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1 Introduction

When the collection of all varieties of a given type τ is ordered by inclusion,
a complete lattice L(τ) is obtained. This lattice is dually isomorphic to the
lattice of all equational theories of type τ . It is of some interest to know
what the lattices L(τ) look like, but it has become clear that they are very
complicated, even for such special cases as the lattice Lsg of all varieties
of semigroups. In [10] a new method to study these lattices was proposed,
using monoids of hypersubstitutions. In this paper we develop a Galois
correspondence between monoids of hypersubstitutions of a given type and
lattices of subvarieties of a given variety of that type. We then apply the
results obtained to the lattice of varieties of bands (idempotent semigroups),
and study the complete sublattices of this lattice obtained through the Galois
correspondence.

In the remainder of this section we set out some notation and
background information on hypersubstitutions. Section 2 sets up the Galois
correspondence between sets of hypersubstitutions and collections of
varieties. This correspondence is restricted in Section 3 to monoids of
hypersubstitutions and subvariety lattices. Finally, Section 4 works out
this correspondence in a particular example, the lattice of varieties of bands
or idempotent semigroups.

We fix a type τ = (ni)i∈I , ni > 0 for all i ∈ I, and operation symbols
(fi)i∈I where fi is ni-ary. Let Wτ (X) be the set of all terms of type τ
over some fixed alphabet X = {x1, x2, . . .}. Terms in Wτ (Xn) with Xn =
{x1, x2, · · · , xn}, n ≥ 1, are called n-ary. An algebra of type τ is a pair
A = (A; (fA

i )i∈I), where for every i ∈ I we denote by f
A
i the operation

induced by the operation symbol fi on the set A. Let Alg(τ) be the class of
all algebras of type τ and let L(τ) be the lattice of all varieties of algebras
of type τ . Clearly, Alg(τ) is the greatest element of L(τ). We denote by
P(L(τ)) the power set of L(τ).

The concept of hypersubstitution will be a crucial one. A mapping
σ : {fi | i ∈ I} → Wτ (X) which assigns to every ni-ary operation symbol
fi an ni-ary term of type τ will be called a hypersubstitution of type τ .
Any hypersubstitution σ can be uniquely extended to a map σ̂ : Wτ (X) →
Wτ (X) on terms; this is defined inductively by

(i) σ̂[x] := x for any variable x in the alphabet X, and

(ii) σ̂[fi(t1, . . . , tni)] := σ(fi)
Wτ (X)(σ̂[t1], . . . , σ̂[tni ]).
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Here σ(fi)
Wτ (X) denotes the term operation induced by σ(fi) on the term

algebra Wτ (X).
We denote by Hyp(τ) the set of all hypersubstitutions of type τ . If we

define a product ◦h of hypersubstitutions by σ1◦hσ2 := σ̂1◦σ2, where ◦ is the
usual composition of functions, then (Hyp(τ); ◦h, σid) is a monoid. Note that
σid is the identity hypersubstitution, defined by σid(fi) = fi(x1, · · · , xni) for
every i ∈ I. We denote by P(Hyp(τ)) the power set of Hyp(τ).

Let M be any subset of the monoid (Hyp(τ); ◦h, σid), and let V be a
variety of type τ . Then an identity s ≈ t of V is called an M -hyperidentity of
the variety V if for every σ ∈ M the equation σ̂[s] ≈ σ̂[t] is an identity in V .
When M = Hyp(τ), an M -hyperidentity is just an ordinary hyperidentity.
Hyperidentities and M -hyperidentities for arbitrary subsets M of Hyp(τ)
are particular sentences in a second order language, and were considered
first by Belousov [2], Aczél [1], and Taylor [20]. For further results and a
survey on these topics see [9], [6], [7], [5], [11], [14], [21], [22], [19], and [12].

