^{* *}$ and $\left(r_{i}, s_{i}\right) \in \alpha_{i}$ for $i \in I$. Since α_{i} are pairwise disjoin congruences, it follows that $\theta\left(r_{i}, s_{i}\right)(i \in I)$ are also pairwise disjoint congruences. Thus $|I| \leq\left|\left[m^{* *}\right] \varphi \cap N\right| \leq n$.

From the previous consideration follows that $\bigwedge_{i=0}^{n} n_{i}^{* *}=\bigwedge_{j=1}^{k} m_{j}^{* *}$ where $m_{j}^{* *} \neq m_{l}^{* *}$ for $j \neq l ; n_{i}^{* *}=m_{j}^{* *}$ for $i \in I_{j} \subset\{0,1, \ldots, n\}, j=1,2, \ldots, k$; $I_{j} \cap I_{l}=\emptyset$ for $j \neq l ; \bigcup_{j=1}^{k} I_{j}=\{0,1, \ldots, n\}$ and $\left|\left[m_{j}^{* *}\right] \varphi \cap N\right| \geq\left|I_{j}\right|, j=1$, $2, \ldots, k$. Thus, we can write $\bigwedge_{j=1}^{k} m_{j}^{* *}=\bigwedge_{j=1}^{k}\left(\bigwedge\left\{s^{* *}: s \in\left[m_{j}^{* *}\right] \varphi \cap N\right\}\right)$ $=\bigwedge_{j=1}^{k}\left(\bigwedge\left\{s: s \in\left[m_{j}^{* *}\right] \varphi \cap N\right\}\right)^{* *}=\left(\bigwedge_{j=1}^{k}\left(\bigwedge\left\{s: s \in\left[m_{j}^{* *}\right] \varphi \cap N\right\}\right)\right)^{* *}$. From $\left|\left[m_{j}^{* *}\right] \varphi \cap N\right| \geq\left|I_{j}\right|(j=1,2, \ldots, k)$ and $\bigcup_{j=1}^{k} I_{j}=\{0,1, \ldots, n\}$, it follows that $\bigwedge_{j=1}^{k}\left(\bigwedge\left\{s: s \in\left[m_{j}^{* *}\right] \varphi \cap N\right\}\right)$ is meet of at least $(n+1)$ different nonclosed elements. Hence, $\bigwedge_{j=1}^{k}\left(\bigwedge\left\{s: s \in\left[m_{j}^{* *}\right] \varphi \cap N\right\}\right)=0$. Thus we obtain $\bigwedge_{i=0}^{n} a_{i}=\sum\left\{\bigwedge_{i=0}^{n} n_{i}^{* *}: n_{i}^{* *} \in N_{\alpha_{i}}^{* *}\right\}=0$ which implies $\bigvee_{i=0}^{n} \alpha_{i}^{*} \supseteq \theta(0,1)=\nabla$ and $\operatorname{Con}(S) \in \mathcal{B}_{n}$.

Ad (3): Suppose that $[1] \alpha_{i} \subseteq B(S)$ for $i \in I$ and $[1] \alpha_{j} \cap N \neq \emptyset$ for $j \in J$ where $I \neq \emptyset \neq J, I \cap J \neq \emptyset$ and $I \cup J=\{0,1, \ldots, n\}$. Using the previous part of the proof we obtain that $\bigvee_{i \in I} \alpha_{i}^{*} \supseteq \theta\left(\bigwedge_{i \in I} a_{i}, 1\right)$, where $a_{i}=\sum N_{\alpha_{i} \wedge \varphi}^{* *}, i \in I$. Let $m_{j} \in[1] \alpha_{j} \cap N$ for $j \in J$. Then $\theta\left(m_{j}, 1\right) \wedge \alpha_{i}=\Delta$ and $\alpha_{i}^{*} \supseteq \theta\left(m_{j}, 1\right)$ for arbitrary $i \in I$ and $j \in J$. It follows that $\bigvee_{i \in I} \alpha_{i}^{*} \supseteq \theta\left(\bigwedge_{i \in I} a_{i}, 1\right) \vee$ $\bigvee_{j \in J} \theta\left(m_{j}, 1\right)=\theta\left(\bigwedge_{i \in I} a_{i}, 1\right) \vee \theta\left(\bigwedge_{j \in J} m_{j}, 1\right)=\theta\left(\bigwedge_{i \in I} a_{i} \wedge \bigwedge_{j \in J} m_{j}, 1\right)$. Next we will prove that $\bigwedge_{i \in I} a_{i} \wedge \bigwedge_{j \in J} m_{j}^{* *}=0$. Since $\bigwedge_{i \in I} a_{i}=\sum\left\{\bigwedge_{i \in I} n_{i}^{* *}\right.$: $\left.n_{i}^{* *} \in N_{\alpha_{i}}^{* *}\right\}$, we can write $\bigwedge_{i \in I} a_{i} \wedge \bigwedge_{j \in J} m_{j}^{* *}=\sum\left\{\bigwedge_{i \in I} n_{i}^{* *} \wedge \bigwedge_{j \in J} m_{j}^{* *}:\right.$ $\left.n_{i}^{* *} \in N_{\alpha_{i}}^{* *}\right\}$. Since $m_{j}<m_{j}^{* *}$ and $m_{j} \in[1] \alpha_{j}$, obviously $m_{j}^{* *} \in N_{\alpha_{j}}^{* *}(j \in J)$. Repeating the same consideration as in the part (2) of this proof we obtain that $\bigwedge_{i \in I} n_{i}^{* *} \wedge \bigwedge_{j \in J} m_{j}^{* *}=0$ for arbitrary $|I|$-tuple ($n_{i}^{* *}: n_{i}^{* *} \in N_{\alpha_{i}}^{* *} i \in I$). Therefore, $\bigwedge_{i \in I} a_{i} \wedge \bigwedge_{j \in J} m_{j} \leq \bigwedge_{i \in I} a_{i} \wedge \bigwedge_{j \in J} m_{j}^{* *}=0$ and $\bigvee_{i=0}^{n} \alpha_{i}^{*} \supseteq$ $\bigvee_{i \in I} \alpha_{i}^{*} \supseteq \theta(0,1)=\nabla$, hence $\operatorname{Con}(S) \in \mathcal{B}_{n}$.

