ArticleOriginal scientific text
Title
On fuzzy topological subalgebras of BCC-algebras
Authors 1, 2, 2
Affiliations
- Institute of Mathematics Technical University, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea
Abstract
We describe properties of subalgebras and BCC-ideals in BCC-algebras with a topology induced by a family of fuzzy sets.
Keywords
BCC-algebra, fuzzy subalgebra, fuzzy topological subalgebra
Bibliography
- W.A. Dudek, The number of subalgebras of finite BCC-algebras, Bull. Inst. Math. Acad. Sinica 20 (1992), 129-136.
- W.A. Dudek, On proper BCC-algebras, Bull. Inst. Math. Acad. Sinica 20 (1992), 137-150.
- W.A. Dudek and Y.B. Jun, Fuzzy BCC-ideals in BCC-algebras, Math. Montisnigri 10 (1999), 21-30.
- W.A. Dudek and X.H. Zhang, On ideals and congruences in BCC-algebras, Czechoslovak Math. J. 48 (123) (1998), 21- 29.
- D.H. Foster, Fuzzy topological groups, J. Math. Anal. Appl. 67 (1979), 549-564.
- Y. Imai and K. Iséki, On axiom system of propositional calculi XIV, Proc. Japan Acad. 42 (1966), 19-22.
- K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978), 1-26.
- Y. Komori, The class of BCC-algebras is not a variety, Math. Japon. 29 (1984), 391-394.
- J. Meng and Y. B. Jun, BCK-algebras, Kyungmoonsa, Seoul, Korea 1994.
- A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517.
- A. Wroński, BCK-algebras do not form a variety, Math. Japon. 28 (1983), 211-213.
- L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353.