THE ORDER OF NORMAL FORM HYPERSUBSTITUTIONS OF TYPE (2)

Klaus Denecke
University of Potsdam, Institute of Mathematics PF 6015 53, 14415 Potsdam, Germany
e-mail: kdenecke@rz.uni-potsdam.de
AND
Kazem Mahdavi
State University of New York, College at Potsdam
Department of Mathematics
Potsdam, NY 13767, USA
e:mail mahdavk@potsdam.edu

Abstract

In [2] it was proved that all hypersubstitutions of type $\tau=(2)$ which are not idempotent and are different from the hypersubstitution which maps the binary operation symbol f to the binary term $f(y, x)$ have infinite order. In this paper we consider the order of hypersubstitutions within given varieties of semigroups. For the theory of hypersubstitution see [3].

Keywords: hypersubstitutions, terms, idempotent elements, elements of infinite order.
1991 Mathematics Subject Classification: Primary 20M14; Secondary 20M07, 08A40.

1 Preliminaries

In [1] hypersubstitutions were defined to make the concept of a hyperidentity more precise. In this paper we consider the type $\tau=(2)$ and the binary operation symbol f. Type (2) hypersubstitutions seem to be simple enough to be accessible, yet rich enough to provide an interesting structure.

An identity $s \approx t$ of type $\tau=(2)$ is called a hyperidentity of a variety V of this type if for every substitution of terms built up by at most two variables (binary terms) for f in $s \approx t$, the resulting identity holds in V. This shows that we are interested in mappings

$$
\sigma:\{f\} \rightarrow W\left(X_{2}\right)
$$

where $W\left(X_{2}\right)$ is the set of all terms constructed by f and the variables from the two-element alphabet $X_{2}=\{x, y\}$. Any such mapping is called a hypersubstitution of type $\tau=(2)$. By σ_{t} we denote the hypersubstitution $\sigma:\{f\} \rightarrow\{t\}$.

A hypersubstitutions σ can be uniquely extended to a mapping $\hat{\sigma}$ on $W(X)$ (the set of all terms built up by f and variables from the countably infinite alphabet $X=\{x, y, z, \cdots\})$ inductively defined by
(i) if $t=x$ for some variable x, then $\hat{\sigma}[t]=x$,
(ii) if $t=f\left(t_{1}, t_{2}\right)$ for some terms t_{1}, t_{2}, then $\hat{\sigma}[t]=\sigma(f)\left(\hat{\sigma}\left[t_{1}\right], \hat{\sigma}\left[t_{2}\right]\right)$.

By Hyp we denote the set of all hypersubstitutions of type $\tau=(2)$. For any two hypersubstitutions σ_{1}, σ_{2} we define a product

$$
\sigma_{1} \circ{ }_{h} \sigma_{2}:=\hat{\sigma}_{1} \circ \sigma_{2}
$$

and obtain together with $\sigma_{i d}=\sigma_{x y}$, i.e., $\sigma_{i d}(f)=x y$, a monoid $\underline{H y p}=$ $\left(H y p ; \circ_{h}, \sigma_{i d}\right)$. We will refer to this monoid as to Hyp. In [2] Denecke and Wismath described all idempotent elements of Hyp.

We use the following denotation: Let W_{x} denote the set of all words using only the letter x, and dually for W_{y}. We set

$$
E_{x}=\left\{\sigma_{x u} \mid u \in W_{x}\right\}, \quad E_{y}=\left\{\sigma_{v y} \mid v \in W_{y}\right\}, \quad E=E_{x} \cup E_{y},
$$

where $x u$ abbreviates $f(x, u)$.
Clearly, for any element $x u$ with $u \in W_{x}$ we have

$$
\sigma_{x u} \circ_{h} \sigma_{x u}=\sigma_{x u} .
$$

and for any element $v y$ with $v \in W_{y}$ we have

$$
\sigma_{v y} \circ_{h} \sigma_{v y}=\sigma_{v y} .
$$

This shows that all elements of E are idempotent. The hypersubstitutions σ_{x}, σ_{y} mapping the binary operation symbol f to x and to y, respectively, and the identity hypersubstitution are also idempotent.

