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Gábor Czédli and Géza Takách
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Abstract

An elementary proof is given for Hutchinson’s duality theorem,
which states that if a lattice identity λ holds in all submodule lattices
of modules over a ring R with unit element then so does the dual of λ.
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Given a ring R, always with unit element 1 = 1R, the class of left modules
over R is denoted by R–Mod. Let T (R) denote the set of all lattice identities
that hold in the submodule lattices of all R-modules, i.e., in the class of
{Sub(M) : M ∈ R–Mod}. Using the heavy machinery of abelian category
theory and Theorem 4 from [3], G. Hutchinson in [2] and [3] has proved the
following duality result.

Main Theorem (G. Hutchinson). For every ring R, T (R) is a
selfdual set of lattice identities. In other words, a lattice identity λ holds
in {Sub(M) : M ∈ R–Mod} iff so does the dual of λ.

The goal of the present paper is to give an easy new proof of this theorem.
Our elementary approach does not resort to category theory and uses much
less from [3] than the original one.

1This research was partially supported by the NFSR of Hungary (OTKA), grant no.
T023186 and T022867, and also by the Hungarian Ministry of Education, grant no. FKFP
1259/1997 and MKM KF 402/96.
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Proof of the Main Theorem. Let λ be a lattice identity. Since
Sub(M) ∼= Con(M) for every M ∈ R–Mod and R–Mod is a congruence
permutable variety, by results of R. Wille ([5]) or A. Pixley [4] (cf. [3] for
more details) there is a strong Mal’cev condition U(λ) such that λ ∈ T (R) is
equivalent to the satisfaction of U(λ) in R–Mod. Using the fact that each
n-ary term f(y1, . . . , yn) in R–Mod can uniquely be written in the form
r1y1 + . . .+ rnyn with r1, . . . , rn ∈ R, U(λ) easily turns to a system of linear
equations

Ay = b · 1R(1)

where A is an integer matrix, b is a column vector with integer entries, and
y is the column vector of ring variables (cf. [3] for concrete examples). So
we obtain that

λ ∈ T (R) iff Ay = b · 1R is solvable in R.(2)

We can easily infer from this observation that for any rings Ri (i ∈ I) and
their direct product we have

T

(∏

i∈I

Ri

)
=

⋂

i∈I

T (Ri).(3)

A classical matrix diagonalization method, due to Frobenius ([1], cf. also
[3]), asserts that for any integer matrix A there exist invertible integer ma-
trices B and C with integer inverses such that BAC is a diagonal matrix.
Choosing B and C according to this result, multiplying (1) by B from the
left and introducing the notations M := BAC, z := C−1y, c := Bb we easily
conclude that the solvability of (1) in R is equivalent to the solvability of

Mz = c · 1R(4)

in R. Now, for integers m ≥ 0 and n ≥ 1 let D(m,n) denote the ”divisibility
condition” (∃x)(mx = n · 1) where mx = x+ . . .+x (m times) and 1 stands
for the ring unit. The set {(m,n) : m ≥ 0, n ≥ 1, and D(m,n) holds in R}
will be denoted by D(R). Since M in (4) is a diagonal matrix, the solvability
of (4) in R depends only on D(R). Hence, combining the previous assertions
and (2), we conclude that

D(R) determines T (R),(5)



On duality of submodule lattices 45

i.e., D(R1) = D(R2) implies T (R1) = T (R2). Clearly, for arbitrary rings
Ri, i ∈ I,

D

(∏

i∈I

Ri

)
=

⋂

i∈I

D(Ri).(6)

Now we claim that for arbitrary rings R and Ri (i ∈ I)

if D(R) =
⋂

i∈I

D(Ri) then T (R) =
⋂

i∈I

T (Ri).(7)

Indeed,
⋂

i∈I T (Ri) = T (
∏

i∈I Ri) by (3). Since D(
∏

i∈I Ri) = D(R) by (6)
and the premise of (7), (5) yields T (

∏
i∈I Ri) = T (R), proving (7).

