PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 36 | 1 | 65-77
Tytuł artykułu

Weakly precompact operators on $C_{b}(X,E)$ with the strict topology

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let X be a completely regular Hausdorff space, E and F be Banach spaces. Let $C_{b}(X,E)$ be the space of all E-valued bounded continuous functions on X, equipped with the strict topology β. We study weakly precompact operators $T:C_{b}(X,E) → F$. In particular, we show that if X is a paracompact k-space and E contains no isomorphic copy of l¹, then every strongly bounded operator $T:C_{b}(X,E) → F$ is weakly precompact.
Twórcy
  • Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. Szafrana 4A, 65-516 Zielona Góra, Poland
Bibliografia
  • [1] C. Abbott, Weakly precompact and GSP operators on continuous function spaces, Bull. Polish Acad. Sci. Math. 37 (1989), 467-476.
  • [2] C. Abbott, A. Bator, R. Bilyeu and P. Lewis, Weak precompactness, strong boundedness, and weak complete continuity, Math. Proc. Camb. Phil. Soc. 108 (1990), 325-335. doi: 10.1017/S030500410006919X
  • [3] E. Bator and P. Lewis, Operators having weakly precompact adjoints, Math. Nachr. 157 (1992), 99-103. doi: 10.1002/mana.19921570109
  • [4] J. Bourgain, An averaging result for l₁-sequences and application to weakly conditionallycompact sets in L₁^X, Israel J. Math. 32 (1979), 289-298. doi: 10.1007/BF02760458
  • [5] A. Bouziad, Luzin measurability of Carath´eodory type mappings, Topology Appl. 154 (2007), 287-301. doi: 10.1016/j.topol.2006.04.013
  • [6] J.B. Cooper, The strict topology and spaces with mixed topology, Proc. Amer. Math. Soc. 30 (1971), 583-592. doi: 10.1090/S0002-9939-1971-0284789-2
  • [7] J. Diestel, Sequences and Series in Banach Spaces (Graduate Texts in Math., vol. 92, Springer-Verlag, 1984).
  • [8] J. Diestel and J.J. Uhl, Vector Measures (Amer. Math. Soc. Surveys 15, 1977).
  • [9] N. Dinculeanu, Vector Measures (Pergamon Press, New York, 1967). doi: 10.1016/b978-1-4831-9762-3.50004-4
  • [10] N. Dinculeanu, Vector Integration and Stochastic Integration in Banach Spaces (John Wiley and Sons Inc., 2000). doi: 10.1002/9781118033012
  • [11] R. Engelking, General Topology (Heldermann Verlag, Berlin, 1989).
  • [12] I. Ghenciu, Weak precompactness in the space of vector-valued measures of bounded variation, J. Function Spaces 2015 (2015), ID 213679.
  • [13] I. Ghenciu and P. Lewis, Strongly bounded representing measures and converging theorems, Glasgow Math. J. 52 (2010), 435-445. doi: 10.1017/S0017089510000133
  • [14] L.V. Kantorovitch and G.P. Akilov, Functional Analysis (Pergamon Press, OxfordElmsford, New York, 1982).
  • [15] L.A. Khan, The strict topology on a space of vector-valued functions, Proc. Edinburgh Math. Soc. 22 (1979), 35-41. doi: 10.1017/S0013091500027784
  • [16] L.A. Khan and K. Rowlands, On the representation of strictly continuous linear functionals, Proc. Edinburgh Math. Soc. 24 (1981), 123-130. doi: 10.1017/S0013091500006428
  • [17] M. Nowak, Operator measures and integration operators, Indag. Math. 24 (2013), 279-290. doi: 10.1016/j.indag.2012.10.002
  • [18] M. Nowak, A Riesz representation theory for completely regular Hausdorff spaces and its applications, Open Math (in press).
  • [19] M. Nowak, Completely continuous operators and the strict topology, (submitted).
  • [20] E. Saab and P. Saab, On unconditionally converging and weakly precompact operators, Illinois J. Math. 35 (1991), 522-531.
  • [21] H.J. Song, Characterizations of weakly precompactness of operators acting between Banach spaces, Kangweon-Kyungki Math. Jour. 12 (2004), 127-146.
  • [22] J. Schmets and J. Zafarani, Strict topologies and (gDF)-spaces, Arch. Math. 49 (1987), 227-231. doi: 10.1007/BF01271662
  • [23] M. Talagrand, Weak Cauchy sequences in L₁(E), Amer. J. Math. 106 (1984), 703-724. doi: 10.2307/2374292
  • [24] A. Wiweger, Linear spaces with mixed topology, Studia Math. 20 (1961), 47-68.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1182
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.