ArticleOriginal scientific text
Title
On a partial Hadamard fractional integral inclusion
Authors 1
Affiliations
- Faculty of Mathematics and Computer Science University of Bucharest Academy of Romanian Scientists Splaiul Independent¸ei 54, 050094 Bucharest, Romania
Abstract
We study a class of nonconvex Hadamard fractional integral inclusions and we establish some Filippov type existence results.
Keywords
Hadamard fractional derivative, integral inclusion, decomposable set
Bibliography
- S. Abbas, E. Alaidarous, W. Albarakati and M. Benchohra, Upper and lower solutions method for partial Hadamard fractional integral equations and inclusions, Discuss. Math. DICO 35 (2015), 105-122. doi: 10.7151/dmdico.1172
- S. Abbas, W. Albarakati, M. Benchohra and J. Henderson, Existence and Ulam stabilities for Hadamard fractional integral equations with random effects, Electronic J. Diff. Equations 2016 (2016), 1-12.
- S. Abbas, M. Benchohra and J. Henderson, Partial Hadamard fractional integral equations, Adv. Dynam. Systems Appl 10 (2015), 97-107.
- D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific, Singapore, 2012, 10.1142/8180.
- A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math 90 (1988), 69-86.
- C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions (Springer, Berlin,1977). doi: 10.1007/BFb0087685
- A. Cernea, On the existence of solutions for nonconvex fractional hyperbolic differential inclusions, Commun. Math. Analysis 9 (2010), 109-120.
- A. Cernea, On an integro-differential inclusion of fractional order, Diff. Equations Dynam. Systems 21 (2013), 225-236. doi: 10.1007/s12591-012-0148-0
- A. Cernea, Filippov lemma for a class of Hadamard-type fractional differential inclusions, Fractional Calculus Appl. Analysis 18 (2015), 163-171. doi: 10.1515/fca-2015-0011
- A.F. Filippov, Classical solutions of differential equations with multivalued right hand side, SIAM J. Control 5 (1967), 609-621. doi: 10.1137/0305040
- J. Hadamard, Essai sur l'etude des fonctions donnees par leur development de Taylor, J. Math. Pures Appl. 8 (1892), 101-186.
- A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006).
- A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc. 38 (2001), 1191-1204.
- M. Kisielewicz, Differential Inclusions and Optimal Control (Kluwer, Dordrecht, 1991).
- I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999).