If every identity in V is an M -hyperidentity, then V is called
M -solid. This generalizes the concept of solidity, introduced by Graczyńska
and Schweigert in [16]: a solid variety is M -solid for M = Hyp(τ). In
[10] it was shown that if M is a monoid, the collection of all M -solid va-
rieties of type τ forms a complete sublattice SM (τ) of L(τ). If M1 ⊆ M2

then SM1(τ) ⊇ SM2(τ), i.e. SM2(τ) is a sublattice of SM1(τ). Further, for
every submonoid M of Hyp(τ), two closure operators were introduced.
These are χA

M and χE
M , defined on the collections Alg(τ) and Wτ (X)×Wτ (X)

respectively by

χE
M [s ≈ t] := {σ̂[s] ≈ σ̂[t] | σ ∈ M} and χA

M [A] = {σ[A] | σ ∈ M},

where σ[A] = (A; σ(fi)A)i∈i) is the so-called derived algebra. We also define
σ[V ] = {σ[A] | A ∈ V }, for any variety V . These operators are extended to
sets Σ of identities and families K of algebras of type τ by setting

χE
M [Σ] :=

⋃
s≈t∈Σ

χE
M [s ≈ t] and χA

M [K] :=
⋃

A∈K
χA

M [A].

The closure properties of χE
M and χA

M follow directly from the monoid prop-
erties of M . It follows that a variety V is M -solid iff χA

M [V ] = V , i.e. iff
V is closed with respect to χA

M . This is equivalent to χA
M [V ] ⊆ V , since

the opposite inclusion is one of the properties of the closure operator χA
M .

Now let L(V ) be the lattice of all subvarieties of V . The intersection of this
lattice with the lattice of M -solid varieties of type τ gives a new complete
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sublattice of L(τ), the lattice SM (V ) of all M -solid subvarieties of V . Our
goal is to set up a Galois correspondence between such complete sublattices
SM (V ) and monoids of hypersubstitutions. We will do this by considering
the set of all hypersubstitutions σ of type τ for which σ[V ] ⊆ V , which
J. PÃlonka (in [17]) has called V -proper hypersubstitutions. Since (σ1◦hσ2)[A]
= σ1[σ2[A]], the set of V -proper hypersubstitutions forms a submonoid of
the monoid Hyp(τ).

We shall also need the concept of V -equivalence of hypersubstitutions,
which was first defined by Denecke and Reichel in [10] (see also [17]). Two
hypersubstitutions σ1 and σ2 of type τ are called V -equivalent if for every
operation symbol fi the equation σ̂1[fi(x1, · · ·xni)] ≈ σ̂2[fi(x1, · · ·xni)] is an
identity in V . In this case we write σ1 ∼V σ2. Denecke and Reichel proved
that for arbitrary hypersubstitutions σ1, σ2 the following three conditions
are equivalent:

(i) σ1 ∼V σ2,

(ii) for any term t of type τ the equation σ̂1[t] ≈ σ̂2[t] is an identity in V ,

(iii) σ1[A] = σ2[A] for any algebra A ∈ V .

2 A Galois correspondence between sets of
hypersubstitutions and sets of varieties

In this section we set up the Galois correspondence between sets of hyper-
substitutions and collections of varieties. We begin by outlining some basic
properties of Galois correspondences which we shall need. Let A and B be
any sets and let P(A) and P(B) denote their power sets. Then a pair (η, θ),
with η : P(A) → P(B) and θ : P(B) → P(A), is called a Galois correspon-
dence between A and B if for all T, T ′ ⊆ A and all S, S′ ⊆ B the following
properties are satisfied:

(i) T ⊆ T ′ =⇒ η(T ) ⊇ η(T ′), and S ⊆ S′ =⇒ θ(S) ⊇ θ(S′),

(ii) T ⊆ θη(T ) and S ⊆ ηθ(S).
Galois correspondences between sets A and B arise in the following way.
For any relation R ⊆ A×B and for every T ⊆ A and S ⊆ B we define

η(T ) := {b ∈ B | ∀a ∈ T, (a, b) ∈ R} and
θ(S) := {a ∈ A | ∀b ∈ S, (a, b) ∈ R}.

It is well known that the pair (η, θ) defined in this way is a 0 between A and
B, called the Galois correspondence induced by the relation R.
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For any Galois correspondence (η, θ), the operators θη and ηθ are closure
operators on A and B, respectively. The corresponding closure systems
(families of closed sets) Hηθ and Hθη form lattices (with respect to set in-
clusion) which are dually isomorphic. Each of them is a meet-subsemilattice
of the power set lattice on the respective set. It also follows that the
ηθ-closed subsets of B are exactly the sets of the form η(T ) for some
T ⊆ A, and dually the θη-closed subsets of A are exactly the sets of the
form θ(S) for some S ⊆ B. That is, ηθη(T ) = η(T ) and θηθ(S) = θ(S).

