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Abstract

Boolean matrices, the incidence matrices of a graph, are known
not to be the (universal) matrices of a Boolean algebra. Here, we also
show that their usual composition cannot make them the matrices of
any algebra. Yet, later on, we “show” that it can. This seeming para-
dox comes from the hidden intrusion of a widespread set-theoretical
(mis) definition and notation and denies its harmlessness. A minor
modification of this standard definition might fix it.
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matrix, analytic monoid.
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1. Preliminaries

1.1. Introduction
When one compares a general mathematical notion with a particular one,
one does not expect any difficulty in proving that the latter is a case
of the former. On the contrary, the general notion of universal matrix
(or generalized matrix of [5], p. 140) and the particular one of Boolean
matrix show such a difficulty: the proof coexists with its disproof.

Of course, we are not going to present any mathematical inconsistency.
We will merely exhibit a misuse of the general notion, a misuse that still
shows some curious features. We will find that it occurs quite naturally and
it is prompted by a very well-known definition of standard Set Theory. This
might reopen an old problem of this theory.

∗Research partly supported by M.U.R.S.T.. This note was reported in the talk held at
the C.S.I., Universidad de La Laguna, on may 13, 1998.
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1.2. Boolean matrices
Recall that, given a finite set of vertices, n = {0, . . . , n − 1} (see 11.1 of
[9]), we can identify a simple (directed) graph in it by its incidence matrix,
i.e. by an n × n array M with Boolean entries 0, 1 ∈ 2. In fact, when Mi,j

denotes its entry at the i-th row and j-column, we can set Mi,j = 1 if there is
an arc (or oriented edge) from i to j and Mi,j = 0 otherwise. Such a matrix
merely is the characteristic function of the relation in n, corresponding to
our graph.

Given M and another graph with matrix L, we know that the graph
composition of the former with the latter has the matrix M ◦ L defined for
all i, j ∈ n by

(M ◦ L)i,j =
∨

`∈n

Mi,`L`,j .(0)

Up to the replacement of the (iterated) Boolean join
∨

for the summation∑
, this is the same matrix product we perform in a finite dimensional vector

space.
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Furthermore, we know that the unit of our composition has the usual
Kronecker matrix (Definition 1.4 will motivate why we are avoiding the
term “identity matrix”, usual in Linear Algebra)

bi,j =
{

1 when i = j ,
0 otherwise.

(Therefore, for a fixed n, our matrices form a monoid with respect to this
matrix product and this unit.) Hence, one often says that we are dealing
with “Boolean matrices”, i.e. with square arrays with entries from
the two-element Boolean algebra, as it was considered in [16] (see also [7]).

Yet, this does not entail that Boolean matrices are the “matrices” of a
Boolean algebra (once one has introduced a formal notion of a matrix that
is enough general for using it also on such algebras). Then, let us check it.

1.3. Remark (Generalized matrices)
The definition in the next subsection will recall the notion of a matrix we
are going to use for such a check. It is not a widely known notion, owing to
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some historical reasons that we outline here. It is a case of the “generalized
matrices” of [5], the earliest published formal notion that generalized the
vector-space matrices by algebraic means.

At that time, this was a fairly unusual proposal. Some authors work-
ing in the field of applied Category Theory were trying to generalize
matrices by categorical means, as one could see in I.3.6 of [8]. (See also the
so-called “matricial theories”, introduced by C.C. Elgot in [4], cf. [2] and
[3].)

However, generalized matrices hardly were a readily acceptable subject
even in Universal Algebra. A century ago, A.N. Whitehead implicitely stated
the necessity of studying them when introduced his idea of universality in
the introduction of a book [17], that actually was about Linear Algebra. Yet,
in the eighty years elapsed from [17] to [5], the only relevant work came from
the analyst and geometer K. Menger, who partly generalized the product
of a matrix times a vector (details in 2.2 of [14]) by his “superassociative
systems with selectors”.

Perhaps, some technical reason (together with a possible disregard of
vector spaces as we will explain in the next subsection) was underlying such
a reluctance. In fact, the subsequent theoretical developments employed
tools outside the conventional ones of Universal Algebra and of Category
Theory (details in 2.5 of [14]).

