RELATIVELY COMPLEMENTED ORDERED SETS

Ivan Chajda and Zuzana Morávková
Department of Algebra and Geometry, Palacký University of Olomouc
Tomkova 40, 77900 Olomouc, Czech Republic
e-mail: chajda@risc.upol.cz

Abstract

We investigate conditions for the existence of relative complements in ordered sets. For relatively complemented ordered sets with 0 we show that each element $b \neq 0$ is the least one of the set of all upper bounds of all atoms contained in b.

Key words and phrases: modular ordered set, complemented, relatively complemented ordered set, atom.
1991 Mathematics Subject Classification: 06A99.

Let (A, \leq) be an ordered set and $B \subseteq A$. Denote by

$$
\begin{aligned}
L(B) & =\{x \in A ; x \leq b \text { for all } b \in B\} \\
U(B) & =\{x \in A ; b \leq x \text { for all } b \in B\}
\end{aligned}
$$

If $B=\left\{b_{1}, \ldots, b_{n}\right\}$, we shall write briefly $L\left(b_{1}, \ldots, b_{n}\right)$ or $U\left(b_{1}, \ldots, b_{n}\right)$ instead of $L(B)$ or $U(B)$, respectively. Moreover, for $B, C \subseteq A$ we write $L(B, C)$ for $L(B \cup C)$ and $U(B, C)$ for $U(B \cup C)$. Following [5], an ordered set (A, \leq) is modular if for every $a, b, c \in A$ it holds:

$$
a \leq c \Rightarrow L(c, U(a, b))=L(U(a, L(b, c)))
$$

Modular ordered sets were treated in [2], a special sort of them, the so called distributive ordered sets were investigated in [2] and [4].

Let (A, \leq) be an ordered set and $a \in A$. An element $b \in A$ is called a complement of a if

$$
L(U(a, b))=A \quad \text { and } \quad U(L(a, b))=A
$$

Complemented ordered sets were studied in [1]. A generalization of the complement called a pseudocomplement in an ordered set was introduced in [5].

It is well known that if L is a complemented modular lattice, then L is also relatively complemented. The aim of our paper is to find a generalization of this result for ordered sets. However, there are several possibilities how to introduce the concept of a relative complement in an ordered set. We can pick up the following two:

Definition. Let (A, \leq) be an ordered set, $a, b \in A$ and $a \leq b$. Let $x \in$ $[a, b]=\{z \in A: a \leq z \leq b\}$. An element $y \in[a, b]$ is called a weak relative complement of x in $[a, b]$ if

$$
\begin{aligned}
U(x, y) \cap[a, b] & =\{b\} \quad \text { and } \\
L(x, y) \cap[a, b] & =\{a\} .
\end{aligned}
$$

An element $y \in[a, b]$ is called a strong relative complement of x in $[a, b]$ if

$$
U(x, y)=U(b) \quad \text { and } \quad L(x, y)=L(a)
$$

An ordered set (S, \leq) is strongly relatively complemented if for every interval $[a, b]$ of S, each $x \in[a, b]$ has a strong relative complement in $[a, b]$.

Of course, every strong relative complemnt of $x \in[a, b]$ is also a weak relative complement of x in $[a, b]$ but not vice versa.

For the sake of brevity, we will write $U_{[a, b]}(x, y)$ or $L_{[a, b]}(x, y)$ instead of $U(x, y) \cap[a, b]$ or $L(x, y) \cap[a, b]$, respectively.

Theorem 1. Let (S, \leq) be a modular ordered set. Let $a, b \in S, a \leq b$, and $x \in[a, b]$. Suppose $y \in S$ is a complement of x. The set $U(a, L(y, b))$ has the least element p if and only if the set $L(U(a, y), b)$ has the greatest element p; in such a case, p is a strong relative complement of x in $[a, b]$.
Proof. Denote by $A=U(a, L(y, b))$ and $B=L(U(a, y), b)$. Since (S, \leq) is modular, we have

$$
\begin{aligned}
& A=U(a, L(y, b))=U(L(U(a, y), b))=U(B), \\
& B=L(U(a, y), b)=L(U(a, L(y, b)))=L(A) .
\end{aligned}
$$