Now we apply this general Galois theory to hypersubstitutions and sub-
varieties. Let V be any (fixed) variety of type τ , with L(V ) its subvariety
lattice. We define a relation R ⊆ Hyp(τ)×L(V ) between Hyp(τ) and L(V )
by setting R := {(σ,W ) | σ ∈ Hyp(τ) and W ∈ L(V ) and σ[W ] ⊆ W}. That
is, (σ;W ) ∈ R iff σ is a W -proper hypersubstitution. Clearly if σ1 ∼W σ2,
then (σ1,W ) ∈ R iff (σ2,W ) ∈ R.

As described above, this relation R then induces a Galois correspondence
(η, θ) between Hyp(τ) and L(V ). For any M ∈ P(Hyp(τ)) and any L ∈
P(L(V )), we set L̄ := ηθ(L) and M̄ := θη(M). We call a subset M of
Hyp(τ) closed if M = M̄ and dually, a subset L of L(V ) closed if L = L̄.
Then we have the following properties of the Galois correspondence.

Proposition 2.1. Let V be a variety of type τ , let L(V ) be its subvariety
lattice, and let Hyp(τ) be the set of all hypersubstitutions of type τ . For the
mappings η : P(Hyp(τ)) → P(L(V )) and θ : P(L(V )) → P(Hyp(τ)), the
following properties hold:

(i) if M ⊆ M ′ ⊆ Hyp(τ) then η(M) ⊇ η(M ′), and if L ⊆ L′ ⊆ L(V ) then
θ(L) ⊇ θ(L′);

(ii) for any M ∈ P(Hyp(τ)) and for any L ∈ P(L(V )), we have M ⊆
θη(M) and L ⊆ ηθ(L);

(iii) the mappings defined on P(Hyp(τ) and L(V ) by M → M̄ and L → L̄
are closure operators;

(iv) for any L ⊆ L(V ), the set L is closed iff there is a set M ⊆ Hyp(τ)
such that L = η(M), and for any M ⊆ Hyp(τ), the set M is closed iff
there is a set L ⊆ L(V ) such that M = θ(L); in particular, we have
θηθ(L) = θ(L) and ηθη(M) = η(M);

(v) for any M,M ′ ∈ P(Hyp(τ)), η(M ∪M ′) = η(M)∩η(M ′), and for any
L,L′ ∈ P(L(V )), θ(L ∪ L′) = θ(L) ∩ θ(L′);
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(vi) if L,L′ ⊆ L(V ) then (L, L′) ∈ ker(θ) iff L̄ = L̄′, and if M, M ′ ⊆
Hyp(τ) then (M, M ′) ∈ ker(η) iff M̄ = M̄ ′.

Part (vi) of the Proposition means that all members of each ker(θ)-class
have the same closure. Thus we can define a map θ̄ on P(L(V ))/ker(θ) by
θ̄([L]ker(θ)) := [θ(L)]ker(η). Dually, we define a map η̄ on P(Hyp(τ))/ker(η)
by η̄([M ]ker(θ)) := [η(M)]ker(θ). It follows from the properties of a Galois
connection that these two maps are bijections.

Corollary 2.2. The maps θ̄ and η̄ are bijections between P(L(V ))/ker(θ)
and P(Hyp(τ))/ker(η).

3 Subvariety lattices and monoids of
hypersubstitutions

In the previous section, we described a Galois correspondence between any
sets of hypersubstitutions from Hyp(τ) and any subcollections of varieties
from the lattice L(V ) of all subvarieties of a given variety V . In this section,
we consider the restriction of the correspondence to certain special kinds of
sets. This is motivated by a result of Denecke and Reichel [10] that any
submonoid M of Hyp(τ) determines a complete sublattice of the lattice
L(V ), the sublattice SM (V ) of all M -solid subvarieties of the variety V . So
it is very natural to restrict our Galois mappings θ and η to submonoids M
of Hyp(τ) and to sublattices L of L(V ), respectively.