We are not going to use such developments, but for a characterization,
that however we will recall in subsection 1.6. Hence, if a reader is interested
also to see how generalized matrices preserve most of the matrix properties
known from Linear Algebra, he/she should refer to [14] (for linear
properties), to [10] (for non linear properties) and to [13] (for
other types of Cayley-Hamilton properties). (As the journal of [10] retyped
the paper without Author’s approval, there are many misprints. Most of
them are corrected in [11]. Anyway, the Author will send interested people
his paper.)

1.4. Definitions
We consider a fixed (universal) algebra and we denote by E the set of all its
endomorphisms. Hence, when A denotes the carrier of this algebra,

E ⊆ AA .

We also consider another set X (often a finite one: X = n = {0, 1, . . . , n−1})
and the set AX of the families of algebra elements with index set X. Let
b: X → A be one of such families and consider the function rb: E → AX that
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provides each endomorphism h: A → A with the family rb(h) = h·b : X → A
of the endomorphic images h(bx) of the elements of b. If we have got a
bijection

rb : E 7 7→ÂAX ,(1)

then we say that AX is the set of (universal square) matrices of the alge-
bra, that we are considering, with respect to the base b. Hence, a matrix
is any family M : X → A and we can represent it by some (and single)
endomorphism, M = rb(h). In such a case, we also say that the image
◦: AX ×AX → AX under rb of the functional composition on E ⊆ AA is the
matrix product, namely we formally define ◦ by

rb(k) ◦ rb(h) = rb(k · h) for all h, k ∈ E .

Trivially its unit is the matrix b (corresponding to the identical endomor-
phism).

For a familiar example, take any usual finite-dimensional vector space
(defined on a finite power Kn of a field K) and consider its endomorphisms.
Choose as base elements bx = b(x) (for x ∈ X) the ones forming the
Kronecker matrix, then their endomorphic images h(bx) are the column
vectors of the matrix identifying any endomorphism by its system of tran-
sition equations, while the above product turns out to be the familiar one
“rows times columns”.

Notice also that our definitions work in a vector space even when one
chooses another base, though with a different matrix product. (Hence, the
“identity” matrix can differ from the Kronecker matrix.) They also do
even when one isomorphically replaces the very carrier (consider polar
representations). This invariance agrees with the “generalized conception
of space” stressed by A.N. Whitehead in [17] and hints that universal
matrices were within the reach of anybody (who focused on vector spaces)
in spite of the eighty years before [5].

The matrices of a universal algebra provide several heterogeneous
objects rising from the applications with a mathematically uniform and
precise formalization [12], [15]. Hence, one would guess that our very
natural “Boolean matrices” are a case of universal matrices.

1.5. Remark (Not Boolean)
In spite of their name, Boolean matrices (i.e. graphs) are known not to be
the matrices of (free) Boolean algebras. One might easily get it by merely
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considering the cardinalities of the carrier sets involved: when n is the num-
ber of generators (base elements) such a Boolean algebra has 22n

elements,
whereas the carrier of a possible algebra for graphs has the 2n binary vec-
tors that can be a column of an incidence matrix. Anyway, one knows that
the latter matrices consist of other networks, the synchronous sequential
autonomous circuits (or the families of Karnaugh maps or Veitch diagrams
that define them), e.g. see 3.1 and 3.2 in [10]. Hence, one would expect
that other algebras, possibly simpler ones, are the “universal spaces” for our
simple graphs.

Unfortunately, the definition in subsection 1.2 of a Boolean matrix does
not mention any algebra to check wheter it fulfil the definition in 1.4 of
a universal matrix. We can only guess that X = n and that the algebra
elements are Boolean n-tuples, A = 2n. This merely enables us to think of
our L and M in formula (0) as the above families in AX , once we consider
them as functions, L,M : n → 2n, instead of L,M : n × n → 2. (Also, we
can write b(x)j = bx,j .)

Hence, in order to avoid to guess algebras by trial and error, we have to
resort to some characterization of universal matrices that does not involve
any algebra (while it will provide us with some in the affirmative case).
In our case (of tentative set of matrices, matrix product and unit) a simple
characterization is the one that we recall below from [14]. Its underlying idea
is the usual one of relating matrix products with units by certain axioms.
(Yet, now the axioms will not be equational.)

