ArticleOriginal scientific text
Title
Some classes of Diophantine equations connected with McFarland's and Ma's conjectures
Authors 1, 2
Affiliations
- Department of Mathematics, Harbin Institute of Technology, Harbin 150001, P. R. China
- Institute of Mathematics, Kotarbiński Pedagogical University, pl. Słowiański 6, 65-069 Zielona Góra, Poland
Abstract
In this paper we consider some special classes of Diophantine equations connected with McFarland's and Ma's conjectures about difference sets in abelian groups and we obtain an extension of known results.
Keywords
difference sets, diophantine equations, Pell's equations
Bibliography
- K.T. Arasu, Recent results on difference sets, 'Coding Theory and Design Theory', Part II, Springer-Verlag, Berlin-New York 1990, 1-23.
- Z. Cao, Some Diophantine equations in difference sets, a lecture, '5-th National Combinatorial Mathematics Conference', Shanghai 1994.
- Z. Cao, 'Introduction to Diophantine equations' (Chinese), Harbin Inst. of Technology Press, Harbin 1989.
- Z. Cao, On the equation
, Chinese Sci. Bull. 35 (1990), 1227-1228. - Z. Cao, On the Diophantine equation
(Chinese), J. Harbin Inst. Tech. 23 (1991), suppl, 110-112. - G. Degert, Über die Bestimung der Grundeinheit gewisser reell-quadratischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg 22 (1958), 92-97.
- Y.-D. Guo, On the exponential Diophantine equation
, Discuss. Math.- Algebra & Stochastic Methods 16 (1996), 57-60. - S.L. Ma, McFarland's conjecture on abelian difference sets with multiplier -1, Des. Codes Cryptogr. 1 (1992), 321-332.
- L.J. Mordell, 'Diophantine Eqations', Academic Press, London 1969.
- C. Richaud, Sur la résolution des équations x² - Ay² = ±, Atti Acad. Pontif. Nuovi Lincei, 1866, 177-182.
- C. Strømer, Quelques theorems sur l'equation de Pell x² - Dy² = ±1 et leur applications, Skr. Norske Vid. Acad., I Selsk. Mat. Natur. Kl., No. 2 (1897), 48 pp.