Lemma 3.1. For any subset L of L(V ), the image θ(L) is a submonoid of
Hyp(τ); and for any subset M of Hyp(τ), the image η(M) is a sublattice of
L(V ).

Proof. Let L be a subset of L(V ). For any variety W , the set of all
W -proper hypersubstitutions forms a monoid [17], a submonoid of Hyp(τ).
The image θ(L) is the intersection of these monoids for every W ∈ L, and
thus a monoid.

Now let M be a subset of Hyp(τ). By definition, η(M) consists of
those W in L(V ) for which σ[W ] ⊆ W , for all σ ∈ M . In [10] it was
shown that when M is a submonoid, this is equivalent to χA

M [W ] = W ,
and also that χA

M is a closure operator on classes of algebras, with the set
of all subvarieties W of V with χA

M [W ] = W forming a (complete) sublat-
tice SM (V ) of the lattice L(V ) consisting of all M -solid subvarieties of V .
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Thus we have η(M) = SM (V ), a sublattice of L(V ), when M is a submonoid
of Hyp(τ). But then for any arbitrary subset M of Hyp(τ), we have η(M)
= ηθη(M) with θη(M) a submonoid from the first part of this proof, so
again η(M) is a sublattice.

Let S(Hyp(τ)) be the submonoid lattice of the monoid Hyp(τ), and let
L(L(V )) be the lattice of all sublattices of L(V ). We now define two map-
pings β and α as the restrictions of θ to L(L(V )) and η to S(Hyp(τ))
respectively. Then Lemma 3.1 shows that β is a mapping from L(L(V )) to
S(Hyp(τ)) and α is a mapping from S(Hyp(τ)) to L(L(V )).

Lemma 3.2. For any L, K ∈ L(L(V )) and for any M,N ∈ S(Hyp(τ)), we
have β(L) ∧ β(K) = β(L ∨K) and α(M ∨N) = α(M) ∧ α(N).

Proof. This follows from Proposition 2.1(v) and Lemma 3.1.

In the same way as θ̄ and η̄ we define mappings β̄, ᾱ with
ᾱ : S(Hyp(τ))/ker(α) → L(L(V ))/ker(β)

and β̄ : L(L(V ))/ker(β) → S(Hyp(τ))/ker(α).

Corollary 3.3. ᾱ and β̄ are bijections.

It is clear that the maps α and β do not preserve joins, and hence are
not lattice homomorphisms. Also, from Lemma 3.2 we have β(L) ∧ β(K)
= β(L ∨K), for any L and K. It is also always true that β(L) ∨ β(K) is
contained in β(L∧K), but in the next section we will give an example to show
that this inclusion can be strict. Thus β is not a lattice dual-homomorphism.

Corollary 3.4. The intersection of closed submonoids from S(Hyp(τ)) is
closed, and the intersection of closed sublattices from L(L(V )) is also closed.
Thus the closed objects in S(Hyp(τ)), and dually of L(L(V )), form a lattice
under inclusion, with meet equal to intersection.

Every submonoid M of Hyp(τ) determines a complete sublattice α(M) =
SM (V ) of the lattice L(V ) of all subvarieties of the variety V . Considering
a set M of submonoids of Hyp(τ) we define the set LM={α(M) | M ∈M}
of complete sublattices of L(V ) and ask under which condition LM
is a sublattice of the lattice L(L(V )) of all sublattices of L(V ). Since for
submonoids M1,M2 of Hyp(τ) with M1 ⊆ M2 we have α(M1) = SM1(V ) ⊇
SM2(V ) = α(M2), one conclusion is that if M is a chain then LM is also a
chain and thus a sublattice of L(L(V )).
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From our earlier results we get the following Proposition:

Proposition 3.5. Let M be a sublattice of S(Hyp(τ)). Then the following
conditions are equivalent:

(i) LM forms a sublattice of L(L(V )),

(ii) for any two monoids M1,M2 from M, we have α(M1) ∨ α(M2) =
SM1(V ) ∨ SM2(V ) ∈ LM.

