TOPOLOGICAL PROPERTIES OF SOME SPACES OF CONTINUOUS OPERATORS

MARIAN NOWAK

Faculty of Mathematics, Computer Science and Econometrics
University of Zielona Góra
ul. Szafrana 4A, 65–516 Zielona Góra, Poland

e-mail: M.Nowak@wmie.uz.zgora.pl

Abstract

Let X be a completely regular Hausdorff space, E and F be Banach spaces. Let $C_b(X,E)$ be the space of all E-valued bounded continuous functions on X, equipped with the strict topology β. We study topological properties of the space $L_\beta(C_b(X,E), F)$ of all $(\beta, \|\cdot\|_F)$-continuous linear operators from $C_b(X,E)$ to F, equipped with the topology τ_s of simple convergence. If X is a locally compact paracompact space (resp. a P-space), we characterize τ_s-compact subsets of $L_\beta(C_b(X,E), F)$ in terms of properties of the corresponding sets of the representing operator-valued Borel measures. It is shown that the space $(L_\beta(C_b(X,E), F), \tau_s)$ is sequentially complete if X is a locally compact paracompact space.

Keywords: spaces of vector-valued continuous functions, strict topologies, operator measures, topology of simple convergence, continuous operators.

2010 Mathematics Subject Classification: 46G10, 46E10, 46A70.

1. INTRODUCTION AND TERMINOLOGY

Throughout the paper let $(E, \|\cdot\|_E)$ and $(F, \|\cdot\|_F)$ be (real or complex) Banach spaces, and let E' and F' denote the Banach duals of E and F, respectively. By $B_{F'}$ and B_E we denote the closed unit ball in F' and E, respectively. By $\mathcal{L}(E, F)$ we denote the space of all bounded linear operators E to F. Given a locally convex space (Z, ξ) by $(Z, \xi)'$ or Z_ξ' we denote its topological dual. We denote by $\sigma(Z, Z_\xi')$ the weak topology on Z with respect to a dual pair (Z, Z_ξ').

Assume that (X, T) is a completely regular Hausdorff space. Let $\mathcal{B}o$ stand for the σ-algebra of Borel sets in X. By \mathcal{K} (resp. \mathcal{F}) we denote the family of all compact (resp. finite) sets in X.

Let $C_b(X, E)$ stand for the space of all bounded continuous functions $f : X \to E$. By τ_u we will denote the topology on $C_b(X, E)$ of the uniform norm $\|\cdot\|$.

The strict topology β (denoted also by β_o and β_l) can be characterized as the finest locally convex topology on $C_b(X, E)$ which coincides with the compact-open topology τ_c on τ_u-bounded subsets of $C_b(X, E)$ (see [6, 9, 11, 12]). This means that $(C_b(X, E), \beta)$ is a generalized DF-space (see [15], [17, Corollary]) (equivalently, β coincides with the mixed topology $\gamma[\tau_u, \tau_c]$ in the sense of Wiweger (see [4, 19] for more details)). Then β is weaker than τ_u, and β coincides with τ_u if and only if X is compact (see [3, Theorem 2.3]).

By $\mathcal{L}_\beta(C_b(X, E), F)$ we will denote the family of all $(\beta, \|\cdot\|_F)$-continuous linear operators $T : C_b(X, E) \to F$. The topology τ_s of simple convergence in $\mathcal{L}_\beta(C_b(X, E), F)$ is defined by the family of seminorms $\{p_f : f \in C_b(X, E)\}$, where $p_f(T) = \|T(f)\|_F$ for $T \in \mathcal{L}_\beta(C_b(X, E), F)$.

In this paper we study topological properties of the space $(\mathcal{L}_\beta(C_b(X, E), F), \tau_s)$. We characterize τ_s-compact sets in $\mathcal{L}_\beta(C_b(X, E), F)$ in terms of the properties of the corresponding sets of the representing operator-valued Borel measures whenever X is a locally compact paracompact space (resp. X is a P-space) (see Theorem 3.4 below). It is shown that the space $(\mathcal{L}_\beta(C_b(X, E), F), \tau_s)$ is sequentially complete if X is a locally compact paracompact space (see Theorem 4.2 below).

