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Abstract

We investigate conditions for the existence of relative complements
in ordered sets. For relatively complemented ordered sets with 0 we
show that each element b 6= 0 is the least one of the set of all upper
bounds of all atoms contained in b.
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Let (A,≤) be an ordered set and B ⊆ A. Denote by

L(B) = {x ∈ A; x ≤ b for all b ∈ B},
U(B) = {x ∈ A; b ≤ x for all b ∈ B} .

If B = {b1, . . . , bn}, we shall write briefly L(b1, . . . , bn) or U(b1, . . . , bn)
instead of L(B) or U(B), respectively. Moreover, for B, C ⊆ A we
write L(B,C) for L(B ∪ C) and U(B, C) for U(B ∪ C). Following [5], an
ordered set (A,≤) is modular if for every a, b, c ∈ A it holds:

a ≤ c ⇒ L(c, U(a, b)) = L(U(a, L(b, c))) .

Modular ordered sets were treated in [2], a special sort of them, the so called
distributive ordered sets were investigated in [2] and [4].

Let (A,≤) be an ordered set and a ∈ A. An element b ∈ A is called a
complement of a if

L(U(a, b)) = A and U(L(a, b)) = A .
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Complemented ordered sets were studied in [1]. A generalization of the
complement called a pseudocomplement in an ordered set was introduced
in [5].

It is well known that if L is a complemented modular lattice, then L is
also relatively complemented. The aim of our paper is to find a generaliza-
tion of this result for ordered sets. However, there are several possibilities
how to introduce the concept of a relative complement in an ordered set.
We can pick up the following two:

Definition. Let (A,≤) be an ordered set, a, b ∈ A and a ≤ b. Let x ∈
[a, b] = {z ∈ A : a ≤ z ≤ b}. An element y ∈ [a, b] is called a weak relative
complement of x in [a, b] if

U(x, y) ∩ [a, b] = {b} and
L(x, y) ∩ [a, b] = {a} .

An element y ∈ [a, b] is called a strong relative complement of x in [a, b] if

U(x, y) = U(b) and L(x, y) = L(a) .

An ordered set (S,≤) is strongly relatively complemented if for every interval
[a, b] of S, each x ∈ [a, b] has a strong relative complement in [a, b].

Of course, every strong relative complemnt of x ∈ [a, b] is also a weak
relative complement of x in [a, b] but not vice versa.

For the sake of brevity, we will write U[a,b](x, y) or L[a,b](x, y) instead of
U(x, y) ∩ [a, b] or L(x, y) ∩ [a, b], respectively.

Theorem 1. Let (S,≤) be a modular ordered set. Let a, b ∈ S, a ≤ b, and
x ∈ [a, b]. Suppose y ∈ S is a complement of x. The set U(a, L(y, b)) has the
least element p if and only if the set L(U(a, y), b) has the greatest element
p; in such a case, p is a strong relative complement of x in [a, b].

Proof. Denote by A = U(a, L(y, b)) and B = L(U(a, y), b). Since (S,≤) is
modular, we have

A = U(a, L(y, b)) = U(L(U(a, y), b)) = U(B),
B = L(U(a, y), b) = L(U(a, L(y, b))) = L(A) .

(Let us note that the second line follows by an application of the dual of
modular law since modularity is selfdual, see [2], [3].) Hence, if p is the least
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element of A, then A = U(p) and B = L(A) = L(U(p)) = L(p), thus p is
the greatest element of B. Dually we can show the converse implication.
Moreover, the modularity of (S,≤) yields

U(x, p) = U(x, L(p)) = U(x,B) = U(x) ∩ U(B) = U(x) ∩A =
= U(x) ∩ U(a, L(y, b)) = U(x, a, L(y, b)) = U(x, L(y, b)) =
= U(L(U(x, y), b)) = U(L(b)) = U(b) ,

L(x, p) = L(x,U(p)) = L(x, A) = L(x) ∩ L(A) = L(x) ∩B =
= L(x) ∩ L(U(a, y), b) = L(x,U(a, y), b) = L(x,U(a, y)) =
= L(U(a, L(x, y))) = L(U(a)) = L(a) .