Proof. (i) =⇒ (ii) is clear.
(ii) =⇒ (i): Since by assumption the join of elements of LM is in LM, we

need only check meets. That is, we need to check that α(M1)∧α(M2) ∈ LM
for any two monoids M1,M2 ∈M. This is immediate from Lemma 3.3 and
the fact that M is a sublattice.

Dually, for a set L of sublattices of L(V ) we can consider monoids which are
β-images of the lattices in L: ML = {β(L) | L ∈ L}. We could state and
prove a dual theorem to 3.7 which characterizes when ML is a sublattice of
the lattice of all submonoids of Hyp(τ).

4 M-Solid varieties of bands

The Galois correspondence between monoids of hypersubstitutions and lat-
tices of subvarieties gives us a tool to examine the lattice of all varieties of a
given type in terms of its closed sublattices. Within type (2), there has been
particular interest in hyperidentities and M -hyperidentities for varieties of
semigroups, where the structure is simple enough to be accessible but rich
enough to provide interesting examples. For ordinary hyperidentities, that is
M - hyperidentities when M = Hyp(τ), much has been done for semigroups;
see for instance [5], [18], [11], [21], and [22]. The more general
M -hyperidentity approach promises to tell us more about the lattice of
all semigroup varieties, but may be difficult to use since the monoid of
all semigroup hypersubstitutions is infinite. One recent contribution in this
direction by Denecke and Koppitz [8] describes all the finite submonoids
of this monoid, and the corresponding M -solid semigroup varieties.

In this section we pursue a different approach, and consider a subvar-
iety of the variety of all semigroups whose monoid of hypersubstitutions
is finite. For this variety, the variety B of bands, we illustrate our Galois
correspondence by working out the lattices of closed submonoids and of
closed sublattices.
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Figure 1. The Lattice of Proper Varieties of Bands
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We begin with some background on bands; for more information the reader
is referred to [15]. Bands are idempotent semigroups; that is, algebras of
type (2) satisfying associativity and the idempotent law x2 ≈ x. (The single
binary operation is usually denoted by juxtaposition.) The lattice LB of all
varieties of bands was completely described by Birjukov [3], Fennemore [13]
and Gerhard [14]. The picture of the lattice shown in Figure 1 is due to
Gerhard and Petrich [15].

There are a countably infinite number of varieties of bands, each equa-
tionally defined by associativity, idempotence, and one additional identity.
In this section, we will use the notation V (u ≈ v) for the variety of bands
determined by the additional identity u ≈ v. An important feature of the lat-
tice is its symmetry about a center column of self-dual varieties. Each variety
V = V (u ≈ v) not on the center column has a dual, V d = V (ud ≈ vd) 6= V
(where ud is just the right-to-left dual of the word u); a variety V on the
center column has V = V d.

For reference, we list below some of the varieties and identities to be
used in this section:

I = V (x ≈ y), the trivial variety,
SL = V (xy ≈ yx), the variety of semilattices,
RB = V (x ≈ xyx), the variety of rectangular bands,
NB = V (xyzw ≈ xzyw), the variety of normal bands,
RegB = V (xyxzx ≈ xyzx), the variety of regular bands,
LZ = V (xy ≈ x), the variety of left zero semigroups,
RZ = V (xy ≈ y), the variety of right zero bands,
LN = V (xyz ≈ xzy), the variety of left normal semigroups,
RN = V (xyz ≈ yxz), the variety of right normal semigroups,
VL = V (xy ≈ xyx),
VR = V (xy ≈ yxy),
WL = V (xyz ≈ xyxz),
WR = V (xyz ≈ xzyz),
C = V (xy ≈ uv), the variety of zero semigroups.

Within the variety of bands, there are only six binary terms: x, y, xy, yx, xyx
and yxy. Thus using the relation∼V between hypersubstitutions the monoid
Hyp of hypersubstitutions can be denoted as

{σxy, σx, σy, σyx, σxyx, σyxy}.
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Then it is straightforward to work out the sixteen submonoids of Hyp, as
listed here:

M0 = {σxy}; M8 = {σxy, σy, σyxy};
M1 = {σxy, σx}; M9 = {σxy, σx, σy, σxyx};
M2 = {σxy, σy}; M10 = {σxy, σx, σy, σyxy};
M3 = {σxy, σyx}; M11 = {σxy, σx, σy, σyx};
M4 = {σxy, σxyx}; M12 = {σxy, σyx, σxyx, σyxy};
M5 = {σxy, σyxy}; M13 = {σxy, σxyx, σyxy};
M6 = {σxy, σx, σy}; M14 = {σxy, σx, σy, σxyx, σyxy};
M7 = {σxy, σx, σxyx}; M15 = Hyp.