2. INTEGRAL REPRESENTATION OF OPERATORS ON $C_b(X, E)$

Recall that a countably additive measure scalar measure ν on $\mathcal{B}o$ is said to be a Radon measure if its variation $|\nu| : \mathcal{B}o \to \mathbb{R}_+$ is regular, i.e., for each $A \in \mathcal{B}o$,

$$|\nu|(A) = \sup \{|\nu|(K) : K \in \mathcal{K}, K \subset A\}, \quad |\nu|(A) = \inf \{|\nu|(O) : O \in \mathcal{T}, O \supset A\}.$$

By $M(X)$ we denote the space of all Radon measures.

Let $M(X, E')$ denote the space of all countably additive measures $\mu : \mathcal{B}o \to E'$ of bounded variation ($|\mu|(X) < \infty$) such that for each $x \in E$, $\mu_x \in M(X)$, where $\mu_x(A) := \mu(A)[x]$ for $A \in \mathcal{B}o$. Then $|\mu| \in M(X)$ (see [10, Lemma 2.3]).

It is known that for $\mu \in M(X, E')$, every $f \in C_b(X, E)$ is μ-integrable in the Riemann-Stieltjes sense (see [7, Definition 2], [14, Definition 2.2]).

The following characterization of β-continuous linear functionals on $C_b(X, E)$ will be of importance (see [14, § 2]).

Theorem 2.1. For a linear functional Φ on $C_b(X, E)$ the following statements are equivalent:

(i) Φ is β-continuous.
(ii) There exists a unique \(\mu \in M(X, E') \) such that

\[
\Phi(f) = \Phi_\mu(f) = \int_X f \, d\mu \quad \text{for } f \in C_b(X, E).
\]

Moreover, \(\|\Phi_\mu\| = |\mu|(X) \).

The following result will be useful (see [12, Lemma 2]).

Lemma 2.2. For a subset \(M \) of \(M(X, E') \) the following statements are equivalent:

(i) \(\sup_{\mu \in M} |\mu|(X) < \infty \) and \(M \) is uniformly tight, that is, for each \(\varepsilon > 0 \) there exists \(K \in \mathcal{K} \) such that \(\sup_{\mu \in M} |\mu|(X \setminus K) \leq \varepsilon \).

(ii) The family \(\{\Phi_\mu : \mu \in M\} \) in \(C_b(X, E')_\beta \) is \(\beta \)-equicontinuous.

Let \(i_F : F \to F'' \) denote the canonical embedding, i.e., \(i_F(y)(y') = y'(y) \) for \(y \in F, y' \in F' \). Moreover, let \(j_F : i_F(F) \to F \) stand for the left inverse of \(i_F \), that is, \(j_F \circ i_F = id_F \).

Assume that \(T : C_b(X, E) \to F \) is a \((\beta, \|\cdot\|_F)\)-continuous linear operator. Then according to [14, Theorem 3.1] there exists a unique measure \(m_T : \mathcal{B}_0 \to L(E, F'') \) (called the representing measure of \(T \)) such that the following statements hold:

(2.1) For every \(y' \in F' \), \((m_T)_{y'} \in M(X, E') \), where

\[
(m_T)_{y'}(A)(x) := (m_T(A)(x))(y') \quad \text{for } A \in \mathcal{B}_0, x \in E.
\]

(2.2) The mapping \(F' \ni y' \mapsto (m_T)_{y'} \in M(X, E') \) is \((\sigma(F', F), \sigma(M, E'), C_b(X, E))\)-continuous.

(2.3) \(\tilde{m}_T(X) < \infty \) and for every \(\varepsilon > 0 \) there exists \(K \in \mathcal{K} \) such that \(\tilde{m}_T(X \setminus K) \leq \varepsilon \) (here \(\tilde{m}_T(A) \) stands for the semivariation of \(m_T \) on \(A \in \mathcal{B}_0 \)).

(2.4) \(\|T\| = \tilde{m}_T(X) \).

(2.5) Every \(f \in C_b(X, E) \) is \(m \)-integrable in the Riemann-Stjeltjes sense and

\[
\int_X f \, dm \in i_F(F) \quad \text{(here } \int_X f \, dm \text{ denotes the Riemann-Stjeltjes integral)}
\]

and \(T(f) = j_F(\int_X f \, dm) \).