(Let us note that the second line follows by an application of the dual of modular law since modularity is selfdual, see [2], [3].) Hence, if p is the least
element of A, then $A=U(p)$ and $B=L(A)=L(U(p))=L(p)$, thus p is the greatest element of B. Dually we can show the converse implication. Moreover, the modularity of (S, \leq) yields

$$
\begin{aligned}
U(x, p) & =U(x, L(p))=U(x, B)=U(x) \cap U(B)=U(x) \cap A= \\
& =U(x) \cap U(a, L(y, b))=U(x, a, L(y, b))=U(x, L(y, b))= \\
& =U(L(U(x, y), b))=U(L(b))=U(b), \\
L(x, p) & =L(x, U(p))=L(x, A)=L(x) \cap L(A)=L(x) \cap B= \\
& =L(x) \cap L(U(a, y), b)=L(x, U(a, y), b)=L(x, U(a, y))= \\
& =L(U(a, L(x, y)))=L(U(a))=L(a) .
\end{aligned}
$$

Example 1. Applying methods of [2], we can check that the set (S, \leq) in Figure 1 is modular.

Figure 1
Of course, $L(U(x, y))=L(\emptyset)=S$ and $U(L(x, y))=U(\emptyset)=S$; thus y is a complement of x in (S, \leq). Further, $U(a, L(y, b))=U(a, c)=U(p)$. Thus (S, \leq), a, b, x, y satisfy the assumption of Theorem 1 , and hence p is a strong relative complement of x in $[a, b]$.

Example 2. Let (S, \leq) be the ordered set depicted in Figure 2. S is modular and the element y is a complement of x. The set $A=U(a, L(y, b))=$ $U(a, c)=\{b, d\}$ has not a least element. The set $B=L(U(a, y), b)=$ $L(d, b)=\{a, c\}$ has not a greatest element. It is easy to see that the element x has not a weak relative complement in $[a, b]$.

Figure 2
Although Theorem 1 is a generalization of the well known lattice statement, we can remove the assumption of modularity of (S, \leq) and the complementarity of x to obtain a bit more general result:

Theorem 2. Let (S, \leq) be an ordered set, let $a, b \in S, a \leq b$, and $x \in[a, b]$. If there exists an element $y \in S$ such that:
(i) the set $L(U(a, y), b)$ has the greatest element e and the set $U(a, L(y, b))$ has the least element f,
(ii) the set $L(U(a, y), x)$ has the greatest element a and the set $U(x, L(y, b))$ has the least element b,
then e and f are strong relative complements of x in $[a, b]$.
Proof. Set $A=U(a, L(y, b))$ and $B=L(U(a, y), b)$. By (i), there exist $e, f \in S$ with $A=U(f), B=L(e)$. Prove $f \leq e$:

Since $c \leq b$ for each $c \in L(y, b)$, we have $U(b) \subseteq U(L(y, b))$. However, $a \leq b$ yields $U(b) \subseteq U(a)$, thus $U(b) \subseteq L(a, L(y, b))$, whence

$$
\begin{equation*}
L(b) \supseteq L(U(a, L(y, b))) . \tag{*}
\end{equation*}
$$

Analogously, $c \leq y$ for each $c \in L(y, b)$ yields $U(y) \subseteq U(L(y, b))$, clearly $U(a, y) \subseteq U(a, L(y, b))$, whence

$$
\begin{equation*}
L(U(a, y)) \supseteq L(U(a, L(y, b))) . \tag{**}
\end{equation*}
$$

Applying ($*$) and ($* *$), we conclude

$$
L(e)=B=L(U(a, y), b) \supseteq L(U(a, L(y, b)))=L(A)=L(U(f))=L(f)
$$

i.e. $L(e) \supseteq L(f)$ proving $f \leq e$.