Corollary 3.13. Let S be a PCS such that $B(S)$ is a complete Boolean algebra. For arbitrary $n \geq 1$ the following statesments are equivalent:
(i) $\operatorname{Con}(S)$ is an $\left(L_{n}\right)$-lattice,
(ii) S is an $\left(S_{n}\right)$-semilattice.

4. Pseudocomplemented semilattices with relative
 (L_{n})-CONGRUENCE LATTICES

Definition 4.1 ([2], Definition 2). Let L be a distributive lattice. L is said to be a relative $\left(L_{n}\right)$-lattice if every interval $[a, b]$ in L is an $\left(L_{n}\right)$-lattice.

Lemma 4.2 ([2], Theorem 2). Let L be a distributive lattice with 1 . The following conditions are equivalent:
(i) L is a relative $\left(L_{n}\right)$-lattice,
(ii) for every $a \in L,[a, 1]$ is an $\left(L_{n}\right)$-lattice.

Lemma 4.3. Let S be a PCS. Then S is an $\left(S_{n}\right)$-semilattice ($n \geq 1$) iff the quotient semilattice S / θ is an $\left(S_{n}\right)$-semilattice for arbitrary $\theta \in \operatorname{Con}(S)$.
Proof. Let S be a PCS. Suppose that S is an $\left(S_{n}\right)$-semilattice for some $n \geq 1$. We claim that for arbitrary $\theta \in \operatorname{Con}(S)$ the following is true: if $[a] \theta \in N(S / \theta)$ then $[a] \theta \subseteq N(S)$.

Suppose that $[a] \theta \neq([a] \theta)^{* *}=\left[a^{* *}\right] \theta$ and there exists $x \in[a] \theta$ such that $x=x^{* *}$. Then $[a] \theta=[x] \theta=\left[x^{* *}\right] \theta=([x] \theta)^{* *}=([a] \theta)^{* *}$ which is a contradiction to our assumption.

Let $\left[x_{1}\right] \theta,\left[x_{2}\right] \theta, \ldots,\left[x_{n+1}\right] \theta \in S / \theta$ be such that $\left[x_{i}\right] \theta \neq\left[x_{i}^{* *}\right] \theta i=$ $1, \ldots, n+1$ and $\left[x_{i}\right] \theta \neq\left[x_{j}\right] \theta, i \neq j$. From the previous part of proof follows that $x_{i}(i=1, \ldots, n+1)$ are pairwise distinct non-closed elements from S. Since S is an $\left(S_{n}\right)$-semilattice we obtain $\bigwedge_{i=1}^{n+1}\left[x_{i}\right] \theta=\left[\bigwedge_{i=1}^{n+1} x_{i}\right] \theta=[0] \theta$. Thus S / θ satisfies the condition $\left(C_{n}\right)$.

Since $\operatorname{Con}(S / \theta) \cong[\theta, \nabla] \subseteq \operatorname{Con}(S)$ the congruence distributivity of S implies that the condition (D) is satisfied also in the quotient semilattice S / θ. The sufficient condition is obvious.

From the previous result and from Theorem 3.28 of [5], we immediately obtain

Corollary 4.4. Let S be a PCS. The following statesments are equivalent:
(i) $\operatorname{Con}(S)$ is a relative Stone lattice,
(ii) S satisfies $\left(C_{1}\right)$ and for arbitrary congruence $\theta \in \operatorname{Con}(S)$ the quotient PCS S / θ satisfies:

$$
\begin{array}{ll}
\left(S_{2(\theta)}\right) & \text { (a) if } A \subseteq N^{* *}(S / \theta) \text {, then } \sum A \text { exists; } \\
\text { (b) if } K \subseteq C(S / \theta) \text {, then } \sum K \text { exists. }
\end{array}
$$

Corollary 4.5. Let S be a PCS such that the Boolean algebra $B(S / \theta)$ is complete for arbitrary congruence $\theta \in \operatorname{Con}(S)$. For arbitrary $n \geq 1$ the following statesments are equivalent:
(i) Con (S) is an $\left(L_{n}\right)$-lattice,
(ii) $\operatorname{Con}(S)$ is a relative $\left(L_{n}\right)$-lattice,
(iii) S is an $\left(S_{n}\right)$-semilattice.

References

[1] G. Grätzer, General Lattice Theory, Birkhäuser-Verlag, Basel 1978.
[2] M. Haviar and T. Katriňák, Semi-discrete lattices with $\left(L_{n}\right)$-congruence lattices, Contribution to General Algebra 7 (1991), 189-195.
[3] K.B. Lee, Equational classes of distributive pseudo-complemented lattices, Canad. J. Math. 22 (1970), 881-891.
[4] H.P. Sankappanavar, Congruence lattices of pseudocomplemented semilattices, Algebra Universalis 9 (1979), 304-316.
[5] H.P. Sankappanavar, On pseudocomplemented semilattices with Stone congruence lattices, Math. Slovaca 29 (1979), 381-395.
[6] H.P. Sankappanavar, On pseudocomplemented semilattices whose congruence lattices are distributive, (preprint).