For k > 0 let Zk denote the factor ring of the ring Z of integers modulo
k, and let Z0 =Q, the field of rational numbers. We claim that, for any ring
R,

D(R) =
⋂
{D(Zk) : D(R) ⊆ D(Zk)}(8)

The proof of (8) will implicitly use the fact that for any integers m ≥ 0,
n > 0 and k > 0 the following equivalence holds:

(m,n) ∈ D(Zk) ⇐⇒ g.c.d.(m, k) | n.(9)

First we deal with the case when k := char (R) > 0. Here char (R) denotes
min{i : 0 < i ∈ Z and i · 1R = 0}, the characteristic of R, where min ∅ is
understood as 0. We assert that

D(R) = D(Zk),(10)

which clearly yields (8) for char R > 0. The embedding Zk → R,
x · 1Zk

7→ x · 1R (x ∈ Z) ensures that D(Zk) ⊆D(R). Now suppose that
(a, b) /∈ D(Zk), i.e., d := g.c.d.(a, k) does not divide b. Let k = k1d, a = a1d
and b = qd + r, 0 < r < d. If we had ax = b · 1R for some x ∈ R, then
0 = k(a1x) = k1ax = k1b · 1R = k1qd · 1R + k1r · 1R = k(q · 1R)+ (k1r) · 1R =
(k1r) · 1R would be a contradiction, for k1r < k1d = k = char (R). Hence
(a, b) /∈ D(R). This proves D(R) = D(Zk), and (8) follows.

Now let us assume that char (R) = 0. Only the ⊇ part of (8) has to be
verified, so suppose

(m,n) /∈ D(R),

m ≥ 0 and n > 0; we have to show that (m,n) does not belong to the
right-hand side of (8). Two cases will be distinguished.
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Case 1. m = 0. Then (m,n) /∈ D(Z0), and D(R) ⊆ D(Z0) clearly
follows from the implication: (a, b) ∈ D(R) =⇒ a 6= 0. Hence (m,n) = (0, n)
does not belong to the right-hand side of (8).

Case 2. m > 0. First we claim that for arbitrary 0 ≤ a1, . . . , at ∈ Z
and 1 ≤ b1, . . . , bt ∈ Z we have

(a1, b1), . . . , (at, bt) ∈ D(R) =⇒ (a1 . . . at, b1 . . . bt) ∈ D(R).(11)

Indeed, if a1r1 = b1 ·1R and a2r2 = b2 ·1R for r1, r2 ∈ R, then (a1a2)(r1r2) =
a2(a1r1)r2 = a2(b1 · 1R)r2 = b1(a2r2) = b1b2 · 1R. This proves (11) for t = 2,
whence it holds for t > 2 as well.

Now let m = pf1
1 . . . pft

t and n = pg1
1 . . . pgt

t with pairwise distinct primes
p1, . . . , pt and nonnegative integers f1, . . . , ft, g1, . . . , gt. We infer from (11)
that (pfi

i , pgi
i ) /∈ D(R) for some i ∈ {1, . . . , t}. With the notations p := pi,

f := fi, g := gi and k := pg+1, (pf , pg) /∈ D(R) implies f > g. Hence
(m, n) /∈ D(Zk), for mx = 0 6= n · 1Zk

holds for all x ∈ Zk. Now, before
showing that Zk occurs on the right hand side of (8), let us observe that if
(pg+1, pg) belonged to D(R), then, choosing an r ∈ R with pg+1r = pg · 1R,
we could obtain pg · 1R = pg+1r = p(pg · 1R)r = ppg+1r2 = pg+2r2 = . . . =
pfrf−g, which would contradict (pf , pg) /∈ D(R). Therefore (pg+1, pg) /∈
D(R).

Now, to show D(R) ⊆ D(Zk), let (c, d) /∈ D(Zk), 0 ≤ c, and 1 ≤ d;
we have to show that (c, d) /∈ D(R). If c = 0 then (c, d) /∈ D(R) follows
from char (R) = 0, so c > 0 can be supposed. Let c = puc1 and d = pvd1

such that p does not divide c1d1. We infer from (9) that u > v and v ≤ g.
Hence there are integers x and y with pv = g.c.d.(pu, d) = xpu + yd. If (c, d)
belonged to D(R), i.e., if there was an element r ∈ R with cr = d · 1R, then
we would have

pg · 1R = pg−v(pv · 1R) = pg−v(xpu + yd) · 1R =
= pg+u−vx · 1R + pg−vyd · 1R = pg+u−vx · 1R + pg−vyc · r =
= pg+1((xpu−v−1 · 1R + pu−v−1yc1 · r)),

which would contradict (pg+1, pg) /∈ D(R). Thus (c, d) /∈ D(R), proving (8).