Example 1. Applying methods of [2], we can check that the set (S,≤) in
Figure 1 is modular.

Figure 1

Of course, L(U(x, y)) = L(∅) = S and U(L(x, y)) = U(∅) = S; thus y is a
complement of x in (S,≤). Further, U(a, L(y, b)) = U(a, c) = U(p). Thus
(S,≤), a, b, x, y satisfy the assumption of Theorem 1, and hence p is a strong
relative complement of x in [a, b].

Example 2. Let (S,≤) be the ordered set depicted in Figure 2. S is modular
and the element y is a complement of x. The set A = U(a, L(y, b)) =
U(a, c) = {b, d} has not a least element. The set B = L(U(a, y), b) =
L(d, b) = {a, c} has not a greatest element. It is easy to see that the element
x has not a weak relative complement in [a, b].
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Figure 2

Although Theorem 1 is a generalization of the well known lattice statement,
we can remove the assumption of modularity of (S,≤) and the complemen-
tarity of x to obtain a bit more general result:

Theorem 2. Let (S,≤) be an ordered set, let a, b ∈ S, a ≤ b, and x ∈ [a, b].
If there exists an element y ∈ S such that:

(i) the set L(U(a, y), b) has the greatest element e and the set U(a, L(y, b))
has the least element f,

(ii) the set L(U(a, y), x) has the greatest element a and the set U(x, L(y, b))
has the least element b,

then e and f are strong relative complements of x in [a, b].

Proof. Set A = U(a, L(y, b)) and B = L(U(a, y), b). By (i), there exist
e, f ∈ S with A = U(f), B = L(e). Prove f ≤ e:

Since c ≤ b for each c ∈ L(y, b), we have U(b) ⊆ U(L(y, b)). However,
a ≤ b yields U(b) ⊆ U(a), thus U(b) ⊆ L(a, L(y, b)), whence

(∗) L(b) ⊇ L(U(a, L(y, b))) .

Analogously, c ≤ y for each c ∈ L(y, b) yields U(y) ⊆ U(L(y, b)), clearly
U(a, y) ⊆ U(a, L(y, b)), whence

(∗∗) L(U(a, y)) ⊇ L(U(a, L(y, b))) .

Applying (∗) and (∗∗), we conclude

L(e) = B = L(U(a, y), b) ⊇ L(U(a, L(y, b))) = L(A) = L(U(f)) = L(f) ,

i.e. L(e) ⊇ L(f) proving f ≤ e.
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Moreover, (i) and (ii) imply

L(e, x) = L(e) ∩ L(x) = B ∩ L(x) = L(U(a, y), b) ∩ L(x) =
= L(U(a, y), b, x) = L(U(a, y), x) = L(a) ,

U(f, x) = U(f) ∩ U(x) = A ∩ U(x) = U(a, L(y, b)) ∩ U(x) =
= U(a, L(y, b), x) = U(L(y, b), x) = U(b) .

Further, we obtain

U(b) = U(b, L(U(a, y), b)) = U(b,B) = U(b, e) ⊆ U(x, e) ⊆ U(x, f) = U(b),
L(a) = L(a, U(a, L(y, b))) = L(a,A) = L(a, f) ⊆ L(x, f) ⊆ L(x, e) = L(a),

proving U(x, e) = U(b) and L(x, f) = L(a). Thus e and f are strong relative
complements of x in [a, b].

Example 3. It is easy to see that the ordered set (S,≤) in Figure 3 is not
modular and for x, y, a, b we have x ∈ [a, b] and

L(U(a, y), b) = L(e),
U(a, L(y, b)) = U(f),
L(U(a, y), x) = L(a),
U(x, L(y, b)) = U(b) .

Figure 3

Hence, by Theorem 2, e and f are strong relative complements of x in [a, b].

An anologous result is valid also for weak relative complements:

Theorem 3. Let (S,≤) be an ordered set, let a, b ∈ S, a ≤ b, and x ∈ [a, b].
If there exists an element y ∈ S such that:
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(i) the set L(U(a, y), b) has the greatest element e and the set U(a, L(y, b))
has the least element f,

(ii)* the set L(U(a, y), x) has a maximal element a and the set U(x, L(y, b))
has a minimal element b,

then e and f are weak relative complements of x in [a, b].