(2.6) For every \(y' \in F' \),

\[
y'(T(f)) = \left(\int_X f \, dm_T \right)(y') = \int_X f \, d(m_T)_{y'} \quad \text{for } f \in C_b(X, E).
\]

Note that (see [5, §4, Proposition 5]),

(2.7) \(\tilde{m}_T(A) = \sup \{ |(m_T)_{y'}|(A) : y' \in B_{F'} \} \) for \(A \in \mathcal{B}_0 \).
Let \(B_{C_b(X,E)} := \{ f \in C_b(X,E) : \| f \| \leq 1 \} \).

We will need the following result.

Lemma 2.3. Assume that \(T : C_b(X,E) \to F \) be \((\beta, \| \cdot \|_F)\)-continuous linear operator and \(m_T \) is its representing measure. Then for \(y' \in F' \) and \(K \in \mathcal{K} \), we have:

(i) \(|(m_T)_{y'}|(X \setminus K) = \text{sup} \left\{ \left| \int_X f \, d(m_T)_{y'} \right| : f \in B_{C_b(X,E)} \text{ with } f \equiv 0 \text{ on } K \right\} \)

\[= \text{sup} \left\{ |y'(T(f))| : f \in B_{C_b(X,E)} \text{ with } f \equiv 0 \text{ on } K \right\} \]

(ii) \(\tilde{m}_T(X \setminus K) = \text{sup} \left\{ \left\| \int_X f \, dm_T \right\|_{F''} : f \in B_{C_b(X,E)} \text{ with } f \equiv 0 \text{ on } K \right\} \)

\[= \text{sup} \left\{ \|T(f)\|_F : f \in B_{C_b(X,E)} \text{ with } f \equiv 0 \text{ on } K \right\}. \]

Proof. (i) It follows from [14, Lemma 2.3] and (2.6).

(ii) Using (i), (2.7), (2.6) and (2.5), we get

\[
\tilde{m}_T(X \setminus K) = \text{sup} \left\{ \left\| \int_X f \, dm_T \right\|_{F''} : f \in B_{C_b(X,E)} \text{ with } f \equiv 0 \text{ on } K \right\}
\]

\[= \text{sup} \left\{ \|T(f)\|_F : f \in B_{C_b(X,E)} \text{ with } f \equiv 0 \text{ on } K \right\}. \]

3. Relative compactness in \((L_\beta(C_b(X,E),F), \tau_8)\)

We start with the following characterization of \((\beta, \| \cdot \|_F)\)-equicontinuous subsets of \(L_\beta(C_b(X,E),F) \).

Proposition 3.1. For a subset \(A \) of \(L_\beta(C_b(X,E),F) \) the following statements are equivalent:

(i) \(A \) is \((\beta, \| \cdot \|_F)\)-equicontinuous.

(ii) \(\sup_{T \in A} \tilde{m}_T(X) < \infty \) and for every \(\varepsilon > 0 \) there exists \(K \in \mathcal{K} \) such that \(\sup_{T \in A} \tilde{m}_T(X \setminus K) \leq \varepsilon \).

(iii) \(\sup_{T \in A} \|T\| < \infty \) and for every \(\varepsilon > 0 \) there exists \(K \in \mathcal{K} \) such that \(\sup_{T \in A} \left\| \int_X f \, dm_T \right\|_{F''} \leq \varepsilon \) whenever \(f \in C_b(X,E), \|f\| \leq 1 \) with \(f \equiv 0 \) on \(K \).
Proof. (i)⇒(ii) Assume that \mathcal{A} is $(\beta, \| \cdot \|_F)$-equicontinuous. This means that the set $\{ y' \circ T : T \in \mathcal{A}, y' \in B_{F'} \}$ is β-equicontinuous in $C_b(X, E)'_\beta$. Hence by (2.6), (2.7) and Lemma 2.2, we get
\[
\sup_{T \in \mathcal{A}} \tilde{m}_T(X) = \sup\{ |(m_T)_{y'}|(X) : T \in \mathcal{A}, y' \in B_{F'} \} < \infty,
\]
and for every $\varepsilon > 0$ there exists $K \in \mathcal{K}$ such that
\[
\sup_{T \in \mathcal{A}} \tilde{m}_T(X \setminus K) = \sup\{ |(m_T)_{y'}|(X \setminus K) : T \in \mathcal{A}, y' \in B_{F'} \} \leq \varepsilon.
\]

(ii)⇒(i) Assume that (ii) holds. Then by Lemma 2.2 and (2.6), (2.7), we obtain that the family $\{ y' \circ T : T \in \mathcal{A}, y' \in B_{F'} \}$ is β-equicontinuous in $C_b(X, E)'_\beta$, and it follows that \mathcal{A} is $(\beta, \| \cdot \|_F)$-equicontinuous.