By (7) and (8), T (R) is the intersection of some T (Zk). Therefore it suffices
to show that

T (Zk) is selfdual for every k ≥ 0.(12)
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The mentioned strong Mal’cev conditions of Wille and Pixley easily imply
that, for any lattice identity λ, we have λ ∈ T (Zk) iff λ holds in Sub(Zt

k)
for all positive integers t where Zt

k is considered a Zk-module in the natural
way. (In fact, Zt

k is the free Zk-module on t generators.) Hence (12) and
the Main Theorem will prompt follow from

for all k ≥ 0, Sub(Zt
k) is a selfdual lattice.(13)

Although there are deep module theoretic results implying (13), the tools we
have already listed make a short elementary proof possible. The elements of
Zt

k will be row vectors, and for ~x = (x1, . . . , xt) ∈ Zt
k the transpose of ~x will

be denoted by ~x∗. Standard matrix notations like ~x~y ∗ = x1y1 + · · · + xtyt

will be in effect. We claim that

ϕ : Sub(Zt
k) → Sub(Zt

k),
S 7→ S⊥ := {~x ∈ Zt

k : (∀~y ∈ S)(~x~y ∗ = 0)}

is a dual lattice automorphism and, in addition, an involution. All the
necessary properties of ϕ can be checked very easily except that

(S⊥)⊥ ⊆ S.(14)

Assume that k > 0, and let 1k denote the ring unit of Zk. First we prove
(14) for the case when t = 1. Since Z is a principal ideal domain, we easily
conclude that S is necessarily of the form {xu ·1k : x ∈ Z} for some positive
divisor u of k in Z. The same holds for the submodule S⊥, so it is of the
form {vx · 1k : x ∈ Z} for an appropriate positive divisor v of k in Z. Since
(u · 1k)(v · 1k) = 0, we obtain

k | uv.(15)

On the other hand, (k/u) ·1k is clearly orthogonal to all members of S, so it
is in S⊥, whence (k/u) · 1k = vx · 1k = v(x · 1k) for some x ∈ Z. Therefore
(v, k/u) ∈ D(Zk), and (9) gives v | k/u, i.e.,

uv | k.(16)

From (15) and (16), we have v = k/u. Hence, giving the role of u to v we
obtain (S⊥)⊥ = {x(k/(k/u)) · 1k : x ∈ Z} = {xu · 1k : x ∈ Z} = S.

Now let t > 1, and let S be a submodule of Zt
k. Since S is finite, we can

consider a matrix A of size s × t for some s ≥ t such that each vector of S
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coincides with at least one row of A. Although A is a matrix over Zk, not
over Z, using the natural ring homomorphism Z → Zk for matrix entries
we can easily conclude from Frobenius’ afore-mentioned result that there
are square matrices B and C over Zk with respective sizes s × s and t × t
such that BAC is a diagonal matrix, and B resp. C has an inverse in the
ring of s× s resp. t× t matrices over Zk. For any ~y ∈ Zt

k we have

~y ∈ S⊥ ⇐⇒ A~y ∗ = 0.

Now let ~v be an arbitrary member of S⊥⊥. Then

(∀~y ∈ Zt
k) (A~y ∗ = 0 =⇒ ~v~y ∗ = 0).

Resorting to the above-mentioned B and C and multiplying by B from the
left we obtain

(∀~y ∈ Zt
k) ((BAC)(C−1~y ∗) = 0 =⇒ (~vC)(C−1~y ∗) = 0).

Since C−1~y ∗ takes all (transposed) values from Zt
k, with the notations M =

BAC and ~w = ~vC we obtain

(∀~z ∈ Zt
k) (M~z ∗ = 0 =⇒ ~w~z ∗ = 0).(17)

We know that M is a diagonal matrix, let m11, . . . , mtt be its diagonal
entries. Choosing ~z such that all but one of its components are zero we
obtain from (17) that

(∀zi ∈ Zk) (miizi = 0 =⇒ wizi = 0) (i = 1, . . . , t).(18)

Let Si = {umii : u ∈ Zk} ∈ Sub(Zk); condition (18), in other words, says
that wi ∈ S⊥⊥i . Since (14) has already been proved for t = 1, we have
wi ∈ Si, and we can choose an ri ∈ Zk such that

wi = rimii (i = 1, . . . , t).(19)

Letting ~r = (r1, . . . , rt, 0, . . . , 0) (with s components) we have ~rM = ~w.
Hence

~v = ~wC−1 = ~rMC−1 = ~rBACC−1 = (~rB)A,

showing that ~v is a linear combination of the rows of A, i.e., ~v ∈ S. This
proves (14) for the case k > 0.

When k = 0, Z0 =Q, and the rudiments of linear algebra yield
dimS⊥ = t − dimS. Hence (14) follows from the evident ⊇ inclusion and
the fact that both sides have the same dimension. This completes the proof
of the the Main Theorem.
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