These submonoids then form a lattice, shown in Figure 2 below. Using
previous results about hyperidentities for band varieties [21], we see that all
the submonoids except two are closed; M13 = M12 and M14 = Hyp. Dually,
we get the lattice of closed (complete) sublattices of L(B), sublattices of the
form SM (B) for M a submonoid of Hyp.

Now we characterize the corresponding lattices of Mi-solid subvarieties
of B. We deal first with the six submonoids M0 to M5 which have only one
or two elements.

Proposition 4.1. Let W be a non-trivial variety of bands. Then the fol-
lowing hold:

(i) W is M0-solid iff W is any variety of bands;

(ii) W is M1-solid iff LZ ⊆ W ;

(iii) W is M2-solid iff RZ ⊆ W ;

(iv) W is M3-solid iff W is self-dual, (that is, W d = W , and the dual of
any identity of W is also an identity of W ).

Proof. In [8], the corresponding lattices SM (Sg) of solid semigroup
varieties were characterized, for M equal to any of M0, M1, M2, M3, M6

or M11. The same proofs and results hold for the band case.
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Theorem 4.2. Let W be a nontrivial variety of bands. Then W is M4-solid
iff W is one of the varieties LZ, SL, LN , RB, VL, NB, WL or RegB. (See
Figure 1 above.)

Figure 2. The Lattice of Submonoids of Hyp
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Proof. For a nontrivial variety W of bands to be M4-solid, it must be
closed under application of the hypersubstitution σxyx. In particular, W
must satisfy the identity xyxzxyx ≈ xyzyx obtained by applying σ̂xyx to
the associative identity x(yz) ≈ (xy)z. This is known to require that W
be a subvariety of the variety RegB of regular bands. Thus we need only
examine the twelve nontrivial subvarieties of RegB, as shown in Figure 1
above.

For W equal to any of the varieties RZ, RN , VR and WR, we see that
W is characterized by an identity u ≈ v with the property that the words
u and v end with the same last letter – and in fact all identities satisfied by
these varieties must have this property – but also that u and v start with
different letters. When we apply σ̂xyx to such an identity u ≈ v it is easy
to see that the result is the identity uud ≈ vvd. But this identity no longer
has both words ending with the same last letter, and so does not hold in the
variety W . Thus we have excluded these four varieties from being M4-solid.

We now check that the remaining eight subvarieties of RegB are
M4-solid. First, it is well known that the three self-dual varieties RB, NB
and RegB are solid, which means that they are certainly M4-solid. For SL,
it is well known that SL satisfies an identity u ≈ v iff the words u and v
contain the same letters; applying σ̂xyx does not change which letters are
used in the words, to that SL still satisfies σ̂xyx[u] ≈ σ̂xyx[v].

We want to use a similar argument for the remaining varieties W on our
list, for each one giving an equivalent condition for W to satisfy an identity
u ≈ v which is still met by σ̂xyx[u] ≈ σ̂xyx[v]. Let us note first that we
may exclude identities of the form xa ≈ xb from this consideration: such
identities result in identities of this same form when σ̂xyx is applied, and
always hold in any variety of bands.

The variety LZ satisfies an identity u ≈ v iff the words u and v start
with the same first letter, a property which is preserved under application
of σ̂xyx. The variety LN satisfies an identity u ≈ v iff the words u and
v both contain the same letters and start with the same first letter; again
this is preserved by σ̂xyx. Similar characterizations hold for the remaining
two varieties in our list: VL satisfies u ≈ v iff words u and v start with the
same first two letters, while WL does iff u and v start with the same first
two letters and end with the same last letter, and both have length at least
three.