Proof. The proof of f ≤ e is the same as in that of Theorem 2.
Applying (i) and (ii)* we obtain

L[a,b](e, x) = L(e) ∩ L(x) ∩ [a, b] = B ∩ L(x) ∩ [a, b] =
= L(U(a, y), b) ∩ L(x) ∩ [a, b] = L(U(a, y), b, x) ∩ [a, b] =
= L(U(a, y), x) ∩ [a, b] = L[a,b](U(a, y), x) = L[a,b](a) = {a}

and dually

U[a,b](f, x) = U(f) ∩ U(x) ∩ [a, b] = A ∩ U(x) ∩ [a, b] =
= U(a, L(y, b)) ∩ U(x) ∩ [a, b] = U(a, L(y, b), x) ∩ [a, b] =
= U(L(y, b), x) ∩ [a, b] = U[a,b](L(y, b), x) = U[a,b](b) = {b} .

Since f ≤ e, we conclude

U[a,b](b)=U(b) ∩ [a, b]=U(b, L(U(a, y), b)) ∩ [a, b]=U(b,B) ∩ [a, b] =
= U(b, e)∩[a, b]⊆U(x, e)∩[a, b]⊆U(x, f)∩[a, b]=U(b) ∩ [a, b]=U[a,b](b),

whence U[a,b](x, e) = U[a,b](b). Dually, it can be shown that L[a,b](x, f) =
L[a,b](a). We have proved that e and f are weak relative complements of x
in [a, b].

Example 4. Consider the ordered set (S,≤) depicted in Figure 4. Al-
though (S,≤) is not modular, the elements a, b, x, y satisfy (i) and (ii)*
of Theorem 3, thus e and f are weak relative complements of x in [a, b].
Moreover, the element x has no strong relative complement in [a, b], since
[a, b] = {a, b, , x, e, f} and for the only possible candidates e and f we have

L(e, x) = {a, y} 6= {a} = L(a),
U(e, x) = {b, h} 6= {b} = U(b) ,

analogously also for f .
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Figure 4

Now, we turn our attention to some aspects of atomicity in relatively com-
plemented ordered sets. In the case of lattices, it is well known that if
L is a relatively complemented lattice of finite length and b ∈ L, b 6= 0,
then b = ∨A(b), where A(b) is the set of all atoms of L less or equal to
b (see e.g. [6]). In the case of ordered sets with 0 we investigate whether
U(A(b)) = U(b).

An element a of an ordered set (S,≤) is called an atom if either a covers
0 whenever 0 is the least element of (S,≤) or a is a minimal element of (S,≤)
in the opposite case. For b ∈ S, denote by A(b) the set of all atoms of S
below b. (S,≤) is called atomic if for any b ∈ S, b 6= 0 (whenever 0 in S
exists) there exists an atom a ∈ S with a ≤ b. It is almost evident that if
(S,≤) is of a finite length, then (S,≤) is atomic.

Theorem 4. Let (S,≤) be a strongly relatively complemented ordered set of
a finite length with 0. If b ∈ S and b 6= 0, then U(A(b)) = U(b).

Proof. If b is an atom in S, then A(b) = {b}, and hence U(A(b)) = U(b).
Suppose b is not an atom in S and b 6= 0. Since (S,≤) is of a finite length
and hence atomic, there exists p1 ∈ A(b). Since (S,≤) is strongly relatively
complemented, there exists c1 ∈ [0, b] with U(p1, c1) = U(b).

(a) If c1 is an atom of (S,≤) then c1 ≤ b implies c1 ∈ A(b). Denote by
D = A(b) \ {p1, c1}. Clearly U(D) ⊇ U(b) (since U(D) = S if D = ∅ and,
for D 6= ∅, d ≤ b for each d ∈ D. Then

U(A(b)) = U(p1, c1) ∩ U(D) = U(b) ∩ U(D) = U(b).