The hypersubstitution $\sigma_{y x}$ satisfies the equation

$$
\sigma_{y x} \circ_{h} \sigma_{y x}=\sigma_{x y} .
$$

Further we have:
Proposition 1.1 (see [2]). If $\sigma_{s} \circ_{h} \sigma_{t}=\sigma_{i d}$, then either $\sigma_{s}=\sigma_{t}=\sigma_{i d}$ or $\sigma_{s}=\sigma_{t}=\sigma_{y x}$.
In the following theorem we will use the concept of the length of a term as number of occurrences of variables in the term.

In [2] was proved

Theorem 1.2.

(i) If $\sigma \in$ Hyp is an idempotent, then $\sigma \in E \cup\left\{\sigma_{x}, \sigma_{y}, \sigma_{x y}\right\}$.
(ii) If $\sigma \in H y p \backslash\left(E \cup\left\{\sigma_{x}, \sigma_{y}, \sigma_{x y}, \sigma_{y x}\right\}\right)$, then $\sigma^{n} \neq \sigma^{n+1}$ for all $n \in \mathbb{N}$ with $n \geq 1$ (i.e. σ has infinite order).
(iii) If $\sigma \in \operatorname{Hyp} \backslash\left(E \cup\left\{\sigma_{x}, \sigma_{y}, \sigma_{x y}, \sigma_{y x}\right\}\right)$, then the length of the word $\left(\sigma \circ_{h} \sigma\right)(f)$ is greater than the length of $\sigma(f)$.

If we set $G:=H y p \backslash\left(E \cup\left\{\sigma_{x}, \sigma_{y}, \sigma_{x y}, \sigma_{y x}\right\}\right)$, then G does not form a subsemigroup of Hyp. In fact, we consider the hypersubstitution $\sigma_{w x}$ where w is a term different from x and from y. Then $\sigma_{w x} \in G$. Let $u \in W_{x}$ and let $\overline{x u} \in W_{x}$ be the term formed from $x u$ by substitution of all occurrences of the letters x by y, then $\sigma_{\overline{x u}} \in G$. But then we see

$$
\sigma_{\overline{x u}} \circ_{h} \sigma_{w x}=\sigma_{x u}
$$

and the product of these elements from G is outside of G.
If we want to check whether an equation $s \approx t$ is satisfied as a hyperidentity in a given variety V of semigroups, it is not necessary to test all hypersubstitutions from Hyp. Depending on the identities satisfied in V we may restrict ourselves to a smaller subset of Hyp. By definition of a binary operation on this subset, we will define a new algebra which, in general is not a monoid and will determine the order of elements of those algebras.

2 Normal Form hypersubstitutions

In [4] J. Płonka defined a binary relation on the set of all hypersubstitutions of an arbitrary type with respect to a variety of this type.

Definition 2.1. Let V be a variety of semigroups, and let $\sigma_{1}, \sigma_{2} \in H y p$. Then

$$
\sigma_{1} \sim_{V} \sigma_{2}: \Leftrightarrow \sigma_{1}(f) \approx \sigma_{2}(f) \in I d V
$$

Clearly, the relation \sim_{V} is an equivalence relation on Hyp and has the following properties:

Proposition 2.2 ([3]). Let V be a variety of semigroups and let $\sigma_{1}, \sigma_{2} \in$ Нур.
(i) If $\sigma_{1} \sim_{V} \sigma_{2}$, then for any term t of type $\tau=(2)$ the equation $\hat{\sigma}_{1}[t] \approx$ $\hat{\sigma}_{2}[t]$ is an identity of V.
(ii) If $s \approx t \in I d V, \hat{\sigma}_{1}[s] \approx \hat{\sigma}_{1}[t] \in I d V$ and $\sigma_{1} \sim_{V} \sigma_{2} \in I d V$, then $\hat{\sigma}_{2}[s] \approx \hat{\sigma}_{2}[t] \in I d V$.

In general, the relation \sim_{V} is not a congruence relation on Hyp. A variety is called solid if every identity in V is satisfied as a hyperidentity. For a solid variety V the relation \sim_{V} is a congruence relation on Hyp and the factor monoid $\underline{H y p / \sim_{V}}$ exists.