Moreover, (i) and (ii) imply

$$
\begin{aligned}
L(e, x) & =L(e) \cap L(x)=B \cap L(x)=L(U(a, y), b) \cap L(x)= \\
& =L(U(a, y), b, x)=L(U(a, y), x)=L(a) \\
U(f, x) & =U(f) \cap U(x)=A \cap U(x)=U(a, L(y, b)) \cap U(x)= \\
& =U(a, L(y, b), x)=U(L(y, b), x)=U(b)
\end{aligned}
$$

Further, we obtain

$$
\begin{aligned}
& U(b)=U(b, L(U(a, y), b))=U(b, B)=U(b, e) \subseteq U(x, e) \subseteq U(x, f)=U(b), \\
& L(a)=L(a, U(a, L(y, b)))=L(a, A)=L(a, f) \subseteq L(x, f) \subseteq L(x, e)=L(a),
\end{aligned}
$$

proving $U(x, e)=U(b)$ and $L(x, f)=L(a)$. Thus e and f are strong relative complements of x in $[a, b]$.

Example 3. It is easy to see that the ordered set (S, \leq) in Figure 3 is not modular and for x, y, a, b we have $x \in[a, b]$ and

$$
\begin{aligned}
& L(U(a, y), b)=L(e), \\
& U(a, L(y, b))=U(f), \\
& L(U(a, y), x)=L(a), \\
& U(x, L(y, b))=U(b)
\end{aligned}
$$

Figure 3
Hence, by Theorem 2, e and f are strong relative complements of x in $[a, b]$.
An anologous result is valid also for weak relative complements:
Theorem 3. Let (S, \leq) be an ordered set, let $a, b \in S$, $a \leq b$, and $x \in[a, b]$. If there exists an element $y \in S$ such that:
(i) the set $L(U(a, y), b)$ has the greatest element e and the set $U(a, L(y, b))$ has the least element f,
(ii)* the set $L(U(a, y), x)$ has a maximal element a and the set $U(x, L(y, b))$ has a minimal element b,
then e and f are weak relative complements of x in $[a, b]$.
Proof. The proof of $f \leq e$ is the same as in that of Theorem 2.
Applying (i) and (ii)* we obtain

$$
\begin{aligned}
L_{[a, b]}(e, x) & =L(e) \cap L(x) \cap[a, b]=B \cap L(x) \cap[a, b]= \\
& =L(U(a, y), b) \cap L(x) \cap[a, b]=L(U(a, y), b, x) \cap[a, b]= \\
& =L(U(a, y), x) \cap[a, b]=L_{[a, b]}(U(a, y), x)=L_{[a, b]}(a)=\{a\}
\end{aligned}
$$

and dually

$$
\begin{aligned}
U_{[a, b]}(f, x) & =U(f) \cap U(x) \cap[a, b]=A \cap U(x) \cap[a, b]= \\
& =U(a, L(y, b)) \cap U(x) \cap[a, b]=U(a, L(y, b), x) \cap[a, b]= \\
& =U(L(y, b), x) \cap[a, b]=U_{[a, b]}(L(y, b), x)=U_{[a, b]}(b)=\{b\} .
\end{aligned}
$$

Since $f \leq e$, we conclude

$$
\begin{aligned}
& U_{[a, b]}(b)=U(b) \cap[a, b]=U(b, L(U(a, y), b)) \cap[a, b]=U(b, B) \cap[a, b]= \\
& =U(b, e) \cap[a, b] \subseteq U(x, e) \cap[a, b] \subseteq U(x, f) \cap[a, b]=U(b) \cap[a, b]=U_{[a, b]}(b),
\end{aligned}
$$

whence $U_{[a, b]}(x, e)=U_{[a, b]}(b)$. Dually, it can be shown that $L_{[a, b]}(x, f)=$ $L_{[a, b]}(a)$. We have proved that e and f are weak relative complements of x in $[a, b]$.

Example 4. Consider the ordered set (S, \leq) depicted in Figure 4. Although (S, \leq) is not modular, the elements a, b, x, y satisfy (i) and (ii)* of Theorem 3, thus e and f are weak relative complements of x in $[a, b]$. Moreover, the element x has no strong relative complement in $[a, b]$, since $[a, b]=\{a, b,, x, e, f\}$ and for the only possible candidates e and f we have

$$
\begin{aligned}
& L(e, x)=\{a, y\} \neq\{a\}=L(a), \\
& U(e, x)=\{b, h\} \neq\{b\}=U(b),
\end{aligned}
$$

analogously also for f.

