ArticleOriginal scientific text

Title

Diophantine equations and class number of imaginary quadratic fields

Authors 1, 1

Affiliations

  1. Department of Mathematics, Harbin Institute of Technology, Harbin 150001, P. R. China

Abstract

Let A, D, K, k ∈ ℕ with D square free and 2 ∤ k,B = 1,2 or 4 and μi{-1,1}(i=1,2), and let h(-21-eD)(e=0or1) denote the class number of the imaginary quadratic field ((-21-eD)). In this paper, we give the all-positive integer solutions of the Diophantine equation Ax² + μ₁B = K((Ay² + μ₂B)/K)ⁿ, 2 ∤ n, n > 1 and we prove that if D > 1, then h(-21-eD)0(modn), where D, and n satisfy k-2e+1=Dx², x ∈ ℕ, 2 ∤ n, n > 1. The results are valuable for the realization of quadratic field cryptosystem.

Keywords

Diophantine equation, imaginary quadratic field, class number, cryptographic problem

Bibliography

  1. J. Buchmann and H.C. Williams, Quadratic fields and cryptography, 'Number Theory and Cryptography', University Press, Cambridge 1990, 9-25.
  2. Z. Cao, An Erdös conjecture, Pell sequences and Diophantine equations(Chinese), J. Harbin Inst. Tech. 2 (1987), 122-124.
  3. Z. Cao, On the equation Dx²±1=yp, xy ≠ 0 (Chinese), J. Math. Res. & Exposition 7 (1987), no. 3, 414.
  4. Z. Cao, On the equation axm-by=2 (Chinese), Chinese Sci. Bull. 35 (1990), 558-559.
  5. Z. Cao, On the Diophantine equation axm-4cabx-4c=by² (Chinese), J. Harbin Inst. Tech. 23 (1991), Special Issue, 110-112.
  6. Z. Cao, The Diophantine equation cx+dy=zp, C.R. Math. Rep. Acad. Sci. Canada 14 (1992), 231-234.
  7. Z. Cao and A. Grytczuk, Some classes of Diophantine equations connected with McFarland's and Ma's conjectures, Discuss. Math. - Algebra and Applications 2 (2000), 193-198.
  8. G. Degert, Über die Bestimung der Grundeinheit gewisser reell-quadratischer Zahlkorper, Abh. Math. Sem. Univ. Hamburg 22 (1958), 92-97.
  9. K. Inkeri, On the diophantine equations 2y²=7k+1 and x² + 11 = 3ⁿ, Elem. Math. 34 (1979), 119-121.
  10. V.A. Lebesgue, Sur l'impossibilitéon nombres entiers de l'équation xm=y²+1, Nouv. Ann. Math. 9 (1850), no. 1, p. 178-181.
  11. W. Ljunggren, Über die Gleichungen 1 + Dx² = 2yⁿ und 1 + Dx² = 4yⁿ, Norske Vid. Selsk. Forhandl. 15 (30) (1942), 115-118.
  12. R.A. Mollin, Solutions of Diophantine equations and divisibility of class numbers of complex quadratic fields, Glasgow Math. J. 38 (1996), 195-197.
  13. T. Nagell, Sur l'impossibilité de quelques équations a deux indéterminées, Norsk Matem. Forenings Skr. Serie I 13 (1923), 65-82.
  14. C. Richaud, Sur la résolution des équations x² - Ay² = ±1, Atti Acad. Pontif. Nuovi Lincei (1866), 177-182.
  15. C. Størmer, Solution compléte en nombres entiers m, n,x, y, k de l'équation marctg 1/x + narctg1/y = kπ/4, Christiania Vid. Selsk. Skr. I, 11 (1895).
  16. D.T. Walker, On the Diophantina equation mx² - ny² = ±1, Amer. Math. Monthly 74 (1967), 504-513.
Pages:
199-206
Main language of publication
English
Received
1998-07-20
Accepted
1998-07-20
Published
2000
Exact and natural sciences