In the arbitrary case we form also $H y p / \sim_{V}$ and consider a choice function

$$
\varphi: H y p /_{\sim_{V}} \rightarrow \text { Hyp, with } \varphi\left(\left[\sigma_{i d}\right]_{\sim_{V}}\right)=\sigma_{i d},
$$

which selects from each equivalence class exactly one element. Then we obtain the set $H y p_{N_{\varphi}}(V):=\varphi\left(H y p / \sim_{V}\right)$ of all normal form hypersubstitutions with respect to V and φ.

On the set $H y p_{N_{\varphi}}(V)$ we define a binary operation

$$
\circ_{N}: H y p_{N_{\varphi}}(V) \times H y p_{N_{\varphi}}(V) \rightarrow H y p_{N_{\varphi}}(V)
$$

by $\sigma_{1} \circ_{N} \sigma_{2}=\varphi\left(\sigma_{1} \circ_{h} \sigma_{2}\right)$. This mapping is well-defined, but in general not associative. Therefore, $\left(H y p_{N_{\varphi}}(V) ; \circ_{N}, \sigma_{i d}\right)$ is not a monoid. We call this structure groupoid of normal form hypersubstitutions. We ask, how to characterize the idempotent elements of $H y p_{N_{\varphi}}(V)$ since for practical work normal form hypersubstitutions are more important than usual hypersubstitutions.

Proposition 2.3. Let V be a variety of semigroups and let

$$
\varphi: H y p / \sim_{V} \rightarrow H y p
$$

be a choice function. Then
(i) $\sigma \in H y p_{N_{\varphi}}(V)$ is an idempotent element iff $\sigma \circ_{h} \sigma \sim_{V} \sigma$.
(ii) $\sigma_{y x} \circ_{N} \sigma_{y x}=\sigma_{x y}$ if $\sigma_{y x} \in H y p_{N_{\varphi}}(V)$.

Proof. (i) If σ is an idempotent of $\operatorname{Hyp}_{N_{\varphi}}(V)$, then $\sigma \circ_{N} \sigma=\sigma \sim_{V} \sigma \circ_{h} \sigma$. If conversely $\sigma \sim_{V} \sigma \circ_{h} \sigma$, then $\sigma \circ_{N} \sigma \sim_{V} \sigma$. But then $\sigma \circ_{N} \sigma=\sigma$ because of $\sigma \in H y p_{N_{\varphi}}(V)$.
(ii) $\sigma_{y x} \circ_{N} \sigma_{y x} \sim_{V} \sigma_{y x} \circ_{h} \sigma_{y x}=\sigma_{x y} \in H y p_{N_{\varphi}}(V)$. Therefore, $\sigma_{y x} \circ_{N} \sigma_{y x}=\sigma_{x y}$.
As a consequence we have: if σ is an idempotent of Hyp and $\sigma \in H_{y p_{N_{\varphi}}}(V)$, then it is also an idempotent in $H_{y p_{N_{\varphi}}}(V)$ for any variety V of semigroups and any choice function φ. But in general $H_{y p_{N_{\varphi}}}(V)$ has idempotents which are not idempotents in Hyp.

3 Idempotents in $\operatorname{Hyp}_{N_{\varphi}}(V)$

Now we want to consider the following variety of semigroups: $V=$ $\operatorname{Mod}\left\{(x y) z \approx x(y z), x y u v \approx x u y v, x^{3} \approx x\right\}$, i.e., the variety of all medial semigroups satisfying $x^{3} \approx x$.

Let f be our binary operation symbol. As usual instead of $f(x, y)$ we will also write $x y$. The elements of $W\left(X_{2}\right) / I d V$ where $X_{2}=\{x, y\}$ is a two-element alphabet, have the following form: $\left[x^{n} y^{m}\right]_{I d V},\left[y^{n} x^{m}\right]_{I d V}$, $\left[x y^{m} x^{n}\right]_{I d V},\left[y x^{m} y^{n}\right]_{I d V}$ where $0 \leq m, n \leq 2$. So we get the set

