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Abstract

In this paper we consider McKean-Vlasov stochastic evolution equations
on Hilbert spaces driven by Brownian motion and Lèvy process and con-
trolled by Lèvy measures. We prove existence and uniqueness of solutions
and regularity properties thereof. We consider weak topology on the space
of bounded Lev́y measures on infinite dimensional Hilbert space and prove
continuous dependence of solutions with respect to the Lev́y measure. Then
considering a certain class of Lev́y measures on infinite as well as finite di-
mensional Hilbert spaces, as relaxed controls, we prove existence of optimal
controls for Bolza problem and some simple mass transport problems.
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1. Introduction

A general class of stochastic evolution equations was introduced by McKean in
his seminal paper [16] published in 1966 which covers, as a special class, the class
of standard stochastic evolution equations well known to many workers in the
field. This general class of stochastic differential equations has many interesting
applications as seen in the work of Dawson [12] and Dawson and Gartner [13].
Recently this class of models have been extended to second order evolution equa-
tions [15]. We have extensively used these mathematical models in the study of
optimal controls [1, 2, 3, 4, 5, 6]. In the reference [5] we considered controlled
McKean-Vlasov stochastic differential equation including Poisson jump process
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on finite dimensional spaces and proved existence of optimal relaxed controls and
necessary conditions of optimality. In a recent paper [1] we considered general
McKean-Vlasov equations on Hilbert spaces with relaxed controls and proved
existence of optimal controls and presented necessary conditions of optimality.
In this paper we consider an infinite dimensional McKean-Vlasov stochastic evo-
lution equation driven both by Brownian motion and Lev́y measure or Poisson
random measure. We prove existence and uniqueness of mild solutions and their
regularity properties. We present a result on continuous dependence of solutions
with respect to the Lev́y measure, more precisely the intensity measure. Here
we use another Lev́y measure as a control measure defined on infinite as well as
finite dimensional Hilbert spaces and prove existence of optimal controls. To the
best of our knowledge, there is no literature we know that treats this problem
with the Lev́y measure as the control.

The paper is organized as follows. In Section 2, we present the mathematical
model of the system followed by some mathematical framework in Section 3. In
Section 4, after basic assumptions are introduced, we prove the existence and
uniqueness of mild solutions and their regularity properties. In Section 5, we
prove continuous dependence of solution on the Lev́y measure. In Section 6, we
present existence of optimal controls.

2. System model

Let X and H denote a pair of real separable Hilbert spaces and {Ω,F ,Ft, t ∈
I, P} a complete filtered probability space with Ft ⊂ F being a family of right
continuous non decreasing complete sub-sigma algebras of the sigma algebra F
and I ≡ [0, T ], T < ∞ with λ denoting the Lebesgue measure. Let W ≡ {W (t),
t ∈ I}, denote an H-Wiener process with covariance operator R in the sense
that for any h ∈ H, (W (t), h) is a real valued Brownian motion on I with mean
zero and variance E(W (t), h)2 = t(Rh, h). If the operator R = IH , the identity
operator in H, we say that W is a cylindrical Brownian motion or cylindrical
Wiener process; and if R is nuclear we have the H-valued Wiener process. Let
N ≡ {0, 1, 2, 3, . . . }, denote the set of natural numbers, X0 ≡ X \ {0} and B(X0)
the sigma algebra of Borel subsets of X0 whose closures do not contain the point
{0}, andMs

B(X0) the space of countably additive finite signed measures equipped
with the topology induced by the total variation norm and M+

B(X0) ⊂ Ms
B(X0)

the class of nonnegative countably additive finite Borel measures defined on the
sigma algebra B(X0). Consider the product sigma algebra B(I)× B(X0) and let
p : B(I) × B(X0) −→ N denote the Poisson random measure, that is, for each
J ∈ B(I) and Γ ∈ B(X0), p(J ×Γ) is a Poisson random variable in the sense that
for any n ∈ N ,
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P
{

p(J × Γ) = n
}

= e−λ(J)×Λ(Γ)((λ(J)Λ(Γ))n/n!(1)

where Λ ∈ M+
B(X0). We refer to the measure Λ as the Lévy measure since this is

the jump part of the full Lévy process. The random measure p is also known as
the counting measure. The expression (1) gives the probability of occurrence of
exactly n jumps of intensity in the range Γ over the time interval J. Let q denote
the centered Poisson random measure defined by

q(J × Γ) ≡ p(J × Γ)− E{p(J × Γ)} = p(J × Γ)− λ(J)Λ(Γ).

Clearly, the compensated measure q has mean zero and variance λ(J)Λ(Γ). The
measure q is countably additive, that is, for every sequence of disjoint measurable
sets {Ji × Γj} ∈ B(I)× B(X0) we have

q

( ∞
⋃

i,j=1

(Ji × Γj)

)

=
∞
∑

i,j=1

q(Ji × Γj), P − a.s.

Considering the random process q([0, t]×Γ) ≡ q(t,Γ) it is easy to see that q(t,Γ) is
a square integrable Ft cadlag (right continuous with left limits) martingale. For a
fixed t ≥ 0, q(t, ·) is a random measure defined on B(X0). It is known [9, Theorem
2.15, p. 254] that corresponding to every choice of a measure ν ∈ M+

B(X0) there
exists a (possibly unique) compensated Poisson random measure qν. Later in the
sequel, we have to deal with a class of compensated Poisson random measures.
For this we can choose any bounded set M0 ⊂ M+

B(X0).
Now we are prepared to introduce the system considered in this paper. It

is governed by the following McKean-Vlasov evolution equation on the Hilbert
space X driven by the H-Brownian motion W and the centered Poisson random
measure qΛ with the intensity measure Λ ∈ M+

B(X0):

dx = Axdt+ f(t, x, µ)dt+ σ(t, x, µ)dW

+

∫

X\{0}
g(t, x, µ, v)qΛ(dt× dv), x(0) = x0,(2)

and µ(t) = P(x(t)), t ∈ I ≡ [0, T ],

where A is the infinitesimal generator a C0-semigroup S(t), t ∈ I, on X and f is a
Borel measurable map from I×X×M1(X) to X and σ is also a Borel measurable
map from I × X × M1(X) to L(H,X), the space of bounded linear operators
from H to X, and g is also a Borel measurable map from I ×X ×M1(X) ×X
to X and qΛ is the centered Poisson random measure with the intensity measure
Λ ∈ M+

B(X0) and x0 is the initial state. In reference to the Borel measurability
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mentioned above, we note that the (separable) Hilbert space X is equipped the
natural sigma algebra generated by closed or open sets; the space of bounded
linear operators L(H,X) may be assumed to be equipped with the strong operator
topology and the corresponding Borel algebra generated by closed or open sets.
In the case of the space of probability measures M1(X), on the Hilbert space
X, one may assume the sigma algebra generated by the Prohorov metric (which
induces a topology equivalent to the usual weak topology). As usual we assume
that the random elements {x0,W, qΛ} are stochastically mutually independent.

We have denoted the probability law of any stochastic process {ζ(t), t ≥ 0}
by P(ζ(t)), t ≥ 0. The drift f , the Lévy kernel g and the diffusion σ are not only
dependent on the current state x(t) but also its probability law µ(t) ≡ P(x(t)),
the measure induced by the X-valued random variable x(t). In case both X and
H are finite dimensional, this class of models arise naturally in finance where the
objective functional is of mean-variance type maximizing terminal wealth while
minimizing variance. Also such models are known to arise in biological sciences,
in particular, population process.

