ArticleOriginal scientific text

Title

Solutions of the Hammerstein equations in !$!BV_\varphi(I_{a}^{b},\, \mathbb{R})

Authors 1, 2, 3, 4

Affiliations

  1. Universidad de Los Andes Departamento de Física y Matemática Trujillo-Venezuela
  2. Universidad Nacional Experimental del Táchira Departamento de Matemática y Física San Cristóbal-Venezuela
  3. Universidad Nacional Abierta Area de Matem´atica, Caracas-Venezuela ´
  4. Universidad Central de Venezuela Escuela de Matemáticas, Caracas-Venezuela

Abstract

In this paper we study existence and uniqueness of solutions for the Hammerstein equation u(x)=v(x)+λIabK(x,y)f(y,u(y))dy \noi in the space of function of bounded total φ-variation in the sense of Hardy-Vitali-Tonelli, where λR, K:Iab×IablongR and f:Iab×RlongR are suitable functions. The existence and uniqueness of solutions are proved by means of the Leray-Schauder nonlinear alternative and the Banach contraction mapping principle.

Keywords

Hammerstein integral equation, Banach spaces, bounded φ-variation in the sense of Hardy-Vitali-Tonelli, Banach's contraction principle, Leray-Schauder nonlinear alternative principle

Bibliography

  1. A. Alexiewicz, Functional Analysis (PWN 49, Warsaw, 1969).
  2. J. Appell and C.-J. Chen, How to solve Hammerstein equations, J. Int. Equ. Appl 18 (2006), 287-296. doi: 10.1216/jiea/1181075392
  3. R.P. Agarwal, D. O'Regan and P.J. Wong, Positive solutions of differential, difference and integral equations (Kluwer Academic Publishers , Dordrecht, 1999). doi: 10.1007/978-94-015-9171-3
  4. W. Aziz, H. Leiva and N. Merentes, Solutions of Hammerstein equations in the space BV(Iab), Quaestiones Mathematicae 37 (2014), 1-12. doi: 10.2989/16073606.2014.894675
  5. L.A. Azocar, H. Leiva, J. Matute and N. Merentes, On the Hammerstein equation in the space of functions of bounded φ-variation in the plane, Archivum Mathematicum (Brno) 49 (2013), 51-64. doi: 10.5817/AM2013-1-51
  6. J. Banaś, Integrable solutions of Hammerstein and Urysohn integral equations, J. Austral. Math. Soc. 46 (1989), 61-68. doi: 10.1017/S1446788700030378
  7. J. Banaś and Z. Knap, Integrable solutions of a functional-integral equation, Revista Matem\'atica de la Universidad Complutense de Madrid} 2 (1989), 31-38.
  8. D. Bugajewska, D. Bugajewski and H. Hudzik, On BVϕ-solutions of some nonlinear integral equations, J. Math. Anal. Appl.} 287 (2003), 265-278. doi: 10.1016/S0022-247X(03)00550-X
  9. D. Bugajewska, D. Bugajewski and G. Lewicki, On nonlinear integral equations in the space of functions of bounded generalized ϕ-variation, J. Int. Equ. Appl.} 21 (2009), 1-20. doi: 10.1216/JIE-2009-21-1-1
  10. D. Bugajewska and D. O'Regan, On nonlinear integral equations and Γ-bounded variation, Acta Math. Hungar.} 107 (2005), 295-306. doi: 10.1007/s10474-005-0197-8
  11. T.A. Burton, Volterra Integral and Differential Equations (Academic Press, New York, 1983).
  12. V.V. Chistyakov, Selections of bounded variation, J. Appl. Anal. 10 (2004), 1-82. doi: 10.1515/JAA.2004.1
  13. C. Corduneanu, Integral Equations and Applications (Cambridge University Press, New York, 1973).
  14. J. Diestel, Sequences and Series in Banach Spaces ({Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1984). doi: 10.1007/978-1-4612-5200-9
  15. G. Emmanuele, About the existence of integrable solutions of a functional-integral equation, Revista de Matemática de la Universidad Complutense de Madrid 4 (1991), 65-69. doi: 10.5209/rev_rema.1991.v4.n1.18000
  16. G. Emmanuele, Integrable solutions of a functional-integral equation, J. Int. Equ. Appl. 4 (1992), 89-94. doi: 10.1216/jiea/1181075668
  17. J.A. Guerrero, Extensi\'{o}n a R2 de la Noci\'{o}n de Funci\'{o}n de Variaci\'{o}n Acotada en el Sentido Hardy-Vitali-Wiener, Ph.D. Thesis,Universidad Central de Venezuela, Facultad de Ciencias, Postgrado de Matematica, Caracas - Venezuela, 2010, in Spanish.
  18. G.H. Hardy, On double {Fourier} series, and especially those which represent the double zeta-function with real and incommesurable parameters, Q.J. Math. Oxford 37 (1905), 53-79.
  19. C. Jordan, Sur la série de Fourier, C.R. Acad. Sci. 92 (1881), 228-230.
  20. H. Leiva, J. Matute and N. Merentes, On the Hammerstein-Volterra equation in the space of the absolutely continuous functions, I.J. Math. Anal. 6 (2012), 2977-2999.
  21. J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. (1034) (Springer-Verlag, 1983).
  22. B.G. Pachpatte, Applications of the Leray-Schauder alternative to some Volterra integral and integro-diferential equations, Indian J. Pure Appl. Math. 26 (1995), 1161-1168.
  23. B.G. Pachpatte, Multidimensional Integral Equations and Inequalities, Atlantis Studies in Mathematics for Engineering and Science (Atlantis Press, 2011).
  24. D. O'Regan, Fixed point theorems for nonlinear operators, JMAA 212 (1996), 413-432. doi: 10.1006/jmaa.1996.0324
  25. D. O'Regan, Existence theory for nonlinear Volterra integro-differential and integral equations, Nonlinear Anal. 31 (1998), 317-341. doi: 10.1016/S0362-546X(96)00313-6
  26. R. Precup, Theorems of Leray-Schauder Type and Application (Gordon and Breach Science Publishers, 2001).
  27. Š. Schwabik, M. Tvrdý and O. Vejvoda, Differential and integral equations, Boundary value problems and adjoints, Academia Praha and Reidel D. (1979), 239-246.
  28. L. Tonelli, Sulle funzioni di due variabili generalmente a variazione limitata, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5 (1936), 315-320.
  29. G. Vitali, Sulle funzione integrali, Atti Accad. Sci. Torino CI Sci Fis Mat Natur 40 (1904/1905) 1021-1034 and (1984) Opere sull'analisi teale Cremonese 205-220.
  30. L.C. Young, Sur une généralisation de la notion de variation de puissance pieme borneé au sens de N. Wiener et sur la convergence des séries de Fourier, C.R. Acad. Sci. Paris Sér. A 204 (1937), 470-472.
  31. P.P. Zabrejko, A.I. Koshelev, M.A. Krasnosel'skii, S.G. Mikhlin, L.S. Rakovschik and V.J. Stetsenko, Integral Equations (Noordhoff, Leyden, 1975).
Pages:
207-229
Main language of publication
English
Received
2016-05-06
Published
2016
Exact and natural sciences