(b) Suppose c1 is not an atom of (S,≤). We can repeate the same
consideration for the element c1 (instead of the element b), i.e. there exists
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p2 ∈ A(c1) and c2 ∈ [0, c1] such that U(p2, c2) = U(c1). Since (S,≤) is of
a finite length, we will finish after n steps of this procedure to obtain an
element cn ∈ S such that U(pn, cn) = U(cn−1) and cn ∈ A(cn−1). Denote
by Dn = A(cn−1) \ {pn, cn}. Evidently, U(Dn) ⊇ U(cn−1) and

U(A(cn−1)) = U(pn, cn) ∩ U(Dn) = U(cn−1) ∩ U(Dn) = U(cn−1) .

Further, let Dn−1 = A(cn−2)\{pn−1, A(cn−1)}. Clearly U(Dn−1) ⊇ U(cn−2)
and again

U(A(cn−2)) = U(pn−1) ∩ U(A(cn−1)) ∩ U(Dn−1) =
= U(pn−1, cn−1) ∩ U(Dn−1) = U(cn−2) ∩ U(Dn−1) = U(cn−2) .

Analogously we proceed to prove U(A(ck)) = U(ck) for k = 1, . . . , n. For
D1 = A(b) \ {p1, A(c1)} we have U(D1) ⊇ U(b), thus also

U(A(b)) = U(p1) ∩ U(A(c1)) ∩ U(D1) =
= U(p1) ∩ U(c1) ∩ U(D1) = U(b) ∩ U(D1) = U(b) .

Example 5. Let (S,≤) be the ordered set depicted in Figure 5. Then (S,≤)
is strongly relatively complemented and of a finite length. For the element
b ∈ S we really have A(b) = {a, c, d} and U(A(b)) = U(a, c, d) = U(b).

Figure 5
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Remark. If (S,≤) is a strongly relatively complemented ordered set of a
finite length without 0, the assertion of Theorem 4 does not hold in general,
see, e.g., Figure 6, where A(b) = {a, c} but U(A(b)) = U(a, c) = U(d) =
{d, b} 6= {b} = U(b).

Figure 6

Moreover, b is not even a minimal element of U(A(b)). On the other hand,
we can state the following

Theorem 5. Let (S,≤) be an ordered set, let b ∈ S and b 6= 0 whenever 0
in S exists. If b covers an atom a and card (A(b)) ≥ 2, then b is a minimal
element of U(A(b)).

Proof. Let b 6= 0 covers an atom a and let card (A(b)) ≥ 2. Suppose b
is not minimal in U(A(b)). Then there exists m ∈ U(A(b)) with m < b.
Since a ∈ A(b), we conclude a ≤ m < b. But b covers a, i.e. a = m, hence
a ∈ U(A(b)) Since card (A(b)) ≥ 2, there exists c ∈ A(b) with c 6= a. It
is easy to check that c and a are bot comparable. However a ∈ U(A(b))
implies c ≤ a, a contradiction.

Example 6. Let (S,≤) be an ordered set with the diagram depicted in
Figure 7.

Then (S,≤) has not 0 and it is not of a finite length. A(b) = {a, c}, i.e.
card (A(b)) = 2. In accordance with Theorem 5, b is a minimal element in
the set U(A(b)) = U(a.c) = {b, d1, d2, . . . , e1, e2, . . .}. On the other hand
U(A(b)) 6= {b} = U(b).
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Figure 7

Remark. The condition “b covers an atom a” in Theorem 5 is not necessary.
For the set (S,≤) in Figure 8 we have that b is the unique and hence minimal
element of U(A(b)) but b covers no atom of S.

Figure 8
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On the other hand, if b 6= 0 (whenever 0 in S exists) and b is not an atom of S,
then, if b is minimal in U(A(b)), card (A(b)) ≥ 2. Namely, if card (A(b)) = 0,
then A(b) = ∅ and U(A(b)) = U(∅) = S; thus b is a minimal element of S.
Since b 6= 0, S has not 0. However, b is not an atom, a contradiction. If
card (A(b)) = 1, then A(b) = {a} and a 6= b, i.e. U(A(b)) = U(a) and b
cannot be the minimal element of U(A(b)), a contradiction again.
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