Figure 4
Now, we turn our attention to some aspects of atomicity in relatively complemented ordered sets. In the case of lattices, it is well known that if L is a relatively complemented lattice of finite length and $b \in L, b \neq 0$, then $b=\vee A(b)$, where $A(b)$ is the set of all atoms of L less or equal to b (see e.g. [6]). In the case of ordered sets with 0 we investigate whether $U(A(b))=U(b)$.

An element a of an ordered set (S, \leq) is called an atom if either a covers 0 whenever 0 is the least element of (S, \leq) or a is a minimal element of (S, \leq) in the opposite case. For $b \in S$, denote by $A(b)$ the set of all atoms of S below b. (S, \leq) is called atomic if for any $b \in S, b \neq 0$ (whenever 0 in S exists) there exists an atom $a \in S$ with $a \leq b$. It is almost evident that if (S, \leq) is of a finite length, then (S, \leq) is atomic.

Theorem 4. Let (S, \leq) be a strongly relatively complemented ordered set of a finite length with 0 . If $b \in S$ and $b \neq 0$, then $U(A(b))=U(b)$.
Proof. If b is an atom in S, then $A(b)=\{b\}$, and hence $U(A(b))=U(b)$. Suppose b is not an atom in S and $b \neq 0$. Since (S, \leq) is of a finite length and hence atomic, there exists $p_{1} \in A(b)$. Since (S, \leq) is strongly relatively complemented, there exists $c_{1} \in[0, b]$ with $U\left(p_{1}, c_{1}\right)=U(b)$.
(a) If c_{1} is an atom of (S, \leq) then $c_{1} \leq b$ implies $c_{1} \in A(b)$. Denote by $D=A(b) \backslash\left\{p_{1}, c_{1}\right\}$. Clearly $U(D) \supseteq U(b)$ (since $U(D)=S$ if $D=\emptyset$ and, for $D \neq \emptyset, d \leq b$ for each $d \in D$. Then

$$
U(A(b))=U\left(p_{1}, c_{1}\right) \cap U(D)=U(b) \cap U(D)=U(b) .
$$

(b) Suppose c_{1} is not an atom of (S, \leq). We can repeate the same consideration for the element c_{1} (instead of the element b), i.e. there exists
$p_{2} \in A\left(c_{1}\right)$ and $c_{2} \in\left[0, c_{1}\right]$ such that $U\left(p_{2}, c_{2}\right)=U\left(c_{1}\right)$. Since (S, \leq) is of a finite length, we will finish after n steps of this procedure to obtain an element $c_{n} \in S$ such that $U\left(p_{n}, c_{n}\right)=U\left(c_{n-1}\right)$ and $c_{n} \in A\left(c_{n-1}\right)$. Denote by $D_{n}=A\left(c_{n-1}\right) \backslash\left\{p_{n}, c_{n}\right\}$. Evidently, $U\left(D_{n}\right) \supseteq U\left(c_{n-1}\right)$ and

$$
U\left(A\left(c_{n-1}\right)\right)=U\left(p_{n}, c_{n}\right) \cap U\left(D_{n}\right)=U\left(c_{n-1}\right) \cap U\left(D_{n}\right)=U\left(c_{n-1}\right) .
$$

Further, let $D_{n-1}=A\left(c_{n-2}\right) \backslash\left\{p_{n-1}, A\left(c_{n-1}\right)\right\}$. Clearly $U\left(D_{n-1}\right) \supseteq U\left(c_{n-2}\right)$ and again

$$
\begin{aligned}
U\left(A\left(c_{n-2}\right)\right) & =U\left(p_{n-1}\right) \cap U\left(A\left(c_{n-1}\right)\right) \cap U\left(D_{n-1}\right)= \\
& =U\left(p_{n-1}, c_{n-1}\right) \cap U\left(D_{n-1}\right)=U\left(c_{n-2}\right) \cap U\left(D_{n-1}\right)=U\left(c_{n-2}\right) .
\end{aligned}
$$

