ArticleOriginal scientific text
Title
Diophantine equations and class number of imaginary quadratic fields
Authors 1, 1
Affiliations
- Department of Mathematics, Harbin Institute of Technology, Harbin 150001, P. R. China
Abstract
Let A, D, K, k ∈ ℕ with D square free and 2 ∤ k,B = 1,2 or 4 and , and let denote the class number of the imaginary quadratic field . In this paper, we give the all-positive integer solutions of the Diophantine equation Ax² + μ₁B = K((Ay² + μ₂B)/K)ⁿ, 2 ∤ n, n > 1 and we prove that if D > 1, then , where D, and n satisfy , x ∈ ℕ, 2 ∤ n, n > 1. The results are valuable for the realization of quadratic field cryptosystem.
Keywords
Diophantine equation, imaginary quadratic field, class number, cryptographic problem
Bibliography
- J. Buchmann and H.C. Williams, Quadratic fields and cryptography, 'Number Theory and Cryptography', University Press, Cambridge 1990, 9-25.
- Z. Cao, An Erdös conjecture, Pell sequences and Diophantine equations(Chinese), J. Harbin Inst. Tech. 2 (1987), 122-124.
- Z. Cao, On the equation
, xy ≠ 0 (Chinese), J. Math. Res. & Exposition 7 (1987), no. 3, 414. - Z. Cao, On the equation
(Chinese), Chinese Sci. Bull. 35 (1990), 558-559. - Z. Cao, On the Diophantine equation
(Chinese), J. Harbin Inst. Tech. 23 (1991), Special Issue, 110-112. - Z. Cao, The Diophantine equation
, C.R. Math. Rep. Acad. Sci. Canada 14 (1992), 231-234. - Z. Cao and A. Grytczuk, Some classes of Diophantine equations connected with McFarland's and Ma's conjectures, Discuss. Math. - Algebra and Applications 2 (2000), 193-198.
- G. Degert, Über die Bestimung der Grundeinheit gewisser reell-quadratischer Zahlkorper, Abh. Math. Sem. Univ. Hamburg 22 (1958), 92-97.
- K. Inkeri, On the diophantine equations
and x² + 11 = 3ⁿ, Elem. Math. 34 (1979), 119-121. - V.A. Lebesgue, Sur l'impossibilitéon nombres entiers de l'équation
, Nouv. Ann. Math. 9 (1850), no. 1, p. 178-181. - W. Ljunggren, Über die Gleichungen 1 + Dx² = 2yⁿ und 1 + Dx² = 4yⁿ, Norske Vid. Selsk. Forhandl. 15 (30) (1942), 115-118.
- R.A. Mollin, Solutions of Diophantine equations and divisibility of class numbers of complex quadratic fields, Glasgow Math. J. 38 (1996), 195-197.
- T. Nagell, Sur l'impossibilité de quelques équations a deux indéterminées, Norsk Matem. Forenings Skr. Serie I 13 (1923), 65-82.
- C. Richaud, Sur la résolution des équations x² - Ay² = ±1, Atti Acad. Pontif. Nuovi Lincei (1866), 177-182.
- C. Størmer, Solution compléte en nombres entiers m, n,x, y, k de l'équation marctg 1/x + narctg1/y = kπ/4, Christiania Vid. Selsk. Skr. I, 11 (1895).
- D.T. Walker, On the Diophantina equation mx² - ny² = ±1, Amer. Math. Monthly 74 (1967), 504-513.