3. Mathematical framework

Let B(X) denote the Borel σ-algebra generated by closed (or open) subsets of
the Hilbert space X and M1(X) is the space of probability measures on B(X)
carrying the usual topology of weak convergence. Let C(X) denote the space of
continuous functions on X. We use the notation (µ,ϕ) ≡ µ(ϕ) ≡

∫

X ϕ(x)µ(dx)
whenever this integral makes sense. Throughout this paper we let γ denote the
continuous function γ(x) ≡ 1 + |x|, x ∈ X, and introduce the Banach space

Cρ(X) =

{

ϕ ∈ C(X) : ||ϕ||Cρ(X) ≡ sup
x∈X

|ϕ(x)|
γ2(x)

+ sup
x 6=y

|ϕ(x) − ϕ(y)|
|x− y| < ∞

}

.

For p ≥ 1, let Ms
γp(X) denote the Banach space of signed measures m on X

satisfying ||m||γp ≡
(∫

X γp(x)|m|(dx)
)1/p

< ∞, where |m| = m+ +m− denotes
the total variation of the signed measure m, with m = m+ − m− being the
Jordan decomposition ofm. LetMγ2(X) = Ms

γ2(X)∩M1(X) denote the class of

probability measures possessing second moments. We put on Mγ2(X) a topology
induced by the following metric:

ρ(µ, ν) = sup
{

(µ− ν)(ϕ) ≡ (ϕ, µ − ν) : ϕ ∈ Cρ(X) and ||ϕ||Cρ(X) ≤ 1
}

.

Then (Mγ2(X), ρ) ≡ M2,ρ(X) forms a complete metric space. Note that this is a
closed bounded subset of the closed unit ball of the linear metric spaceMs

2,ρ(X) ≡
(Ms

γ2 , ρ). Define I ≡ [0, T ] with T < ∞. We denote by B∞(I,M2,ρ(X)) the
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complete metric space of bounded (measurable) functions from I to M2,ρ(X)
with the metric topology:

D(µ, ν) = sup
{

ρ(µ(t), ν(t)), t ∈ I
}

for any µ, ν ∈ B∞(I,M2,ρ(X)). By measurability here we mean that, for any
ϕ ∈ Cρ(X), the function t −→ µ(t)(ϕ) ≡

∫

X ϕ(ξ)µ(t)(dξ) is Borel measur-
able. From now on all stochastic processes considered in this paper are as-
sumed to be based on the complete filtered probability space (Ω,F ,Ft≥0, P )
with FT ⊆ F . For convenience of notation we denote the space L2((Ω,F , P ),X)
by L2(Ω,X) and let B∞(I, L2(Ω,X)) denote the Banach space of F-measurable
random processes defined on I and taking values from L2(Ω,X) satisfying the
condition supt∈I E|x(t)|2X < ∞. Let Ξ ≡ Ba

∞(I,X) denote the closed subspace of
B∞(I, L2(Ω,X)) consisting of Ft-adapted (progressively measurable) X-valued
random processes {x = {x(t) : t ∈ I ≡ [0, T ]}} which is furnished with the
norm topology, |x|Ξ = (supt∈I E|x(t)|2)1/2. Clearly Ξ is a Banach space with

respect to this norm topology. We denote by LFT

2 (Ω,X) the space of FT measur-
able X valued random variables having finite second moments. Similarly, we use
LF
2 (I,X) ≡ LF

2 (I × Ω,X) to denote the Banach space of Ft-adapted X-valued
norm-square integrable random processes defined on I. Let LR(H,X) denote the
completion of the space of linear operators from H to X with respect to the inner
product < K,L >≡ Tr(KRL∗) and norm |K|R ≡

√

Tr(KRK∗). Clearly this is
a Hilbert space. In the sequel we also need the Hilbert space LF

2 (I,LR(H,X))
which consists of Ft-adapted LR(H,X) valued random processes having finite
square integrable norms in the sense that for any K ∈ LF

2 (I,LR(H,X)) we have
E
∫

I |K|2Rdt < ∞.

4. Basic assumptions and existence of solutions

Now we are prepared to introduce the basic assumptions. In order to study
control problems involving the system (1) we must now state the basic properties
of the drift and the diffusion operators {f, σ} including the semigroup generator.

Basic Assumptions

(A1): The operator A is the infinitesimal generator of a C0-semigroup S(t), t ≥ 0,
on the Hilbert space X satisfying

sup
{

‖ S(t) ‖L(X), t ∈ I
}

≤ M < ∞.

(A2): The function f : I×X×M1(X) −→ X is measurable in the first argument
and continuous with respect to the rest of the arguments. Further, there exists a
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constant K 6= 0 such that

|f(t, x, µ)|2X ≤ K2
{

1 + |x|2X + |µ|2M
γ2

}

, ∀ x ∈ X, µ ∈ M2,ρ(X)

|f(t, x1, µ1)− f(t, x2, µ2)|2X ≤ K2
{

|x1 − x2|2X + ρ2(µ1, µ2)
}

,

for all x1, x2 ∈ X,µ1, µ2 ∈ M2,ρ(X) uniformly with respect to t ∈ I.

(A3): The incremental covariance of the Brownian motion W is denoted by
R ∈ L+

s (H) (symmetric, positive). The diffusion coefficient is an operator valued
function σ : I ×X ×M1(X) −→ L(H,X) which is Borel measurable in the first
argument and continuous with respect to the rest of the variables and there exists
a constant KR 6= 0 such that

|σ(t, x, µ)|2R ≤ K2
R

{

1 + |x|2X + |µ|2M
γ2

}

, ∀ x ∈ X,µ ∈ Mγ2

|σ(t, x1, µ1)− σ(t, x2, µ2)|2R ≤ K2
R

{

|x1 − x2|2X + ρ2(µ1, µ2)
}

for all x1, x2 ∈ X and µ1, µ2 ∈ M2,ρ(X) uniformly with respect to t ∈ I, where
|σ|2R = tr(σRσ∗).

(A4): For any given Lévy measure Λ ∈ M+
B(X0), the Lévy kernel

g : I ×X ×Mγ2(X)×X −→ X

is measurable in the first argument and continuous with respect to the rest of the
variables and there exists a constant KΛ 6= 0 such that

∫

X0

|g(t, x, µ, v)|2X Λ(dv) ≤ K2
Λ

{

1 + |x|2X + |µ|2M
γ2

}

, ∀ x ∈ X,µ ∈ Mγ2

∫

X0

|g(t, x1, µ1, v)− σ(t, x2, µ2, v)|2X Λ(dv) ≤ K2
Λ

{

|x1 − x2|2X + ρ2(µ1, µ2)
}

for all x1, x2 ∈ X and µ1, µ2 ∈ M2,ρ(X) uniformly with respect to t ∈ I.

To prove the existence of solution of the stochastic evolution equation (1) we
will need certain intermediate results. First, we fix a ν ∈ B∞(I,M2,ρ(X)) and
consider the following system

dx = Axdt+ f(t, x, ν)dt+ σ(t, x, ν)dW

+

∫

X0

g(t, x, ν, v)qΛ(dt× dv), x(0) = x0, t ∈ I ≡ [0, T ].(3)

We prove that this equation has a unique mild solution x ∈ Ξ ≡ Ba
∞(I,X).
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Lemma 4.1. Consider the system (3) and let qΛ denote the compensated Poisson

random measure corresponding to the Lévy measure Λ ∈ M+
B(X0) and W ≡

{W (t), t ≥ 0} an H-Brownian motion with incremental covariance (operator)
R ∈ L+

1 (H), and suppose the assumptions (A1)–(A4) hold. Then, for every F0

measurable X valued random variable x0 ∈ LF0

2 (Ω,X), and ν ∈ B∞(I,M2,ρ(X)),
the stochastic evolution equation (3) has a unique mild solution x∗ = xν ∈ Ξ in

the sense that it satisfies the following stochastic integral equation:

xν(t) ≡ S(t)x0 +

∫ t

0
S(t− τ)f(τ, xν(τ), ν(τ))dτ

+

∫ t

0
S(t− τ)σ(τ, xν(τ), ν(τ))dW (τ)(4)

+

∫ t

0

∫

X0

S(t− τ)g(τ, xν(τ), ν(τ)qΛ(dτ × dv) t ∈ I.