1.6. Characterization of universal matrices
Let k: A → AX denote the (constant generating) function defined by

ka(`) = a for all a ∈ A and ` ∈ X .(2)

Recalled theorem. (See 1.7 (M3) in [14].) For arbitrary sets X and A,
AX is a set of universal matrices as in subsection 1.3 iff there is a binary
operation ◦: AX ×AX → AX , such that, for some family b: X → A,

M ◦ kb(x) = kM(x) ,(3)

b ◦ ka = ka and(4)

(M ◦ L) ◦ ka = M ◦ (L ◦ ka) ,(5)

for all x ∈ X, L, M : X → A and all constants ka: X → A.
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As it was proved in 1.7 of [14], when these three conditions are fulfilled,
we can always define an algebra by an (algebraically) unusual construction
starting from ◦. This algebra satisfies the requirements of subsection 1.4,
namely AX is the set of its matrices and ◦ is its matrix product, that has b
as unit. For Boolean matrices, when ◦ is the one defined in (0) and b is the
Kronecker matrix, such an algebra will be the one that we were looking for
in subsection 1.5.

(The above mentioned construction is unusual, because it too involves
function k, as our three conditions do. This function is a set-theoretical
counterpart of a non trivial, yet very simple, combinator, i.e. a functional
operator in the sense of Combinatory Logic [6]. Though k does not play a
big rôle in (conventional) Universal Algebra, its corresponding combinator
is one of the just two basic combinators that allows [6] to build all possible
functional operators.)

We only mention this combinatory construction, because we are
not going to use it. Yet, we stress that it cannot miss a (free) algebra, if any,
for our matrices. (On the contrary, as shown in 2.4 of [14], the seemingly
more general approach of Category Theory in [8] resulted in a categorical
construction with a narrow extent: it is unable to go from the very category
Mat in [1] of usual matrices to their vector spaces!) Therefore, this
characterization cannot fail to answer our starting question about the
matricial nature of “Boolean matrices”.

1.7. Remark (Analytic monoids)
The three conditions of the previous characterization are related with the
(old) problem of generalizing matrices, recalled in subsection 1.3. We
might wonder whether they also relate to well-known structures of Universal
Algebra or, at least, we can reword them in such a way. It is not so.
We are going to show that they do have an exact algebraic rewording, that
still does not relates to them.

One can well consider these three conditions as the axioms defining
certain mathematical structures. This is what [14] does in 2.1, where it calls
them analytic monoids and shows that they can serve to define all abstract
monoids (up to an isomorphism, A1 ' A), see also [15]. Hence, from the
algebraic point of view abstract and analytic monoids are equivalent. Yet,
such an equivalence does not hold from a different point of view: the one
where we care of the index (or “dimension”) set X, as done by (3). In
fact, not all abstract monoids, on a carrier structured as a power AX , are
analytic.
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Consider the (modulo 4) addition on 4 = {0, 1, 2, 3}, that trivially
determines a monoid. Then, consider the “binary-lexicographic” bijection
j: 4 → 22, such that j(2i + k) = {〈0, i〉, 〈1, k〉}, for all i, k = 0, 1.
The images ◦ and b under j respectively of the addition and of 0 define
a monoid on AX = 22, that fails to satisfy (3). In fact, this axiom fails
whenever it occurs that M =j(1), j(2) and x=0, 1. (The constant families of
the right hand side of (2) can only be either j(0) or j(3), not j(1) or j(2).)

This counterexample shows that analytic monoids are mathematical
structures stronger than abstract monoids under the latter point of view.
(Still, [15] and 2.1 in [14] also show that in a sense the former monoids are
more elementary than the latter.) This strength difference and the above
equivalence rule out any possibility of reconciling the two corresponding
points of view. One might says that analytic monoids neither are monoids
nor universal algebras: one would call them monoids intertwined with
dimensions.

Outside Universal Algebra, on the contrary, our three axioms are
related with well-known mathematical structures. 2.2 in [14] shows that
each axiom is equivalent to one of the axioms for Menger’s systems
mentioned in subsection 1.3, once one considers a proper functional
equation, that restricts the range of the possible products ◦. Interestingly,
such a functional equation (together with the rule that converts the
axioms) involves our combinator k again, as in subsection 1.6.

