ArticleOriginal scientific text

Title

Topological properties of some spaces of continuous operators

Authors 1

Affiliations

  1. Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. Szafrana 4A, 65-516 Zielona Góra, Poland

Abstract

Let X be a completely regular Hausdorff space, E and F be Banach spaces. Let Cb(X,E) be the space of all E-valued bounded continuous functions on X, equipped with the strict topology β. We study topological properties of the space Lβ(Cb(X,E),F) of all (β,||·||F)-continuous linear operators from Cb(X,E) to F, equipped with the topology τs of simple convergence. If X is a locally compact paracompact space (resp. a P-space), we characterize τs-compact subsets of Lβ(Cb(X,E),F) in terms of properties of the corresponding sets of the representing operator-valued Borel measures. It is shown that the space (Lβ(Cb(X,E),F),τs) is sequentially complete if X is a locally compact paracompact space.

Keywords

spaces of vector-valued continuous functions, strict topologies, operator measures, topology of simple convergence, continuous operators

Bibliography

  1. N. Bourbaki, Elements of Mathematics, Topological Vector Spaces, Chap. 1-5 (Springer, Berlin, 1987). doi: 10.1007/978-3-642-61715-7
  2. R.C. Buck, Bounded contiuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95-104. doi: 10.1307/mmj/1028998054
  3. S. Choo, Strict topology on spaces of continuous vector-valued functions, Can. J. Math. 31 (4) (1979), 890-896. doi: 10.4153/CJM-1979-084-9
  4. J.B. Cooper, The strict topology and spaces with mixed topologies, Proc. Amer. Math. Soc. 30 (3) (1971), 583-592. doi: 10.1090/S0002-9939-1971-0284789-2
  5. N. Dinculeanu, Vector Measures (Pergamon Press, New York, 1967). doi: 10.1016/b978-1-4831-9762-3.50004-4
  6. D. Fontenot, Strict topologies for vector-valued functions, Canad. J. Math. 26 (4) (1974), 841-853. doi: 10.4153/CJM-1974-079-1
  7. R.K. Goodrich, A Riesz representation theorem, Proc. Amer. Math. Soc. 24 (1970), 629-636. doi: 10.1090/S0002-9939-1970-0415386-2
  8. L. Gillman and M. Henriksen, Concerning rings of continuous functions, Trans. Amer. Math. Soc. 77 (1954), 340-362. doi: 10.1090/S0002-9947-1954-0063646-5
  9. L.A. Khan, The strict topology on a space of vector-valued functions, Proc. Edinburgh Math. Soc. 22 (1) (1979), 35-41. doi: 10.1017/S0013091500027784
  10. L.A. Khan and K. Rowlands, On the representation of strictly continuous linear functionals, Proc. Edinburgh Math. Soc. 24 (1981), 123-130. doi: 10.1017/S0013091500006428
  11. S.S. Khurana, Topologies on spaces of vector-valued continuous functions, Trans. Amer. Math. Soc. 241 (1978), 195-211. doi: 10.1090/S0002-9947-1978-0492297-X
  12. S.S. Khurana and S.A. Choo, Strict topology and P-spaces, Proc. Amer. Math. Soc. 61 (1976), 280-284. doi: 10.2307/2041326
  13. S.S. Khurana and S.I. Othman, Completeness and sequential completeness in certain spaces of measures, Math. Slovaca 45 (2) (1995), 163-170.
  14. M. Nowak, A Riesz representation theory for completely regular Hausdorff spaces and its applications, Open Math., (in press).
  15. W. Ruess, [Weakly] compact operators and DF-spaces, Pacific J. Math. 98 (1982), 419-441. doi: 10.2140/pjm.1982.98.419
  16. H. Schaeffer and X.-D. Zhang, On the Vitali-Hahn-Saks theorem, Operator Theory, Adv. Appl. 75 (Birkhäuser, Basel, 1995), 289-297.
  17. J. Schmets and J. Zafarani, Strict topologies and (gDF)-spaces, Arch. Math. 49 (1987), 227-231. doi: 10.1007/BF01271662
  18. R. Wheeler, The strict topology for P-spaces, Proc. Amer. Math. Soc. 41 (2) (1973), 466-472. doi: 10.2307/2039115
  19. A. Wiweger, Linear spaces with mixed topology, Studia Math. 20 (1961), 47-68.
Pages:
79-86
Main language of publication
English
Received
2016-02-19
Accepted
2016-03-17
Published
2016
Exact and natural sciences