$$
\begin{aligned}
W & \left(X_{2}\right) / I d V= \\
= & \left\{[x]_{I d V},\left[x^{2}\right]_{I d V},[x y]_{I d V},\left[x y^{2}\right]_{I d V},\left[x^{2} y\right]_{I d V},[x y x]_{I d V},\left[x^{2} y^{2}\right]_{I d V},\left[x y^{2} x\right]_{I d V},\right. \\
& {\left[x y x^{2}\right]_{I d V},\left[x y^{2} x^{2}\right]_{I d V},[y]_{I d V},\left[y^{2}\right]_{I d V},[y x]_{I d V},\left[y x^{2}\right]_{I d V},\left[y^{2} x\right]_{I d V},[y x y]_{I d V}, } \\
& {\left.\left[y^{2} x^{2}\right]_{I d V},\left[y x^{2} y\right]_{I d V},\left[y x y^{2}\right]_{I d V},\left[y x^{2} y^{2}\right]_{I d V}\right\} }
\end{aligned}
$$

From each class we exchange a normal form term using a certain choice function φ and obtain the following set of normal form hypersubstitutions: $H y p_{N_{\varphi}}(V)=\left\{\sigma_{x}, \sigma_{x^{2}}, \sigma_{x y}, \sigma_{x y^{2}}, \sigma_{x^{2} y}, \sigma_{x y x}, \sigma_{x^{2} y^{2}}, \sigma_{x y^{2} x}, \sigma_{x y x^{2}}, \sigma_{x y^{2} x^{2}}, \sigma_{y}, \sigma_{y^{2}}\right.$, $\left.\sigma_{y x}, \sigma_{y x^{2}}, \sigma_{y^{2} x}, \sigma_{y x y}, \sigma_{y^{2} x^{2}}, \sigma_{y x^{2} y}, \sigma_{y x y^{2}}, \sigma_{y x^{2} y^{2}}\right\}$.

The multiplication in the groupoid $\left(H y p_{N_{\varphi}}(V) ; \circ_{N}, \sigma_{i d}\right)$ is given by the following table.
K. Denecke and K. Mahdavi

The table shows that there are many idempotents in $\operatorname{Hyp}_{N_{\varphi}}(V)$ which are not idempotents in Hyp.

The following example shows that $\left(\operatorname{Hyp}_{N}(V) ; \circ_{N}, \sigma_{i d}\right)$ is not a monoid:

$$
\begin{gathered}
\left(\sigma_{x^{2}} \circ_{N} \sigma_{x y^{2}}\right) \circ_{N} \sigma_{x^{2}}=\sigma_{x^{2}} \circ_{N} \sigma_{x^{2}}=\sigma_{x^{2}}, \\
\sigma_{x^{2}} \circ_{N}\left(\sigma_{x y^{2}} \circ_{N} \sigma_{x^{2}}\right)=\sigma_{x^{2}} \circ_{N} \sigma_{x}=\sigma_{x} .
\end{gathered}
$$

All idempotent elements of $H y p_{N}(V)$ are
$\left\{\sigma_{x y}, \sigma_{x}, \sigma_{x^{2}}, \sigma_{x y^{2}}, \sigma_{x^{2} y}, \sigma_{x^{2} y^{2}}, \sigma_{x y^{2} x}, \sigma_{x y x^{2}}, \sigma_{x y^{2} x^{2}}, \sigma_{y}, \sigma_{y^{2}}, \sigma_{y x^{2} y}, \sigma_{y x y^{2}}, \sigma_{y x^{2} y^{2}}\right\}$.
Now we ask for which varieties at most the idempotents of Hyp are idempotents of $H y p_{N_{\varphi}}(V)$.

Theorem 3.1. For a variety V of semigroups the following are equivalent:
(i) $\operatorname{Mod}\{(x y) z \approx x(y z), x y \approx y x\} \subseteq V$,
(ii) $\left\{\sigma \mid \sigma \in \operatorname{Hyp}_{N_{\varphi}}(V)\right.$ and $\left.\sigma \circ_{N} \sigma=\sigma\right\}=\left\{\sigma \mid \sigma \in H y p\right.$ and $\sigma \circ_{h} \sigma=$ $\sigma\} \cap H y p_{N_{\varphi}}(V)$ for each choice function φ.