Further the solution has no discontinuities of the second kind.

Proof. First we show that for every given ν ∈ B∞(I,M2,ρ(X)), the solution
of the integral equation (4), if one exists, has an a-priori bound. Clearly, for
the given ν ∈ B∞(I,M2,ρ(X)), there exists a finite positive number b such that
‖ ν ‖B∞(I,M2,ρ)(X)≡ sup{‖ ν(t) ‖γ2 , t ∈ I} ≤ b. Then using equation (4) and
computing the expected value of the square of the norm of xν(t) one can easily
obtain the following inequality,

E|xν(t)|2X ≤ C1 + C2

∫ t

0
E|xν(s)|2Xds,(5)

where

C1 ≡ 8M2

{

E|x0|2X + (TK2 +K2
R +K2

Λ)

∫ T

0
(1 + |ν(s)|2γ2)ds

}

C2 ≡ 8M2(TK2 +K2
R +K2

Λ).

It follows from Gronwall inequality applied to (5) that

sup
{

E|xν(t)|2X , t ∈ I
}

≤ C1 exp{C2T}.(6)

This shows that if the integral equation (4) has a solution xν it must belong to
Ξ ≡ Ba

∞(I,X). Next we show that under the assumptions (A1)–(A4), the integral
equation has a unique solution xν ∈ Ξ. For the fixed ν, define the operator Fν by
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(Fνx)(t) ≡ S(t)x0 +

∫ t

0
S(t− τ)f(τ, x(τ), ν(τ))dτ

+

∫ t

0
S(t− τ)σ(τ, x(τ), ν(τ))dW (τ)(7)

+

∫ t

0

∫

X0

S(t− τ)g(τ, x(τ), ν(τ), v)qΛ(dτ × dv) t ∈ I.

It is clear from the expression (7) that Fνx is Ft-adapted whenever x is. Thus
it follows from the a priori bound (6) that for any x ∈ Ξ, Fνx ∈ Ξ. We prove
that it has a unique fixed point in Ξ. For any pair of x, y ∈ Ξ, it follows from the
Lipschitz properties of f, σ, g given in the assumptions (A2)–(A4) that

(8) E|(Fνx)(t)− (Fνy)(t)|2X ≤ β

∫ t

0
E|x(s)− y(s)|2Xds, t ∈ I ≡ [0, T ],

where
β = 4M2

{

K2T +K2
R +K2

Λ

}

.

Since this inequality holds for any x, y ∈ Ξ, and we know that Fνx, Fνy ∈ Ξ, it
follows from (8) that

(9) E|(F 2
ν x)(t)− (F 2

ν y)(t)|2X ≤ β

∫ t

0
E|(Fνx)(s)− (Fνy)(s)|2Xds, t ∈ I ≡ [0, T ],

where F 2
ν ≡ Fν ◦Fν is the 2-fold composition of the operator Fν . Substituting the

inequality (8) into the inequality (9) and interchanging the order of integration
it follows from Fubini’s theorem that

(10) E|(F 2
ν x)(t)− (F 2

ν y)(t)|2X ≤ β2

∫ t

0
(t− s)E|x(s)− y(s)|2Xds, t ∈ I ≡ [0, T ].

Iterating this process n times, the reader can easily verify that

(11) E|(Fn
ν x)(t)− (Fn

ν y)(t)|2X ≤ βn

∫ t

0

(

(t− s)n−1/(n − 1)!
)

E|x(s)− y(s)|2Xds,

for all t ∈ I. Finally, from this inequality we obtain

(12) sup
t∈I

{

E|(Fn
ν x)(t)− (Fn

ν y)(t)|2X
}

≤
(

(βT )n/n!
)

sup
t∈I

E|x(t)− y(t)|2X .

In other words, we have arrived at the following inequality

(13) ‖ Fn
ν x− Fn

ν y ‖Ξ≤ αn ‖ x− y ‖Ξ,
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where αn ≡
√

(βT )n/n!). For n sufficiently large, αn < 1 and therefore Fn
ν is

a contraction on the Banach space Ξ and it follows from Banach fixed point
theorem that Fn

ν has a unique fixed point x∗ ∈ Ξ. That is, Fn
ν x

∗ = x∗. Hence

(14) ‖ Fνx
∗ − x∗ ‖Ξ = ‖ FνF

n
ν x

∗ − Fn
ν x

∗ ‖Ξ ≤ αn ‖ Fνx
∗ − x∗ ‖Ξ .

This implies (1− αn) ‖ Fνx
∗ − x∗ ‖Ξ≤ 0. Since 0 < αn < 1, this inequality holds

if and only Fνx
∗ = x∗. Thus x∗ is also the unique fixed point of Fν . We denote

this solution by xν ≡ x∗. This proves the existence of a unique solution of the
integral equation (4) which, by definition, is the mild solution of equation (3).
Since the Lev́y process pν (and hence qν) has discontinuities only of the first kind,
the solution xν can not have discontinuities of the second kind. This completes
the proof.

Now we are prepared to consider the question of existence of solution of the
McKean-Vlasov jump evolution equation (2). By a solution of this equation, we
mean the mild solution given by the solution of the following integral equation

(15)

x(t) = S(t)x0 +

∫ t

0
S(t− s)f(s, x(s), µ(s))ds

+

∫ t

0
S(t− s)σ(s, x(s), µ(s))dW (s)

+

∫ t

0

∫

X0

S(t− s)g(s, x(s), µ(s), v)qΛ(ds× dv), t ∈ I,

with µ(t) = P(x(t)), t ∈ I.

Theorem 4.2. Consider the system (2) and suppose the assumptions of Lemma

4.1 hold. Then the system (2) has a unique mild solution x ∈ Ξ satisfying

the integral equation (15) with probability law µ ∈ B∞(I,M2,ρ(X)) such that

P(x(t)) = µ(t) for all t ∈ I.

Proof. For any given ν ∈ B∞(I,M2,ρ(X)), consider the evolution equation (3).
By Lemma (4.1), we know that it has a unique mild solution xν ∈ Ξ. Define the
operator Φ : B∞(I,M2,ρ(X)) −→ B∞(I,M2,ρ(X)) taking values

Φ(ν)(t) ≡ P(xν(t)), t ∈ I.

Clearly, if the operator Φ has a fixed point in B∞(I,M2,ρ(X)), that is Φ(µ) = µ,
then equation (2) has a unique mild solution and conversely, if equation (2) has
a mild solution x ∈ Ξ, then P(x(t)) = µ(t), t ∈ I, and µ is the fixed point
of the operator Φ. Thus it suffices to prove that Φ has a unique fixed point
B∞(I,M2,ρ(X)). For any fixed but arbitrary F0-measurable initial condition x0 ∈
L2(Ω,X), consider the evolution equation (3) corresponding to ν = ̺ and ν = ϑ



190 N.U. Ahmed

separately where ̺, ϑ ∈ B∞(I,M2,ρ(X)). By Lemma 4.1, equation (3) has unique
mild solutions x̺, xϑ ∈ Ξ corresponding to ̺ and ϑ, respectively. Clearly, these
are solutions of the following integral equations

(16)

x̺(t) ≡ S(t)x0 +

∫ t

0
S(t− τ)f(τ, x̺(τ), ̺(τ))dτ

+

∫ t

0
S(t− τ)σ(τ, x̺(τ), ̺(τ))dW (τ)

+

∫ t

0

∫

X0

S(t− τ)g(τ, x̺, ̺(τ), v)qΛ(dτ × dv) t ∈ I.