(ii)⇔(iii) It follows from Lemma 2.3.

In view of [16, Theorem 2] we have the following useful result.

Theorem 3.2. Let \mathcal{A} be a τ_s-compact subset of $L_\beta(C_b(X, E), F)$. Then the set $\{ y' \circ T : T \in \mathcal{A}, y' \in B_{F'} \}$ is a $\sigma(C_b(X, E)'_\beta, C_b(X, E))$-compact subset of $C_b(X, E)'_\beta$.

Assume that X is a locally compact space. Then $\beta = \beta_\tau$ and β is the topology defined by Buck [2] (see [6, p. 844]).

Recall that X is a P-space if every G_δ set in X is open (see [8]). Then every compact set in X is finite and $\beta = \beta_\tau$ on $C_b(X)$ (see [18, Theorem 2.2]) and it follows that $\beta = \beta_\tau$ on $C_b(X, E)$.

Note that if X is a locally compact paracompact space (resp. a P-space), then $(C_b(X, E), \beta)$ is a strongly Mackey space, that is, every relatively $\sigma(C_b(X, E)'_\beta, C_b(X, E))$-countably compact subset of $C_b(X, E)'_\beta$ is β-equicontinuous (see [11, Theorem 6.1], [12, theorem 5]).

Corollary 3.3. Assume that X is a locally compact paracompact space (resp. a P-space). Let \mathcal{A} be a τ_s-compact subset of $L_\beta(C_b(X, E), F)$. Then \mathcal{A} is $(\beta, \| \cdot \|_F)$-equicontinuous.

Proof. Since $(C_b(X, E), \beta)$ is a strongly Mackey space, by Theorem 3.2 $\{ y' \circ T : T \in \mathcal{A}, y' \in B_{F'} \}$ is a β-equicontinuous subset of $C_b(X, E)'_\beta$, and it follows that \mathcal{A} is $(\beta, \| \cdot \|_F)$-equicontinuous.
Now we can state a characterization of τ_s-compact sets in $L_\beta(C_b(X,E), F)$ in terms of the properties of the corresponding sets of representing operator-valued Borel measures.

Theorem 3.4. Assume that X is a locally compact paracompact space (resp. a P-space). Then for a subset A of $L_\beta(C_b(X,E), F)$, the following statements are equivalent:

(i) A is relatively τ_s-compact.

(ii) A is $(\beta, \| \cdot \|_F)$-equicontinuous and for every $f \in C_b(X,E)$, the set $\{T(f) : T \in A\}$ is relatively compact in F.

(iii) The following statements hold:

(a) $\sup_{T \in A} \tilde{m}_T(X) < \infty$ and for every $\varepsilon > 0$ there exists $K \in \mathcal{K}$ (resp. $M \in \mathcal{F}$) such that $\sup_{T \in A} \tilde{m}_T(X \setminus K) \leq \varepsilon$ (resp. $\sup_{T \in A} \tilde{m}_T(X \setminus M) \leq \varepsilon$).

(b) For every $f \in C_b(X,E)$, the set $\{\int_X f \, dm_T : T \in A\}$ is relatively compact in F''.

(iv) The following statements hold:

(a) $\sup_{T \in A} \|T\| < \infty$ and for every $\varepsilon > 0$ there exists $K \in \mathcal{K}$ (resp. $M \in \mathcal{F}$) such that $\sup_{T \in A} \int_X f \, dm_T \|f''\|_F \leq \varepsilon$ whenever $f \in C_b(X,E)$, $\|f\| \leq 1$ and $f \equiv 0$ on K (resp. M).