Proof. "(i) \Rightarrow (ii)" Let φ be an arbitrary choice function and let $\sigma \in$ $H y p_{N_{\varphi}}(V)$ be an idempotent element of $H y p_{N_{\varphi}}(V)$. Then $\sigma=\sigma \circ_{N} \sigma \sim_{V}$ $\sigma \circ_{h} \sigma$. Let u and v be the words corresponding to σ and to $\sigma \circ_{h} \sigma$, respectively. By $\ell(u)$ we denote the length of u. Assume that $\sigma \notin E \cup\left\{\sigma_{i d}, \sigma_{x}, \sigma_{y}\right\}$. By Theorem 1.2 (iii) the length of v is greater than that of u since $\sigma \neq \sigma_{f(y, x)}$ by Theorem 2.3 (ii). But then $u \approx v \notin \operatorname{IdMod}\{x(y z) \approx(x y) z, x y \approx y x\}$ since from the associative and the commutative identity one can derive only identities $u \approx v$ with $\ell(u)=\ell(v)$. But by assumption, $u \approx v \in I d V \subseteq$ $\operatorname{IdMod}\{(x y) z \approx x(y z), x y \approx y x\}$, a contradiction. This shows

$$
\left\{\sigma \mid \sigma \in H y p_{N_{\varphi}}(V) \text { and } \sigma \circ_{N} \sigma=\sigma\right\} \subseteq\left(E \cup\left\{\sigma_{x}, \sigma_{y}, \sigma_{i d}\right\}\right) \cap H y p_{N_{\varphi}}(V) .
$$

If conversely σ is an idempotent of Hyp, i.e. $\sigma \circ_{h} \sigma=\sigma$, then $\sigma \circ_{N} \sigma \sim_{V}$ $\sigma \circ_{h} \sigma=\sigma$ and thus $\sigma \circ_{N} \sigma=\sigma$, since $\sigma \in H y p_{N_{\varphi}}(V)$ and σ is an idempotent of $H y p_{N_{\varphi}}(V)$. Therefore we have equality.
$"(\mathrm{ii}) \Rightarrow(\mathrm{i}) "$ Assume that $\operatorname{Mod}\{(x y) z \approx x(y z), x y \approx y x\} \nsubseteq V$. Then there exists an identity $x^{k} \approx x^{n} \in I d V$ with $1 \leq k<n \in \mathbb{N}$. Now we construct an idempotent element of $\operatorname{Hyp}_{N_{\varphi}}(V)$ which is not in $E \cup\left\{\sigma_{x}, \sigma_{y}, \sigma_{i d}\right\}$. We set $m:=n-k$ and $\left.w:=x^{2} u\right)$ for some word $u \in W_{x}$ with $\ell(u)=3 k m-2$.

Clearly, $\sigma_{w} \notin E \cup\left\{\sigma_{x}, \sigma_{y}, \sigma_{i d}\right\}$. It is easy to see that the length of w is 3 km and the length of the word v corresponding to $\sigma_{w} \circ_{h} \sigma_{w}$ is (3km) ${ }^{2}$. In fact, from $x^{k} \approx x^{n} \in I d V$ it follows $x^{a} \approx x^{a+b m} \in I d V$ for all natural numbers $a \geq k$ and $b \geq 1$ and in particular we have $x^{3 k m} \approx x^{3 k m+\left(9 k^{2} m-3 k\right) m}=$ $x^{(3 k m)^{2}}$. Thus

$$
\left(\sigma_{w} \circ_{h} \sigma_{w}\right)(f) \approx x^{(3 k m)^{2}} \approx x^{3 k m} \approx f(f(x, x), u)=\sigma_{w}(f)
$$

Therefore, $\sigma_{w} \circ_{h} \sigma_{w} \sim_{V} \sigma_{w}$ and $\sigma_{w} \circ_{N} \sigma_{w} \sim_{V} \sigma_{w} \circ_{h} \sigma_{w} \sim_{V} \sigma_{w}$. Let φ be a choice function with $\sigma_{w} \in H y p_{N_{\varphi}}(V)$. Then from $\sigma_{w} \circ_{N} \sigma_{w} \sim_{V} \sigma_{w}$ it follows $\sigma_{w} \circ_{N} \sigma_{w}=\sigma_{w}$, a contradiction.