Analogously we proceed to prove $U\left(A\left(c_{k}\right)\right)=U\left(c_{k}\right)$ for $k=1, \ldots, n$. For $D_{1}=A(b) \backslash\left\{p_{1}, A\left(c_{1}\right)\right\}$ we have $U\left(D_{1}\right) \supseteq U(b)$, thus also

$$
\begin{aligned}
U(A(b)) & =U\left(p_{1}\right) \cap U\left(A\left(c_{1}\right)\right) \cap U\left(D_{1}\right)= \\
& =U\left(p_{1}\right) \cap U\left(c_{1}\right) \cap U\left(D_{1}\right)=U(b) \cap U\left(D_{1}\right)=U(b) .
\end{aligned}
$$

Example 5. Let (S, \leq) be the ordered set depicted in Figure 5. Then (S, \leq) is strongly relatively complemented and of a finite length. For the element $b \in S$ we really have $A(b)=\{a, c, d\}$ and $U(A(b))=U(a, c, d)=U(b)$.

Figure 5

Remark. If (S, \leq) is a strongly relatively complemented ordered set of a finite length without 0 , the assertion of Theorem 4 does not hold in general, see, e.g., Figure 6, where $A(b)=\{a, c\}$ but $U(A(b))=U(a, c)=U(d)=$ $\{d, b\} \neq\{b\}=U(b)$.

Figure 6
Moreover, b is not even a minimal element of $U(A(b))$. On the other hand, we can state the following

Theorem 5. Let (S, \leq) be an ordered set, let $b \in S$ and $b \neq 0$ whenever 0 in S exists. If b covers an atom a and $\operatorname{card}(A(b)) \geq 2$, then b is a minimal element of $U(A(b))$.

Proof. Let $b \neq 0$ covers an atom a and let $\operatorname{card}(A(b)) \geq 2$. Suppose b is not minimal in $U(A(b))$. Then there exists $m \in U(A(b))$ with $m<b$. Since $a \in A(b)$, we conclude $a \leq m<b$. But b covers a, i.e. $a=m$, hence $a \in U(A(b))$ Since $\operatorname{card}(A(b)) \geq 2$, there exists $c \in A(b)$ with $c \neq a$. It is easy to check that c and a are bot comparable. However $a \in U(A(b))$ implies $c \leq a$, a contradiction.

Example 6. Let (S, \leq) be an ordered set with the diagram depicted in Figure 7.

Then (S, \leq) has not 0 and it is not of a finite length. $A(b)=\{a, c\}$, i.e. $\operatorname{card}(A(b))=2$. In accordance with Theorem $5, b$ is a minimal element in the set $U(A(b))=U(a . c)=\left\{b, d_{1}, d_{2}, \ldots, e_{1}, e_{2}, \ldots\right\}$. On the other hand $U(A(b)) \neq\{b\}=U(b)$.

Figure 7

Remark. The condition " b covers an atom a " in Theorem 5 is not necessary. For the set (S, \leq) in Figure 8 we have that b is the unique and hence minimal element of $U(A(b))$ but b covers no atom of S.

Figure 8

On the other hand, if $b \neq 0$ (whenever 0 in S exists) and b is not an atom of S, then, if b is minimal in $U(A(b)), \operatorname{card}(A(b)) \geq 2$. Namely, if $\operatorname{card}(A(b))=0$, then $A(b)=\emptyset$ and $U(A(b))=U(\emptyset)=S$; thus b is a minimal element of S. Since $b \neq 0, S$ has not 0 . However, b is not an atom, a contradiction. If $\operatorname{card}(A(b))=1$, then $A(b)=\{a\}$ and $a \neq b$, i.e. $U(A(b))=U(a)$ and b cannot be the minimal element of $U(A(b))$, a contradiction again.

References

[1] I. Chajda, Complemented ordered sets, Arch. Math. (Brno) 28 (1992), 25-34.
[2] I. Chajda and J. Rachůnek, Forbidden configurations for distributive and modular ordered sets, Order 5 (1989), 407-423.
[3] R. Halaš, Pseudocomplemented ordered sets, Arch. Math. (Brno) 29 (1993), 153-160.
[4] J. Niederle, Boolean and distributive ordered sets, Order 12 (1995), 189-210.
[5] J. Rachůnek and J. Larmerová, Translations of modular and distributive ordered sets, Acta Univ. Palacký Olomouc, Fac. Rerum Nat., Math., 31 (1988), 13-23.
[6] V.N. Salij, Lettices with Unique Complementations (Russian), Nauka, Moskva 1984.