(17)

xϑ(t) ≡ S(t)x0 +
∫ t
0 S(t− τ)f(τ, xϑ(τ), ϑ(τ))dτ

+

∫ t

0
S(t− τ)σ(τ, xϑ(τ), ϑ(τ))dW (τ)

+

∫ t

0

∫

X0

S(t− τ)g(τ, xϑ, ϑ(τ), v)qΛ(dτ × dv) t ∈ I.

Subtracting equation (17) from equation (16) and following similar steps as in
the proof of Lemma 4.1, the reader can easily verify that for each t ∈ I,

(18) E|x̺(t)− xϑ(t)|2X ≤ L

(
∫ t

0
{E|x̺(s)− xϑ(s)|2X + ρ2(̺(s), ϑ(s))}ds

)

,

where

L ≡ 4M2
(

K2T +K2
R +K2

Λ

)

.

Clearly, it follows from the above inequality that, for any τ ∈ I ≡ [0, T ),

(19)

sup
0≤t≤τ

E|x̺(t)− xϑ(t)|2X

≤ (Lτ)

{

sup
0≤t≤τ

E|x̺(t)− xϑ(t)|2X + sup
0≤t≤τ

ρ2(̺(t).ϑ(t))

}

.

Using the inequality (19) and choosing τ = t1 ∈ (0, T ), sufficiently small, so that
Lt1 < (1/3), and allowing possible jump at the point t1, we arrive at the following
inequality

sup
0≤t≤t1+

E|x̺(t)− xϑ(t)|2X ≤ (1/2) sup
0≤t≤t1+

ρ2(̺(t), ϑ(t)).(20)

Recall that by definition of the operator Φ, we have (Φ̺)(t) = P(x̺(t)) and
(Φϑ)(t) = P(xϑ(t)) for t ∈ I. Computing the distance between the two measures



McKean-Vlasov stochastic evolution equations and ... 191

(Φ̺)(t) and (Φϑ)(t), it follows from the definition of the metric ρ that

ρ((Φ̺)(t), (Φϑ)(t)) = sup
{

< ϕ, (Φ̺)(t) − (Φϑ)(t) >: ϕ ∈ Cρ, ‖ ϕ ‖Cρ≤ 1
}

= sup
{

E[ϕ(x̺(t))− ϕ(xϑ(t))] : ϕ ∈ Cρ, ‖ ϕ ‖Cρ≤ 1
}

(21)

≤ E|x̺(t)− xϑ(t)|X , ∀ t ∈ I.

Clearly, it follows from the above inequalities that

sup
0≤t≤t1+

ρ2((Φ̺)(t), (Φϑ)(t)) ≤ sup
0≤t≤t1+

E|x̺(t)− xϑ(t)|2X .(22)

Using the inequalities (20) and (22) we obtain

sup
0≤t≤t1+

ρ2((Φ̺)(t), (Φϑ)(t)) ≤ (1/2) sup
0≤t≤t1+

ρ2(̺(t), ϑ(t)),

from which we arrive at the following inequality

sup
0≤t≤t1+

ρ((Φ̺)(t), (Φϑ)(t)) ≤ (1/
√
2) sup

0≤t≤t1+
ρ(̺(t), ϑ(t)).(23)

This shows that Φ is a contraction on the restriction B∞([0, t1],M2,ρ(X)) of the
metric space B∞([0, T ],M2,ρ(X)) and hence by Banach fixed point theorem, it
has a unique fixed point, say, µ1 ∈ B∞([0, t1],M2,ρ(X)), that is, (Φµ1)(t) =
µ1(t), t ∈ [0, t1] with x1(t), t ∈ [0, t1], being the corresponding trajectory in
Ba

∞([0, t1],X). Next, starting with the initial state x(t1) = x1(t1+) and choosing
t2 ∈ (t1, T ] such that L(t2 − t1) ≤ (1/3) and carrying out similar computations,
we arrive at the following inequality,

sup
t1≤t≤t2+

ρ((Φ̺)(t), (Φϑ)(t)) ≤ (1/
√
2) sup

t1≤t≤t2+
ρ(̺(t), ϑ(t)).(24)

Thus Φ, restricted to the metric space B∞([t1, t2],M2,ρ(X)), is again a contrac-
tion and hence it has a unique fixed point µ2 ∈ B∞([t1, t2],M2,ρ(X)), with the
associated path process x2 ∈ B∞([t1, t2],X), giving Φµ2 = µ2 for t ∈ [t1, t2] with

µ2(t1) = µ1(t1+) and x2(t1) = x1(t1+) ∈ L
Ft1

2 (Ω,X) (because Ft is right contin-
uous). Again, choosing t3 ∈ (t2, T ] so that L(t3 − t2) ≤ (1/3), and initial state
x(t2) = x2(t2+) and µ(t2) = µ2(t2+) and carrying out similar computations one
obtains the following inequality

sup
t2≤t≤t3+

ρ((Φ̺)(t), (Φϑ)(t)) ≤ (1/
√
2) sup

t2≤t≤t3+
ρ(̺(t), ϑ(t))

which is similar to the inequality (24). Since T is finite, continuing this process
step by step, we can cover the whole interval I ≡ [0, T ] in a finite number of
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steps (smallest integer n ≥ 3LT ) and by concatenation of the above solutions
we obtain a unique measure valued function µ ∈ B∞(I,M2,ρ(X)) along with a
path process x ∈ Ξ = Ba

∞(I,X) such that µ(t) = P(x(t)), t ∈ I. This proves
that Φ has a unique fixed point in B∞(I,M2,ρ(X)). Hence we conclude that the
McKean-Vlasov evolution equation (2) has a unique mild solution x ∈ Ξ with
probability law µ ∈ B∞(I,M2,ρ(X)). This completes the proof.

Remark 4.3. Note that the system (2) is driven by the compensated Poisson
random measure qΛ corresponding to a fixed Lévy measure Λ ∈ M+

B(X0). We
want to consider a family of Lévy measures M0 ⊂ M+

B(X0).

Corollary 4.4. Let M0 be a closed bounded subset of M+
B(X0) and consider

the family of evolution equations (2) with the compensated Lévy measure qΛ for

Λ ∈ M0. Suppose the assumptions of Theorem 4.2 hold with the assumption (A4)
replaced by the following assumption:

(A4)∗ The Lévy kernel g : I × X × Mγ2 × X −→ X is measurable in the first

argument and continuous with respect to the rest of the variables and there exists

a finite number K0 6= 0, independent of {x, y, µ, ν}, such that

sup
Λ∈M0

∫

X0

|g(t, x, µ, v)|2X Λ(dv) ≤ K2
0

{

1 + |x|2X + |µ|2M
γ2

}

,

sup
Λ∈M0

∫

X0

|g(t, x, µ, v) − g(t, y, ν, v)|2X Λ(dv) ≤ K2
0

{

|x− y|2X + ρ2(µ, ν)
}

Then the solution set S ≡ {x(Λ),Λ ∈ M0} is a bounded subset of Ξ and the

corresponding set of measure valued functions lies in a bounded subset of

B∞(I,M2,ρ(X)).