2. The “paradox”

2.1. A disproof
Let us check whether the seeming matrix product ◦ for Boolean
matrices, given by (0), satisfies the above characterization of universal
matrices. Take a matrix M such that Mj,j = 0 and

∨
`∈n Mi,` = 1

for some i, j ∈ X = n. Replace the tentative matrix product of (0) in (3).
Then, by (2) we get

(M◦kb(x))i,j =
∨

`∈n

Mi,`(kb(x))`,j =
∨

`∈n

Mi,`b(x)j = bx,j

∨

`∈n

Mi,` = 1 for x = j ,

since b is the Kronecker matrix. On the other hand:

(kM(x))i,j = (kM(x)(i))j = Mx,j = 0 for x = j .

Hence, (3), the first of our axioms, fails. Our very natural graph composition
does not form an analytic monoid. There is not a “universal space” for
graphs.
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2.2. A “proof”
The case of our graph composition in subsection 1.2 – on the contrary –
looks to be a safe bet as far as our expectation in subsection 1.5 is concerned,
e.g. because it is very close to the one of the “algebraic theory” of relations
in I.3.5 of [8]. In short, define an algebra on our A = 2n by the complete
Boolean join. Recall that one can do it by the null n-tuple 0, considered as
a nullary operation, and by the binary join ∨: A×A → A, where

(f ∨ g)i =
{

0 when fi = gi = 0 ,
1 otherwise,

for all n-tuples f, g: n → 2. Then, directly check (1). Namely, check that
the set E of all endomorphisms of this algebra and our Kronecker matrix b
satisfy the bijection requirements of rb : E 7 7→ÂAn .

To get the injectivity, consider any h, k ∈ E and all a ∈ A. If rb(h) =
rb(k), i.e. if h(bi) = k(bi) for all i ∈ n, then h(a) = k(a), i.e. h = k. In fact,
when

∨
also denotes the iterations of this join ∨, we can write a =

∨
i∈Ibi,

where I = {i | ai = 1} and get it by the homomorphic condition as in a
vector space, h(a) = h(

∨
i∈Ibi) =

∨
i∈Ih(bi) =

∨
i∈Ik(bi) = k(a).

To get the ontoness on An, let us take any M : n → A and define a
function ηM : A → A by

ηM (a) =
∨

i∈I

Mi(6)

for all a ∈ A with the above I. Then, for the null n-tuple a = 0 we clearly
get ηM (0) = 0 and, for a join a = a′∨a′′, ηM (a) = ηM (a′)∨ηM (a′′), namely
we defined an η: AX → E . Furthermore, rb(ηM ) = M for all M : n → A,
because, for all i ∈ X = n, we get (rb(ηM ))i = (ηM · b)i = ηM (bi) =∨

j∈Ji
Mj = Mi, where Ji = {j | bi,j = 1}. (From this ontoness proof, we

also get that the two-sided inverse of rb is η.)
Our complete Boolean join turns out to be the “universal space” for

graphs, contrary to subsection 2.1. The reader, wishing to check what
happened by him/herself, might stop reading here.

2.3. What happened
As a first check, let us find which is the matrix product ¦ that has to follow
from the definition of universal matrices in subsection 1.4 after the “proof”
in subsection 2.2. Given h, k ∈ E , we set L = h · b and M = k · b and get
M ¦L = (k ·h) · b = k ·L. Hence, since k is a homomorphism, for all i, j ∈ n,
(M ¦ L)i,j = (k(Li))j = (k(

∨
`∈Ji

b`))j = (
∨

`∈Ji
k(b`))j = (

∨
`∈Ji

M`)j =
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∨
`∈n M`,jLi,`, where now Ji = {` | Li,` = 1}. Therefore, we found that

M ¦ L 6= M ◦ L, since from (0)

M ◦ L = L ¦M .(7)

This might spare the characterization in subsection 1.6 at the expense of
the definition in subsection 1.4. In fact, this universal definition looks unable
to grasp the very elementary notion of a graph (or relational) composition in
subsection 1.2 since it yields its (silly) converse. Hence, we could even have
got something worst than a wrong characterization: a wrong definition. We
need a further check.

