ArticleOriginal scientific text
Title
Strongly rectifiable and S-homogeneous modules
Authors 1
Affiliations
- Department of Mathematics Faculty of Applied Sciences, University of West Bohemia, Univerzitní 22, Cz-30614 Pilsen, Czech Republic
Abstract
In this paper we introduce the class of strongly rectifiable and S-homogeneous modules. We study basic properties of these modules, of their pure and refined submodules, of Hill's modules and we also prove an extension of the second Prüfer's theorem.
Keywords
strongly rectifiable module, S-homogeneous module, pure submodule, refined submodule, pure composite series, Hill's module
Bibliography
- K. Benabdallah, A. Bouanane and S. Singh, On sums of uniserial modules, Rocky Mountain J. Math. 20 (1990), 15-29.
- K. Benabdallah and S. Hattab, Modules localement rectifiables et modules rectifiables preprint, Université de Montréal (1985).
- K. Benabdallah and S. Hattab, Rectifiable modules. I, Comment. Math. Univ. St. Paul. 37 (1988), 131-143.
- L. Bican, Kulikov's criterion for modules, J. Reine Angew. Math. 288 (1976), 154-159.
- L. Bican, The structure of primary modules, Acta Univ. Carolin. Math. Phys. 17 (1976) no. 2, 3-12.
- A. Facchini and L. Salce, Uniserial modules, Comm. Algebra 18 (2) (1990), 499-517.
- T.S. Shores, Decomposition of finitely generated modules, Proc. Amer. Math. Soc. 30 (1971), 445-450.
- T.S. Shores, The structure of Loewy modules, J. Reine Angew. Math. 254 (1972), 204-220.