Proof. Using equation (15) and taking the expectation of the norm-square one
arrives at a similar inequality as given by the expression (5) with minor modifi-
cation as follows:

E|x(Λ)(t)|2X ≤ C̃1 + C̃2

∫ t

0
E|x(Λ)(s)|2Xds,(25)

where

C̃1 ≡ 8M2
{

E|x0|2X + 2T (TK2 +K2
R +K2

0 )
}

, C̃2 ≡ 24M2(TK2 +K2
R +K2

0 ).

The inequality (25) holds uniformly with respect to Λ ∈ M0. Clearly, it follows
from Gronwall inequality applied to (25) that

sup
{

‖ x(Λ) ‖Ba
∞
(I,X),Λ ∈ M0

}

≤
√

C̃1 exp(1/2)C̃2T ≡ b < ∞.
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Thus the solution set S is a bounded subset of Ξ. Using the definition of the
metric space Mγ2(X) one can verify that

sup
{

‖ µ(Λ)(t) ‖2M
γ2

(X), t ∈ I, Λ ∈ M0

}

≤ 2
(

1 + sup{E|x(Λ)(t)|2X , t ∈ I, Λ ∈ M0}
)

≤ 2(1 + b2) < ∞.

This completes the proof.

5. Continuous dependence of solutions on Lev́y measure

In this section we wish to study the question of continuous dependence of solutions
on the Poisson random measure. Consider the product sigma algebra B(I) ×
B(X0) where B(X0) denotes the class of Borel subsets of X whose closures do not
contain the element {0}. LetM+

B(X0) denote the class of finite countably additive
positive Borel measures on B(X0) and M0 a bounded subset of M+

B(X0). It is
well known [9, Theorem 2.15, p. 254] that, given any Λ ∈ M+

B(X0), there exists
a probability space on which there exists a Poisson random measure with mean
measure λ× Λ where λ denotes the Lebesgue measure. In view of this result we
may assume that for all Λ ∈ M0, there exists a common (and complete filtered)
probability space (Ω,F ,Ft≥0, P ), so that for every measure Λ ∈ M0, there exists a
Poisson random measure pΛ defined on the probability space (Ω,F ,Ft≥0, P ) with
mean measure λ×Λ. The corresponding compensated Poisson random measure is
denoted by qΛ ≡ pΛ−λ×Λ. Consider the set E ≡ I×X0 with the product sigma
algebra E ≡ B(I)×B(X0) and the corresponding measurable space (E, E). On this
measurable space we shall consider a whole family of measures like {λ × Λ,Λ ∈
M0} with λ being the Lebesgue measure (fixed) and Λ the Lévy measure. In the
literature, the measure λ × Λ is called Lev́y measure. But since λ is fixed we
prefer to call Λ the Le’vy measure. Define the sets

P0 ≡ {pΛ,Λ ∈ M0} and Q0 ≡ {qΛ = pΛ − λ× Λ : Λ ∈ M0},

where P0 denotes the class of Poisson random measures and Q0 the corresponding
set of compensated Poisson random measures.

We are interested in the question of continuous dependence of solution of the
integral equation (15) with respect to the Lev́y measure Λ on M0.

Theorem 5.1. Consider the integral equation (15) driven by the compensated

Poisson random measure qΛ for any Λ ∈ M0 and suppose the assumptions of

Theorem 4.2, including (A1)–(A3) and (A4)* hold. Then the solution x : M0 −→
Ba

∞(I,X) is continuous in the sense that whenever Λn
w−→ Λo in M0, x

n s−→ xo

in Ξ ≡ Ba
∞(I,X).
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Proof. Let {xn, xo} ∈ Ξ ≡ Ba
∞(I,X) denote the solutions of the integral equa-

tion (15) corresponding to the sequence of Lev́y measures {Λn,Λo} and suppose
Λn

w−→ Λo. We show that xn
s−→ xo in Ξ. Since Λn converges weakly to Λo, it is

easy to verify that Λn converges to Λo set wise on all continuity sets, that is, for
all sets D ∈ B(X0) for which Λo(∂D) = 0. Let {qn, qo} ∈ Q0 be the corresponding
sequence of compensated Poisson random measures. Then the convergence of Λn

to Λo on continuity sets implies that qn converges to qo set wise in probability
which is stated as qn

p−→ qo set wise. Clearly, there exists a subsequence of the
sequence {qn}, relabeled as the original sequence, such that qn converges to qo
set wise P-a.s. We show that the corresponding subsequence of solutions of the
integral equation (15) converges strongly to xo ∈ Ξ ≡ Ba

∞(I,X). It follows from
Theorem 4.2 that {xn, xo} ∈ Ξ are the unique solutions satisfying the following
integral equations,

(26)

xn(t) = S(t)x0 +

∫ t

0
S(t− s)f(s, xn(s), µn(s))ds

+

∫ t

0
S(t− s)σ(s, xn(s), µn(s))dW (s)

+

∫ t

0

∫

X0

S(t− s)g(s, xn(s), µn(s), v)qn(ds × dv), t ∈ I,

with µn(t) = P(xn(t)), t ∈ I.

(27)

xo(t) = S(t)x0 +

∫ t

0
S(t− s)f(s, xo(s), µo(s))ds

+

∫ t

0
S(t− s)σ(s, xo(s), µo(s))dW (s)

+

∫ t

0

∫

X0

S(t− s)g(s, xo(s), µo(s), v)qo(ds × dv), t ∈ I,

with µo(t) = P(xo(t)), t ∈ I,

with {µn, µo} ∈ B∞(I,M2,ρ(X)) being the corresponding probability laws. Sub-
tracting equation (26) from equation (27) and computing the expected value of
the norm-square and using the assumption (A1), the Lipschitz conditions (A2),
(A3) and (A4)*, we obtain

E|xo(t)− xn(t)|2X ≤ C1

(
∫ t

0
{E|xo(s)− xn(s)|2X + ρ2(µo(s), µn(s))}ds

)

+ E|en(t)|2X , t ∈ I,(28)

where
C1 ≡ 8M2(K2T +K2

R +K2
0 )
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and the process en is given by

(29) en(t) ≡
∫ t

0

∫

X0

S(t− s)g(s, xo(s), µo(s), v)(qo − qn)(ds × dv), t ∈ I.

Now recalling that

ρ2(µo(s), µn(s)) ≤ E|xo(s)− xn(s)|2X , s ∈ I,

it follows from (28) that

E|xo(t)− xn(t)|2X ≤ 2C1

(
∫ t

0
E|xo(s)− xn(s)|2X ds

)

+E|en(t)|2X , t ∈ I.(30)

Hence, by virtue of Gronwall inequality, we obtain

E|xo(t)− xn(t)|2X ≤ E|en(t)|2X + 2C1 exp(C1T )

∫ t

0
E|en(s)|2X ds, t ∈ I.(31)

We verify that E|en(t)|2X −→ 0 uniformly on the interval I. Clearly, en is given
by the difference zo − zn where

zo(t) ≡
∫ t

0

∫

X0

S(t− s)g(s, xo(s), µo(s), v)qo(ds× dv), t ∈ I.(32)

zn(t) ≡
∫ t

0

∫

X0

S(t− s)g(s, xo(s), µo(s), v)qn(ds × dv), t ∈ I.(33)

It follows from the basic theory of integration with respect to compensated Pois-
son random measures that

(34) E|zo(t)|2X ≡ E

∫ t

0

∫

X0

|S(t− s)g(s, xo(s), µo(s), v)|2XΛo(dv)ds, t ∈ I.