(b) For every $f \in C_b(X,E)$, the set $\{\int_X f \, dm_T : T \in A\}$ is relatively compact in F''.

Proof. (i)\Rightarrow(ii) Assume that (i) holds. Then by Corollary 3.3 the set A is $(\beta, \| \cdot \|_F)$-equicontinuous. Clearly for each $f \in C_b(X,E)$, the set $\{T(f) : T \in A\}$ is relatively compact in F.

(ii)\Rightarrow(ii) It follows from [1, Chap. 3, §3.4, Corollary 1].

(ii)\Leftrightarrow(iii)\Leftrightarrow(iv) It follows from Proposition 3.1.

4. **Sequential completeness of $(L_\beta(C_b(X,E), F), \tau_s)$**

It is known that if X is a paracompact space, then X is metacompact and normal. It follows that if X is a locally compact paracompact space, then $\beta = \beta_r$ on $C_b(X,E)$ and the space $(C_b(X,E)_{\beta_r}, \sigma(C_b(X,E)_{\beta_r}, C_b(X,E)))$ is sequentially complete (see [13, Theorem 3]).

Now we can state a Banach-Steinhaus type theorem for $(\beta, \| \cdot \|_F)$-continuous operators $T : C_b(X,E) \to F$.

Theorem 4.1. Assume that X is a locally compact paracompact space. Let $T_k : C_b(X,E) \to F$ be a $(\beta, \| \cdot \|_F)$-continuous linear operator for $k \in \mathbb{N}$. Assume that $T(f) := \lim_k T_k(f)$ exists in F for every $f \in C_b(X,E)$. Then T is a $(\beta, \| \cdot \|_F)$-continuous linear operator and the set $\{T_k : k \in \mathbb{N}\}$ is $(\beta, \| \cdot \|_F)$-equicontinuous.

Proof. In view of the Banach-Steinhaus theorem $T : C_b(X,E) \to F$ is a bounded linear operator. Then for each $y' \in F'$, $(y' \circ T)(f) = \lim(y' \circ T_k)(f)$ for all $f \in C_b(X,E)$, where $y' \circ T_k \in C_b(X,E)'_\beta$ for $k \in \mathbb{N}$ and $y' \circ T \in C_b(X,E)'$. It follows that $(y' \circ T_k)$ is a $\sigma(C_b(X,E)'_\beta, C_b(X,E))$-Cauchy sequence in $C_b(X,E)'_\beta$. Note that under the assumptions on X, we have that $\beta = \beta_\tau$ on $C_b(X,E)$ and hence by [13, Theorem 3] the space $(C_b(X,E)'_\beta, \sigma(C_b(X,E)'_\beta, C_b(X,E)))$ is sequentially complete. Hence for each $y' \in F'$ there exists $\Phi_{y'} \in C_b(X,E)'_\beta$ such that $\Phi_{y'}(f) = \lim(y' \circ T_k)(f)$ for all $f \in C_b(X,E)$. Then $y' \circ T = \Phi_{y'} \in C_b(X,E)'_\beta$. Since β is a Mackey topology, we derive that T is $(\beta, \| \cdot \|_F)$-continuous. Thus $T_k \to T$ for τ_β in $L_\beta(C_b(X,E), F)$, so $\{T_k : k \in \mathbb{N}\} \cup \{T\}$ is a τ_β-compact subset of $L_\beta(C_b(X,E), F)$. Hence by Corollary 3.3 the set $\{T_k : k \in \mathbb{N}\}$ is $(\beta, \| \cdot \|_F)$-equicontinuous. \hfill \blacksquare

As a consequence of theorem 4.1 we get:

Corollary 4.2. Assume that X is a locally compact paracompact space. Then the space $(L_\beta(C_b(X,E), F), \tau_\beta)$ is sequentially complete.

Proof. Let (T_k) be a τ_β-Cauchy sequence in $L_\beta(C_b(X,E), F)$. Then for each $f \in C_b(X,E)$, $(T_k(f))$ is a Cauchy sequence in F, so $T(f) := \lim_k T_k(f)$ exists in F. By Theorem 4.1 T is $(\beta, \| \cdot \|_F)$-continuous and $T_k \to T$ for τ_β. \hfill \blacksquare

References

Received 19 February 2016
Revised 17 March 2016