4 Elements of infinite order

We remember that the order of an element of a groupoid is the cardinality of the subgroupoid generated by this element if this cardinality is finite and the order is infinite otherwise. By $O(\sigma)$ we denote the order of the hypersubstitution $\sigma \in H^{H} p_{N_{\varphi}}(V)$. By Theorem 1.2 (ii), the hypersubstitution $\sigma_{f(x, f(y, x))}$ has infinite order in Hyp, but in $H y p_{N_{\varphi}}(V)=\left\{\sigma_{x}, \sigma_{x^{2}}, \sigma_{x y}, \sigma_{x y^{2}}, \sigma_{x^{2} y}, \sigma_{x y x}, \sigma_{x^{2} y^{2}}, \sigma_{x y^{2} x}, \sigma_{x y x^{2}}, \sigma_{x y^{2} x^{2}}, \sigma_{y}, \sigma_{y^{2}}\right.$, $\left.\sigma_{y x}, \sigma_{y x^{2}}, \sigma_{y^{2} x}, \sigma_{y x y}, \sigma_{y^{2} x^{2}}, \sigma_{y x^{2} y}, \sigma_{y x y^{2}}, \sigma_{y x^{2} y^{2}}\right\}$, where $V=\operatorname{Mod}\{(x y) z \approx$ $\left.x(y z), x y u v \approx x u y v, x^{3} \approx x\right\}$ we have

$$
\sigma_{x y x} \circ_{N} \sigma_{x y x}=\sigma_{x y^{2} x^{2}}
$$

and

$$
\sigma_{x y x} \circ_{N} \sigma_{x y^{2} x^{2}}=\sigma_{x y^{2} x^{2}}=\sigma_{x y^{2} x^{2}} \circ_{N} \sigma_{x y x},
$$

thus

$$
\sigma_{x y x}^{3}=\sigma_{x y x}^{2}
$$

and $\sigma_{x y x}$ has finite order. Now we characterize elements of infinite order with respect to varieties of semigroups which contain the variety of commutative semigroups.

By $\langle\sigma\rangle_{o_{N}}$ we denote the subgroupoid of $\operatorname{Hyp}_{N_{\varphi}}(V)$ generated by the hypersubstitution σ.

Theorem 4.1. Let V be a variety of semigroups. Then the following are equivalent:
(i) $\operatorname{Mod}\{(x y) z \approx x(y z), x y \approx y x\} \subseteq V$
(ii) $\left\{\sigma \mid \sigma \in H y p_{N_{\varphi}}(V)\right.$ and the order of σ is infinite $\}=\operatorname{Hyp}_{N_{\varphi}}(V) \backslash(E \cup$ $\left.\left\{\sigma_{x}, \sigma_{y}, \sigma_{i d}, \sigma_{y x}\right\} \cup A_{1} \cup A_{2}\right)$, where $A_{1}=\left\{\sigma \mid \sigma \in \operatorname{Hyp}_{N_{\varphi}}(V) \cap\left(\left\{\sigma_{v} \mid v \in\right.\right.\right.$ $\left.W_{x}\right\} \backslash\left(E_{x} \cup\left\{\sigma_{x}\right\}\right)$ and $\left.\langle\sigma\rangle_{o_{N}} \cap\left\{\sigma_{x u} \mid u \in W\left(X_{2}\right)\right\} \neq \emptyset\right\}$ and $A_{2}=$ $\left\{\sigma \mid \sigma \in H y p_{N_{\varphi}}(V) \cap\left(\left\{\sigma_{v} \mid v \in W_{y}\right\} \backslash\left(E_{y} \cup\left\{\sigma_{y}\right\}\right)\right.\right.$ and $\langle\sigma\rangle_{o_{N}} \cap\left\{\sigma_{u y} \mid u \in\right.$ $\left.\left.W\left(X_{2}\right)\right\} \neq \emptyset\right\}$ for each choice function φ.

Proof. $"(\mathrm{i}) \Rightarrow(\mathrm{ii})$ ": Let φ be a choice function. Let σ be an element of $H_{y p_{N_{\varphi}}}(V)$ with $O(\sigma)=\infty$. By Theorem 3.1 and Proposition 2.3, $\sigma \notin E \cup\left\{\sigma_{x}, \sigma_{y}, \sigma_{x y}, \sigma_{y x}\right\}$.