(35) E|zn(t)|2X ≡ E

∫ t

0

∫

X0

|S(t− s)g(s, xo(s), µo(s), v)|2XΛn(dv)ds, t ∈ I,

where Λo and Λn are the intensity measures corresponding to the compensated
Poisson random measures qo and qn, respectively. Using the assumption (A4)*
and the definition of the norm for the Banach space Mγ2(X) and the expressions
(34) and (35) one can easily verify that the following estimates hold uniformly
with respect to t ∈ I,

E|zn(t)|2X ≤ 3M2K2
0

∫ t

0

(

1 +E|xo(s)|2X
)

ds ≤ 3M2K2
0T (1 + b2),

E|zo(t)|2X ≤ 3M2K2
0L

∫ t

0

(

1 +E|xo(s)|2X
)

ds ≤ 3M2K2
0T (1 + b2).
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As qn −→ qo set wise P -a.s, it is clear from (32) and (33) that

zn(t)
s−→ zo(t) in X, P − a.s, ∀ t ∈ I.(36)

Further, since Λn
w−→ Λo and the integrand

v −→ |S(t− s)g(s, xo(s), µo(s), v)|2X

is continuous and bounded P -a.s for almost all s ∈ [0, t], it follows from (34) and
(35) that

E|zn(t)|2X −→ E|zo(t)|2X , ∀ t ∈ I.(37)

It is well known in classical analysis involving Lp(Ω) (1 < p < ∞) spaces, that
convergence of a sequence almost everywhere (or in measure) to a limit and con-
vergence of the norm of the sequence to the norm of the limit imply convergence
in the norm. Thus it follows from (36)–(37) that

E|zn(t)− zo(t)|2X −→ 0, ∀ t ∈ I.(38)

This proves that

lim
n→∞

E|en(t)|2X ≡ lim
n→∞

E|zo(t)− zn(t)|2X = 0,∀ t ∈ I.(39)

Let us define

ϕn(t) ≡ E|xo(t)− xn(t)|2X , ηn(t) ≡ E|en(t)|2X , t ∈ I,

and rewrite the inequality (31) as follows,

(31)∗ ϕn(t) ≤ ηn(t) + 2C1 exp(C1T )

∫ t

0
ηn(s) ds, t ∈ I.

From (39) we have ηn(t) → 0 for all (not for almost all) t ∈ I. Further, it follows
from the estimates following the expression (35) that it is bounded from above
as follows

0 ≤ ηn(t) ≤ 12M2K2
0LT (1 + b2), ∀ t ∈ I.

Hence, it follows from Lebesgue bounded convergence theorem that

lim
n→∞

∫ t

0
ηn(s)ds = 0, ∀ t ∈ I.

Thus it follows from the inequality (31)∗ that ϕn(t) −→ 0 uniformly on I, and
therefore, by letting n → ∞, it follows from the inequality (31) that xn

s−→ xo

in Ξ. This completes the proof.
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As an immediate consequence of the above theorem we have the following
corollary.

Corollary 5.2. Under the assumptions of Theorem 5.1, the probability laws

{µ(t), t ∈ I} associated with the solution {(µ(t), x(t)) = (P(x(t)), x(t)), t ∈ I} of

the integral equation (15) mapping

µ : M0 −→ B∞(I,M2,ρ(X))

is continuous with respect to the weak topology on M0 and the metric topology D
on B∞(I,M2,ρ(X)).

Proof. It follows from Theorem 5.1 that as Λn
w−→ Λo in M0, the corresponding

sequence of solutions {xn} of the integral equation (15) converges strongly in Ξ,
that is, xn

s−→ xo in Ξ. Since

ρ(µn(t), µo(t)) ≤ E|xn(t)− xo(t)|X ≤
(

E|xn(t)− xo(t)|2X
)1/2

, ∀ t ∈ I,

it follows from the definition of the metric D that

D(µn, µo) ≡ sup{ρ(µn(t), µo(t), t ∈ I} ≤‖ xn − xo ‖Ξ .

Hence it follows from the above inequality that the corresponding measure valued
functions {µn} also converge to µo in the metric topology D as stated.

6. Optimal control

In this section we want to study the question of existence of optimal controls from
certain class of Poisson random measures, more precisely compensated Poisson
random measures. Effectively this presents a class of stochastic relaxed controls
which are Poisson random measures (or Lèvy process) with Lèvy measures being
the choice variables. In the first subsection we consider control measures on
an infinite dimensional Hilbert space and in the second subsection we consider
measures on a finite dimensional space and in the third subsection we consider
measures on a finite subset of X0. We believe that the last two classes of control
measures are much easier to construct for practical applications.

6.1. Control measures on infinite dimensional space

It is well known that Poisson random process taking values from a finite set of
points can be generated using standard algorithms on computer. For example,
in our case, if one chooses a finite number of distinct points {ζ1, ζ2, . . . , ζm} from
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the Hilbert space X and take X0 ≡ {ζ1, ζ2, . . . , ζm} one can develop an algorithm
to generate a Poisson process with values in X0. In this case the Lev́y measure
Λ is given by the set of positive numbers {λ1, λ2, . . . , λm} where λi ≡ Λ({ζi})
denotes the average number of jumps of size ζi per unit time (or equivalently the
frequency of jumps of size {ζi}). Thus it makes sense to choose Poisson random
measure for control purposes. We consider this class in the last subsection.

First, we consider the infinite dimensional case. Thus, in general, the choice
variable here is the Lev́y measure Λ ∈ M+

B(X0). So we consider the following
optimization problem. The cost functional J is given by

(40) J(Λ) = E

{
∫ T

0
ℓ(t, xΛ(t), µΛ(t))dt +Ψ1(xΛ(T−), µΛ(T ))

}

+Ψ2(Λ)

where xΛ ∈ Ξ, with the associated law µΛ ∈ B∞(I,M2,ρ(X)), is the mild solution
of the evolution equation (2) corresponding to the compensated Poisson random
measure qΛ. The cost integrands {ℓ,Ψ1} and Ψ2 are defined below.

Let Mad ⊂ M0 denote the class of admissible Lev́y measures. The problem
is to find a Λo ∈ Mad such that J attains its minimum on Mad at Λo.

We will assume that Mad is a weakly compact subset of M0 ⊂ M+
B(X0). For

complete characterization of weakly compact sets in the space of finite measures
on separable Hilbert spaces see Merkle [17] and Gihman & Skorohod [18]. For
convenience of the reader, we present the necessary and sufficient conditions for
weak compactness. Let {ei} be a complete ortho-normal basis of the (separable)
Hilbert space X and define, for any Λ ∈ M+

B(X) and c > 0, the operator QΛ
c by

(QΛ
c ξ, η) ≡

∫

{x∈X:|x|>c}
(ξ, x)(η, x)Λ(dx), ξ, η ∈ X.

Clearly, the operator QΛ
c is a positive (not necessarily bounded) self adjoint

operator on the Hilbert space X. In case Λ ∈ M2(X0) ≡ {Λ ∈ M+
B(X0) :

∫

X0
|x|2XΛ(x) < ∞}, the operator QΛ

c is also bounded.

Lemma 6.1. The set Mad ⊂ M0 ⊂ M+
B(X0) is relatively weakly compact if and

only if the following two conditions hold:

(1) for every ε > 0, there exists a constant c ∈ (0,∞), such that

sup
Λ∈Mad

Λ{x ∈ X : |x|X > c} < ε

(2) for every c > 0, lim
n→∞

∑

i≥n(Q
Λ
c ei, ei) = 0 uniformly with respect to Λ ∈ Mad.

For proof of this result see Gihman & Skorohod [18, Theorem 2, p. 377] and
Merkle [17, Theorem 4, p. 255].

