ArticleOriginal scientific text

Title

On duality of submodule lattices

Authors 1, 1

Affiliations

  1. JATE Bolyai Institute, Aradi vértanúk tere 1, H-6720 Szeged, Hungary

Abstract

An elementary proof is given for Hutchinson's duality theorem, which states that if a lattice identity λ holds in all submodule lattices of modules over a ring R with unit element then so does the dual of λ.

Keywords

submodule lattice, lattice identity, duality

Bibliography

  1. G. Frobenius, Theorie der linearen Formen mit ganzen Coefficienten, J. Reine Angew. Math. 86 (1879), 146-208.
  2. G. Hutchinson, On classes of lattices representable by modules, Proceedings of the University of Houston Lattice Theory Conference, Univ. Houston 1973, 69-94.
  3. G. Hutchinson and G. Czédli, A test for identities satisfied in submodule lattices, Algebra Universalis 8 (1978), 269-309.
  4. A.F. Pixley, Local Mal'cev conditions, Canadian Math. Bull. 15 (1972), 559-568.
  5. R. Wille, Kongruenzklassengeometrien, Lecture Notes in Math, no. 113, Springer-Verlag, Berlin-Heidelberg-New York 1970.
Pages:
43-49
Main language of publication
English
Received
1998-04-23
Published
2000
Exact and natural sciences