If we assume that σ belongs to A_{1}, then there exists a word $u \in W\left(X_{2}\right)$ such that $\sigma_{x u} \in\langle\sigma\rangle_{o_{N}}$. Clearly, there exists a natural number $n \geq 1$ such that $\ell\left(\sigma_{x y}\right)=n$. Moreover, we have

$$
\sigma \circ_{N} \sigma_{x u} \sim_{V} \sigma \circ_{h} \sigma_{x u}=\sigma,
$$

since the word corresponding to σ is in W_{x}. Because of $\sigma \in \operatorname{Hyp}_{N_{\varphi}}(V)$ we get

$$
\sigma \circ_{N} \sigma_{x u}=\sigma
$$

and $\ell(\sigma)+\ell\left(\sigma_{x u}\right)=n+1$. But this means, $O(\sigma) \leq n$. Thus $\sigma \notin A_{1}$. In a similar way we show $\sigma \notin A_{2}$. This shows $\left\{\sigma \mid \sigma \in \operatorname{Hyp}_{N_{\varphi}}(V)\right.$ and the order of σ is infinite $\} \subseteq H y p_{N_{\varphi}}(V) \backslash\left(E \cup\left\{\sigma_{x}, \sigma_{y}, \sigma_{i d}, \sigma_{y x}\right\} \cup A_{1} \cup A_{2}\right)$.

Suppose that $\sigma \in H y p_{N_{\varphi}}(V) \backslash\left(E \cup\left\{\sigma_{x}, \sigma_{y}, \sigma_{i d}, \sigma_{y x}\right\} \cup A_{1} \cup A_{2}\right)$. Let u be the word corresponding to σ.

If $u \in W_{x}$, then $\langle\sigma\rangle_{H_{H_{N_{\varphi}}(V)}} \subseteq\left\{\sigma_{v} \mid v \in W_{x}\right\}$. Otherwise there exists an identity $a \approx b \in I d V$ such that $a \in W_{x}$ and b uses the letter y. Clearly, $a \approx b \notin \operatorname{IdMod}\{(x y) z \approx x(y z), x y \approx y x\}$ which contradicts $a \approx b \in I d V \subseteq$ $\operatorname{IdMod}\{(x y) z \approx x(y z), x y \approx y x\}$. Moreover, $\langle\sigma\rangle_{\circ_{N}} \cap\left\{\sigma_{x u} \mid u \in W\left(X_{2}\right)\right\}=\emptyset$ and $\sigma_{x} \notin\langle\sigma\rangle_{o_{N}}$. Therefore, for $\sigma_{1}, \sigma_{2} \in\langle\sigma\rangle_{H y p_{N_{\varphi}}(V)}$ the length of the word corresponding to $\sigma_{1} \circ_{h} \sigma_{2}$ is greater than the length of u. Hence for each $\sigma^{\prime} \in\langle\sigma\rangle_{o_{N}}$ with $\ell\left(\sigma^{\prime}\right) \geq 2$ the length of the word corresponding to σ^{\prime} is greater than the length of u. Otherwise there would exist an identity $c \approx d \in I d V$ such that the length of d is greater than that of c. Clearly, $c \approx d \notin \operatorname{IdMod}\{(x y) z \approx x(y z), x y \approx y x\}$, what contradicts $c \approx d \in I d V \subseteq$ $\operatorname{IdMod}\{(x y) z \approx x(y z), x y \approx y x\}$. Therefore, for all $\sigma_{a}, \sigma_{b} \in\langle\sigma\rangle_{\circ_{N}}$ there holds $\sigma_{a} \circ_{N} \sigma_{b} \neq \sigma$, i.e. $O(\sigma)=\infty$. If $u \in W_{y}$, then we get $O(\sigma)=\infty$ in the dual way.