Using the above compactness result, we can prove the following result on
existence of optimal control.
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Theorem 6.2. Consider the system (2) with the admissible set of Lev́y measures

Mad, a weakly compact subset of M0. Suppose the assumptions of Theorem 5.2
hold and further, ℓ is a Borel measurable map from I×X×Mγ2(X) to R and lower

semicontinuous in (x, µ) ∈ X×Mγ2(X); Ψ1 is a real valued lower semicontinuous

function on X ×Mγ2(X) satisfying the following growth conditions,

|ℓ(t, x, µ)| ≤ α1(t) + α2

{

|x|2X + |µ|2M
γ2

}

, α1 ∈ L+
1 (I), α2 > 0,

|Ψ1(x, µ)| ≤ β1 + β2
{

|x|2X + |µ|2M
γ2

}

, β1, β2 ≥ 0.

The function Ψ2 : M0 −→ R+ ≡ [0,∞] is lower semicontinuous with respect to

the relative weak topology on M0. Then there exists an optimal Lev́y measure in

Mad minimizing the cost functional J.

Proof. Since Mad is weakly compact, it suffices to prove that J is weakly lower
semicontinuous on it. Consider the sequence {Λn} ∈ Mad with the correspond-
ing sequence of compensated Poisson random measures{qn}, and let {xn, µn} ∈
Ξ×B∞(I,M2,ρ(X)) be the corresponding sequence of mild solutions of the evo-
lution equation (2). Since Mad is weakly (sequentially) compact, there exists a
subsequence of the sequence {Λn}, relabeled as {Λn}, and a Λo ∈ Mad such that
Λn

w−→ Λo. Let {xo, µo} ∈ Ξ×B∞(I,M2,ρ(X)) denote the mild solution of equa-
tion (2) corresponding to Λo (more precisely) qΛo. Then it follows from Theorem
5.1 and Corollary 5.2 that, as Λn

w−→ Λo, we have

xn
s−→ xo in Ξ(41)

µn
s−→ µo in B∞(I,M2,ρ(X)).(42)

Let La
2(I×Ω,X) denote the space of norm square integrable Ft-adapted X valued

random processes equipped with the standard norm topology. Since T is finite,
it is easy to verify that the embeddings Ba

∞(I,X) ≡ Ξ →֒ La
2(I × Ω,X) and

B∞(I,M2,ρ(X)) →֒ L2(I,M2,ρ(X)) are continuous. Thus xn also converges to
xo strongly in La

2(I × Ω,X) and µn converges to µo strongly in L2(I,M2,ρ(X)).
Therefore, there exists a subsequence of the sequence {xn, µn}, again relabeled
as the original sequence, such that

xn(t)
s−→ xo(t) in X, dt× dP a.e in I × Ω(43)

µn(t)
w−→ µo(t) in M2,ρ(X), a.e t ∈ I.(44)

These follow from the fact that mean convergence implies convergence in mea-
sure which in turn implies the existence of a subsequence that converges almost
everywhere. Since both ℓ and Ψ1 are lower semicontinuous on X ×Mγ2(X), it
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follows from (43) and (44) that

ℓ(t, xo(t), µo(t)) ≤ lim
n

ℓ(t, xn(t), µn(t)) dt× dP a.e,(45)

Ψ1(xo(T−), µo(T )) ≤ lim
n

Ψ1(xn(T ), µn(T )), dP a.e.(46)

It follows from the assumptions on {ℓ,Ψ1} and Corollary 4.4 asserting bound-
edness of the solution set that both ℓ and Ψ1 are dominated by integrable pro-
cesses. Thus by virtue of generalized Fatou’s Lemma it follows from (45) and
(46) that

E

∫ T

0
ℓ(t, xo(t), µo(t))dt ≤ lim

n
E

∫ T

0
ℓ(t, xn(t), µn(t))dt

EΨ1(xo(T ), µo(T )) ≤ lim
n

EΨ1(xn(T ), µn(T )).

By assumption, Ψ2 is a nonnegative weakly lower semicontinuous function on
Mad and therefore we have Ψ2(Λo) ≤ limnΨ2(Λn). Since a finite sum of lower
semicontinuous functions is a lower semicontinuous function, we conclude that J
is weakly lower semicontinuous, that is, J(Λo) ≤ limn J(Λn). Since Mad ⊂ M0 is
a bounded set and J weakly lower semicontinuous on it, infΛ∈Mad

J(Λ) > −∞.
Hence it follows from weak compactness of the setMad that J attains its minimum
on it. This completes the proof.

6.2. Control measures on finite dimensional spaces

As stated in the introduction of this section, Poisson random processes can be
generated by use of standard computer algorithms developed specifically for ap-
plications. It is much easier to generate Poisson random measures on finite di-
mensional spaces as opposed to infinite dimensional Hilbert spaces. Thus, for
convenience of applications, we consider the following model where the Poisson
random measures used for control are defined on a finite dimensional space. This
is a simple extension of the system (2)

dx = Axdt+ f(t, x, µ)dt+ σ(t, x, µ)dW +

∫

X0

g(t, x, µ, v)qΛ(dt× dv)

+

∫

Rn
0

h(t, x, µ, ξ)qν(dt× dξ), x(0) = x0,(47)

and µ(t) = P(x(t)), t ∈ I ≡ [0, T ].

Here qΛ is a fixed compensated Poisson random measure corresponding to a
fixed finite Lev́y measure Λ ∈ M+

B(X0) while qν is another compensated Poisson
random measure corresponding to a Lev́y measure ν ∈ M+

B(R
n
0 ), and this is
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considered as the control measure. In other words, the last integral in the above
equation contains the control measure. We recall that the standard assumption
on mutual independence of the random elements {x0,W, qΛ, qν} remains in force.
Here the function h is assumed to be a Borel measurable map from I × X ×
Mγ2(X) × Rn to X satisfying similar properties as g. It is measurable in the
first argument and continuous in the rest of the variables satisfying the following
properties:

(A5): For any Lévy measure ν ∈ M+
B(R

n
0 ), the function h : I ×X ×Mγ2(X)×

Rn −→ X is measurable in the first argument and continuous with respect to the
rest of the variables and there exists a constant Lν 6= 0 such that

∫

Rn
0

|h(t, x, µ, ξ)|2X ν(dξ) ≤ L2
ν

{

1 + |x|2X + |µ|2M
γ2

}

, ∀ x ∈ X,µ ∈ Mγ2(X)

∫

Rn
0

|h(t, x1, µ1, ξ)− h(t, x2, µ2, ξ)|2X ν(dξ) ≤ L2
ν

{

|x1 − x2|2X + ρ2(µ1, µ2)
}

for all x1, x2 ∈ X and µ1, µ2 ∈ M2,ρ(X) uniformly with respect to t ∈ I.

Consequently, under the additional assumption (A5), Theorem 4.2, asserting
the existence and uniqueness of solution, holds also for the system (47). Again
we choose a closed bounded subset Γ ⊂ M+

B(R
n
0 ) and choose Q0 ≡ {qν , ν ∈ Γ}

as the admissible set of controls (compensated Poisson random measures). The
necessary and sufficient conditions for relative weak compactness of the set Γ in
the finite dimensional case is just the condition (1) of Lemma 6.1. This condition
guarantees tightness of the set Γ and hence, by virtue of well known Prohorov’s
theorem, the set Γ is weakly compact. Now we introduce an assumption similar
to the one in Corollary 4.4.

(A5)*: Assumption (A5) holds and further, for all x, y ∈ X and µ, µ1, µ2 ∈
Mγ2(X), there exists a finite positive number L0 such that

sup
ν∈Γ

∫

Rn
0

|h(t, x, µ, ξ)|2X ν(dξ) ≤ L2
0

{

1 + |x|2X + |µ|2M
γ2

}

,

sup
ν∈Γ

∫

Rn
0

|h(t, x, µ1, ξ)− h(t, y, µ2, ξ)|2X ν(dξ) ≤ L2
0

{

|x− y|2X + ρ2(µ1, µ2)
}

.