Let us check our Boolean matrices against our universal ones. Since we
can rewrite (6) as ηM (a) =

∨
j∈n ajMj , the endomorphism ηM is given by

the system of equations a′i = (ηM (a))i =
∨

j∈n ajMj,i for i ∈ n. This is the
system a′i =

∨
j∈n ajM

>
i,j for i ∈ n, when M> denotes the transposed of

M . Hence, the universal matrices for the algebra in subsection 2.2 are the
transposed of the Boolean ones in subsection 1.2 and transposition explains
(7), because M ◦L = (L> ◦M>)>. When in (0) we took our (wrong) ◦, we
were thinking about wrong universal matrices. In a sense, ◦ was not wrong:
it was mending a preceding misunderstanding.

(Besides, consider any k ∈ E , i.e. an ηM as in (6) for some M : n → A.
We can think of any its argument a: n → 2 as the characteristic function of
a subset of vertices, s ⊆ n, viz. a(i) = 1 iff i ∈ s. The corresponding set s′,
given by a′ =ηM (a): n → 2, by (6) has the property that j ∈ s′ iff Mi,j = 1
for some i ∈ s, viz. s′ is the graph image of s. Now, given another graph with
an L as in subsection 1.2, s′ goes onto an s′′ corresponding to ηL(a′). Hence,
our graph composition of subsection 1.2 sends s to an s′′ corresponding to
ηL(ηM (a)) = η(L¦M)(a). In (7) the sensible graph composition is the very
L ¦M . It is routine to check that ¦ satisfies the three axioms (3), (4) and
(5) of the theorem in subsection 1.6.)

2.4. Why it happened
When one handles graphs in the usual way, one cannot easily perceive the
two misdefinitions (wrong matrices and wrong ◦) in subsection 1.2, because
they annul each other. Our ◦ practically coincides with relational compo-
sition, which is a very elementary set-theoretical notion. On the contrary,
the definition of a matrix product in subsection 1.4 intrudes another notion
between the two ill-defined ones: the one of functional composition (from
the endomorphism monoid). The contradiction between subsection 2.1 and
subsection 2.2 stems from this intrusion.
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Functional composition can cause such troubles, because standard
Set Theory (see 4.7 in [9]) defines and denotes it as the converse of
(a restriction of) relational composition. Such a reversal allows one to pre-
serve the order while one writes (f ·g)(x) = f(g(x)) and mends the historical
(mis) notation of functional application, where one writes the application
argument at the right.

2.5. A proposal
One could well avoid such troubles (as well as possible other ones) by
avoiding the above reversal, that looks illogical even without any
paradox: one either merely flips the notation for functional application
or gives up the above order preservation. Unfortunately, this way turned out
to be linguistically naive. Several authors (e.g. [8]) in the fields of Algebra
and Category Theory did it, yet it did not spread. Logical propriety did not
win. Perhaps, the standard definition was considered harmless.

The present “paradox” shows that something has to be done. A modest
trick: keep the standard notation and avoid any logical reversal. When we
merely write “f · g denotes the composition of g and f”, we still see
functional composition as a restriction of the relational one (a motivation
for stating in subsection 1.4 that M ◦L is the matrix product of L and M).
We might well extend this trick to relational composition and denote it by
· again.

This minor mending should work with mathematically conscious
readers. (With a wider readership, one should only manage to bypass the
problem.) In such a case, the virus, born several centuries ago with
the standard notation for application, will be kept dormant (at least for a
while, of course).
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[3] S.L. Bloom and Z. Ésik, Iteration Theories, The Equational Logic of Iterative
Processes, Springer-Verlag, Berlin 1993.

[4] C.C. Elgot, Matricial Theories, J. Algebra 42 (1976), 391–421.

[5] K. GÃlazek, Some old and new problems in the independence theory, Colloq.
Math. 42 (1979), 127–189.

[6] J.R. Hindley and J.P. Seldin, Introduction to Combinators and
λ-Calculus, Cambridge University Press, London 1986.

[7] K.-H. Kim, Boolean Matrix Theory and Applications, M. Dekker, New York
1982.

[8] E.G. Manes, Algebraic Theories, Springer-Verlag, Berlin 1976.

[9] J.D. Monk, Introduction to Set Theory, McGraw-Hill, New York 1969.

[10] G. Ricci, Universal eigenvalue equations, Pure Math. Appl., Ser. B, 3 (1992),
231–288.

[11] G. Ricci, ERRATA to Universal eigenvalue equations, ibidem, 5 (1994),
241–243.

[12] G. Ricci, A Whitehead Generator, Quaderni del Dipartimento di Matematica
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