ArticleOriginal scientific text

Title

Existence of solutions for a second order problem on the half-line via Ekeland's variational principle

Authors 1, 1, 2

Affiliations

  1. Laboratory of Fixed Point Theory and Applications Department of Mathematics E.N.S. Kouba, Algiers, Algeria
  2. School of Mathematics, Statistics and Applied Mathematics National University of Ireland Galway, Ireland

Abstract

In this paper we study the existence of nontrivial solutions for a nonlinear boundary value problem posed on the half-line. Our approach is based on Ekeland’s variational principle.

Keywords

Ekeland’s variational principle, critical point

Bibliography

  1. M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners (Universitext, Springer, London, 2011) x+199 pp.
  2. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer, 2010). doi: 10.1007/978-0-387-70914-7
  3. H. Chen, Z. He and J. Li, Multiplicity of solutions for impulsive differential equation on the half-line via variational methods, Bound. Value Probl. 14 (2016). doi: 10.1186/s13661-016-0524-8
  4. B. Dai and D. Zhang, The Existence and multiplicity of solutions for second-order impulsive differential equations on the half-line, Results. Math. 63 (2013), 135-149. doi: 10.1007/s00025-011-0178-x
  5. S. Djebali and T. Moussaoui, A class of second order BVPs on infinite intervals, Electron. J. Qual. Theory Differ. Equ. (4) (2006), 1-19. doi: 10.14232/ejqtde.2006.1.4
  6. S. Djebali, O. Saifi and S. Zahar, Singular boundary value problems with variable coefficients on the positive half-line, Electron. J. Differential Equations 2013 (73) (2013), 1-18.
  7. S. Djebali, O. Saifi and S. Zahar, Upper and lower solutions for BVPs on the half-line with variable coefficient and derivative depending nonlinearity, Electron. J. Qual. Theory Differ. Equ. (14) (2011), 1-18. doi: 10.14232/ejqtde.2011.1.14
  8. S. Djebali and S. Zahar, Bounded solutios for a derivative dependent boundary value problem on the half-line, Dynam. Systems Appl. 19 (2010), 545-556.
  9. I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. doi: 10.1016/0022-247X(74)90025-0
  10. O. Frites, T. Moussaoui and D. O'Regan, Existence of solutions via variational methods for a problem with nonlinear boundary conditions on the half-line, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 22 (2015), 395-407.
  11. H. Lian and W. Ge, Solvability for second-order three-point boundary value problems on a half-line, Appl. Math. Lett. 19 (2006), 1000-1006. doi: 10.1016/j.aml.2005.10.018
  12. D. O'Regan, B. Yan and R.P. Agarwal, Nonlinear boundary value problems on semi-infinite intervals using weighted spaces: An upper and lower solution approach, Positivity 11 (2007), 171-189. doi: 10.1007/s11117-006-0050-5
  13. N.S. Papageorgiou and S.K. Yiallourou, Handbook of Applied Analysis (Springer, New-York, 2009).
Pages:
131-140
Main language of publication
English
Received
2016-04-05
Published
2016
Exact and natural sciences