If u uses both letters x and y, then $\langle\sigma\rangle_{\circ_{N}} \subseteq\left\{\sigma_{v} \mid v \in W\left(X_{2}\right) \backslash\left(W_{x} \cup W_{y}\right)\right\}$. Otherwise there is an identity $a \approx b \in I d V$ such that $a \in W_{x} \cup W_{y}$ and b uses both letters x and y. Clearly, $a \approx b \notin \operatorname{IdMod}\{(x y) z \approx x(y z), x y \approx y x\}$ which contradicts $a \approx b \in \operatorname{IdV} \subseteq \operatorname{IdMod}\{(x y) z \approx x(y z), x y \approx y x\}$. The same argumentation as above (using also $\sigma \notin\left\{\sigma_{x y}, \sigma_{y x}\right\}$) shows that for each $\sigma^{\prime} \in\langle\sigma\rangle_{O_{N}}$ with $\ell\left(\sigma^{\prime}\right) \geq 2$ the length of the word corresponding to σ^{\prime} is greater than the length of u. This means there don't exist hypersubstitutins $\sigma_{a}, \sigma_{b} \in\langle\sigma\rangle_{o_{N}}$ such that $\sigma_{a} \circ_{N} \sigma_{b}=\sigma$ and hence $O(\sigma)=\infty$. This shows $\left\{\sigma \mid \sigma \in \operatorname{Hyp}_{N_{\varphi}}(V)\right.$ and the order of σ is infinite $\} \supseteq$ $H y p_{N_{\varphi}}(V) \backslash\left(E \cup\left\{\sigma_{x}, \sigma_{y}, \sigma_{i d}, \sigma_{y x}\right\} \cup A_{1} \cup A_{2}\right)$.
$"($ ii $) \Rightarrow$ (i)": Assume that $\operatorname{Mod}\{(x y) z \approx x(y z), x y \approx y x\} \nsubseteq V$. Then there exists an identity $x^{k} \approx x^{n} \in I d V$ with $1 \leq k<n \in \mathbb{N}$. We set $m:=n-k$ and $w:=f(f(\ldots f(x, y), \ldots, y), y)$, where w has the length $k m+1$. It is easy to check that $\left(\sigma_{w} \circ_{h} \sigma_{w}\right)(f)=v \approx x y^{(k m)^{2}}$. In fact, from $x^{k} \approx x^{n} \in I d V$ and $m:=n-k$, it follows $x^{k m} \approx x^{c} \in I d V$ with $c=k m+\left(k^{2} m-k\right) m=k^{2} m^{2}$. Therefore, $\left(\sigma_{w} \circ_{h} \sigma_{w}\right)(f)=v \approx x y^{k^{2} m^{2}} \approx$ $x y^{k m} \approx \sigma_{w}(f)$, i.e. $\sigma_{w} \circ_{h} \sigma_{w} \sim_{V} \sigma_{w}$ and thus $\sigma_{w} \circ_{N} \sigma_{w} \sim_{V} \sigma_{w} \circ_{h} \sigma_{w} \sim_{V} \sigma_{w}$. Let φ be a choice function such that $\sigma_{w} \in \operatorname{Hyp}_{N_{\varphi}}(V)$. Obviously, $\sigma_{w} \in$ $H y p_{N_{\varphi}}(V) \backslash\left(E \cup\left\{\sigma_{x}, \sigma_{y}, \sigma_{i d}, \sigma_{f(y, x)}\right\} \cup A_{1} \cup A_{2}\right)$ and thus $O(\sigma)=\infty$. But $\sigma_{w} \in H y p_{N_{\varphi}}(V)$ forces $\sigma_{w} \circ_{N} \sigma_{w}=\sigma_{w}$ and $O(\sigma)=2$, what contradicts $O(\sigma)=\infty$. Therefore $\operatorname{Mod}\{(x y) z \approx x(y z), x y \approx y x\} \subseteq V$.

References

[1] K. Denecke, D. Lau, R. Pöschel, and D. Schweigert, Hyperidentities, hyperequational classes and clone congruences, Contributions to General Algebra $\mathbf{7}$ (1991), 97-118.
[2] K. Denecke and Sh. Wismath, The Monoid of Hypersubstitutions of Type (2), Contributions to General Algebra, Verlag Johannes Heyn, 10 (1998), 110-126.
[3] K. Denecke and Sh. Wismath, "Hyperidentities and clones," Gordon and Breach Sci. Publ., Amsterdam-Singapore 2000.
[4] J. Płonka, Proper and inner hypersubstitutions of varieties, p. 106-115 in: "Proceedings of the International Conference: Summer school on General Algebra and Ordered sets 1994", Palacký University, Olomouc 1994.

Received 3 December 1997
Revised 30 December 1999