By a dual argument we get:
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Theorem 4.3. Let W be a nontrivial variety of bands. Then W is M5-solid
iff W is one of the varieties RZ, SL, RN , RB, VR, NB, WR or RegB.

From Lemma 3.2 we know that α(M∨N) = α(M)∧α(N) for any submonoids
M and N of Hyp. Thus we can extend results 4.1, 4.2 and 4.3 above to
characterize the M -solid varieties for any submonoid M of Hyp.

Proposition 4.4. α(M3) = α(M12), i.e. (M3, M12) ∈ ker(α).

Proof. Since M3 ⊆ M12 and α preserves inclusions, α(M12) = SM12(B) ⊆
SM3(B) = α(M3). To show that SM3(B) ⊆ SM12(B), we will show that
any M3-solid variety W is also closed under application of σxyx and σyxy.
Let u ≈ v be an arbitrary identity in W . The fact that W is M3-solid
means that ud ≈ vd also holds in W . But σ̂xyx[u] = uud ≈ vvd = σ̂xyx[v]
is an immediate consequence of u ≈ v and ud ≈ vd, so W is closed under
application of σxyx. A similar argument works for σyxy.

We will now show that the set {SM (B) | M ∈ S(M15)} does not form a
lattice. We form SM4(B) ∨ SM6(B) and show that SM4(B) ∨ SM6(B) 6∈
{SM (B) | M ∈ S(M15)}. Consider L∗ := {W | RB ⊆ W ⊆ B} ∪ {W |
W ⊆ B and W ⊆ Mod{xyx ≈ xy}} = SM6(B) ∪ {W | W ⊆ B and
W ⊆ Mod{xyx ≈ xy}}. Firstly note that SM4(B) ⊆ L∗ and SM6(B) ⊆ L∗,
so SM6(B) ∪ SM4(B) ⊆ L∗. On the other hand we have L∗ ⊆ SM6(B) ∪
SM4(B) ⊆ SM6(B)∨SM4(B). We want to show that L∗ = SM6(B)∨SM4(B).
Thus we must show that if W ∈ SM6(B) ∨ SM4(B) then W belongs to
L∗. W ∈ SM6(B) ∨ SM4(B) means W = V1 ∨ V2 or W = V1 ∧ V2 with
V1 ∈ SM6(B), V2 ∈ SM4(B). If V1 = I then V1∨V2 = V2 and V1∧V2 = I = V1

and all is clear. Assume that V1 6= I. Then RB ⊆ V1 ⊆ V1 ∨ V2, i.e.
V1 ∨ V2 ∈ L∗. If RB ⊆ V2 then RB ⊆ V1 ∧ V2, i.e. V1 ∧ V2 ∈ L∗ and
RB ⊆ V2 ⊆ V1 ∨ V2 means V1 ∨ V2 ∈ L∗. Now let V2 ⊆ Mod{xyx ≈ xy}.
Then V1 ∧ V2 ⊆ V2 ⊆ Mod{xyx ≈ xy}, i.e. V1 ∧ V2 ∈ L∗. It is easy to check
that SM (B) 6= L∗ for any M ∈ S(M15).

The band information worked out above can be used to give an example
that β(L)∨β(K) can be properly contained in β(L∧K). Both L = {I, LZ}
and K = {I, RZ} are sublattices of LB. Then β(L) = M7 and β(K) = M8,
so β(L) ∨ β(K) = M14. But L ∧ K = {I}, and β(L) ∧ β(K) is a proper
subset of β(L ∧K).

As we have pointed out, it may be difficult to study all complete sublat-
tices of the lattice of all semigroup varieties in this way. Since the monoid
of hypersubstitutions of the variety of bands is finite, we are able to ob-
tain a full picture of the complete sublattices determined by all possible
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submonoids. Our results in this case suggest some interesting general ques-
tions. For example, from the fact that the operator α reverses inclusions,
we know that

M ⊆ N =⇒ SN (τ) = α(N) ⊆ α(M) = SM (τ).

One could ask what relationship exists between lattices SM (τ) and SN (τ)
if the monoids M and N are isomorphic. In our band example, for
instance, the isomorphic submonoids M4 and M5 lead to isomorphic com-
plete sublattices of LB, but we do not know if this is true in general.
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