Under the assumption (A5)* and the assumption that the admissible set Γ
is a closed bounded subset of M+

B(R
n
0 ), Corollary 4.4 holds. In other words, the

solution set of the system (47) given by S ≡ {xν : ν ∈ Γ} is a bounded subset of Ξ.
Similarly the set Π ≡ {µν , ν ∈ Γ} is a bounded subset of B∞(I,M2,ρ(X)). Again,
we can prove exactly in the same way as Theorem 5.2, that the map ν −→ xν
is continuous with respect to the weak topology on Γ and norm topology on
Ξ. Similarly we have continuity of the map ν −→ µν with respect to the weak
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topology on Γ and the metric topology D on B∞(I,M2,ρ(X)). We consider the
system (47) as the control system with the Lev́y measure ν ∈ Γ as the control.
The cost functional is given by

(48) J(ν) = E

{
∫ T

0
ℓ(t, xν(t), µν(t))dt+Ψ1(xν(T ), µν(T ))

}

+Ψ2(ν).

The objective is to find a νo ∈ Γ that minimizes the functional J(ν). In the
following theorem we prove the existence of such an element.

Theorem 6.3. For a fixed Λ ∈ M+
B(X0), consider the system (47) driven by

the compensated Poisson random measure qν , with ν ∈ Γ being the control. The

cost functional is given by (48) with {ℓ,Ψ1} satisfying the properties as stated

in Theorem 6.2. Suppose Γ is a weakly compact subset of M+
B(R

n
0 ) and Ψ2 is a

weakly lower semicontinuous functional on Γ. Then there exists a νo ∈ Γ at which

J given by (48) attains its minimum.

Proof. The proof is similar to that of Theorem 6.2.

6.3. Control measures supported on a finite set

In case the control measures (Lev́y measures {ν}) are supported on a finite subset
of X0, the problem of constructing computer algorithms for generating Poisson
random measures becomes much easier. Let Z = {ζ1, ζ2, . . . , ζm} ⊂ X0,m ≥ 2,
and choose the set M+

B(Z) for the Lev́y measures. Any ν ∈ M+
B(Z) has the

representation,

ν = (ν({ζ1}), ν({ζ2}), ν({ζ3}), . . . , ν({ζm})) = (λ1, λ2, λ3, . . . , λm),

where λi ∈ [0,∞) is the mean intensity of jump size {ζi}, that is, the average
number of jumps of size {ζi} per unit time or, equivalently, the frequency of
jumps of size ζi. In this case the dynamic system (47) is given by the following
stochastic differential equation,

dx = Axdt+ f(t, x, µ)dt+ σ(t, x, µ)dW +

∫

X0

g(t, x, µ, v)qΛ(dt× dv)

+

∫

Z
h(t, x, µ, ξ)qν(dt× dξ), x(0) = x0,(49)

and µ(t) = P(x(t)), t ∈ I ≡ [0, T ].

Again, the objective functional is given by the expression (48). Here, one possible
choice for the cost of control is Ψ2(ν) =

∑m
i=1 λi. This is a measure of total

variation of the Lévy measure ν and it is considered here as the control cost. The
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larger the frequency of jumps, the larger is the variation of the measure. The
integral equation associated with the evolution equation (49) is given by

x(t) = S(t)x0 +

∫ t

0
S(t− s)f(s, x(s), µ(s))ds +

∫ t

0
S(t− s)σ(s, x(s), µ(s))dW

+

∫ t

0

∫

X0

S(t− s)g(s, x(s), µ(s), v)qΛ(ds × dv)(50)

+

∫ t

0

∫

Z
S(t− s)h(s, x(s), µ(s), ξ)qν(ds × dξ), x(0) = x0,

and µ(t) = P(x(t)), t ∈ I ≡ [0, T ].

Considering the norm of the last term of the above integral equation, one finds
that

E

∣

∣

∣

∣

∫

[0,t]×Z
S(t− s)h(s, x(s), µ(s), ζ)qν(ds× dζ)

∣

∣

∣

∣

2

X

=

∫

[0,t]×Z
E|S(t− s)h(s, x(s), µ(s), ζ)|2X ν(dζ) ds(51)

=

∫ t

0

m
∑

i=1

λiE|S(t− s)h(s, x(s), µ(s), ζi)|2X ds.

It is clear that any closed bounded subset M0 ⊂ M+
B(Z) is weakly compact.

Assuming that the rest of the assumptions of Theorem 6.2 hold, it follows from
Theorem 6.2 that there exists a νo ∈ M0 at which J(νo) ≤ J(ν) for all ν ∈ M0.

6.4. Some simple target problems

Throughout this section we consider the system (2) or equivalently (15) with the
Lévy measure Λ as the control belonging to the admissible set Mad.

(P1): (Mass Transport Problem) Let µ0 = P(x0) denote the initial proba-
bility measure with support C0 a closed subset of X and let C ⊂ X be another
closed set with C0 ∩ C = ∅. The problem is to find a control in Mad ⊂ M0 that
maximizes the functional

J(Λ) ≡ µΛ(T )(C).

It follows from Corollary 5.2 that the map Λ −→ µΛ(T )(·) from M0 to M2,ρ(X)
is continuous with respect to the weak topology on M0 and the metric topology
on M2,ρ(X). Since Mad is weakly compact J attains its maximum on Mad.
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(P2): (Collision Avoidance Problem) Let V be an open set in X with
V ∩C0 = ∅. The problem is to find a control in Mad that minimizes the functional

J(Λ) =

∫ T

0
µΛ(t)(V)dt.

It follows from Corollary 5.2 that the map

µ : M0 −→ B∞(I,M2,ρ(X))

is continuous with respect to the weak topology on M0 and the metric topology
D on B∞(I,M2,ρ(X)). Thus, as Λn

w−→ Λo in M0, it follows from Fatou’s Lemma
that

lim J(Λn) = lim

∫ T

0
µΛn(t)(V)dt

≤
∫ T

0
lim µΛn(t)(V)dt ≤

∫ T

0
µΛ0

(t)(V)dt = J(Λ0).

Hence Λ −→ J(Λ) is weakly lower semicontinuous on M0. Since the admissible
controls Mad ⊂ M0 is weakly compact, J attains its minimum on Mad proving
existence of optimal control.

(P3): (Compactness of Attainable Sets) For each t > 0, define the set

A(t) ≡ {m ∈ M2,ρ(X) : m = µΛ(t), for some Λ ∈ Mad}.

This is the set of measures at time t ∈ [0,∞) that the system (2) or the integral
equation (15) with admissible controls Mad can attain (produce). Under the
assumptions of Theorem 5.1, the reader can easily verify that, for each t ∈ I, the
attainable set A(t) is a compact subset of M2,ρ(X) in the metric topology ρ. Let
{µd(t), t ∈ I} be a desired measure valued function with values in M2,ρ(X). The
problem is to find a control Λ ∈ Mad that minimizes the functional

J(Λ) ≡
∫ T

0
ρ(µΛ(t), µ

d(t))λ(dt)

where λ is any positive measure having finite total variation on I. One can verify
that this functional is lower semicontinuous with respect to the weak topology on
Mad and the metric topology on B∞(I,M2,ρ(X)). Thus there exists an optimal
control that minimizes this functional.

Remark 6.4. In our recent paper [1], we considered McKean-Vlasov equations
on Hilbert spaces in the absence of Lévy process and proved existence of optimal
relaxed controls and developed necessary conditions of optimality. It would be
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interesting to develop necessary conditions of optimality for the systems driven
by Lévy measure as considered here. This remains an open problem.
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