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Abstract

We say that an infinite, zero dimensional, compact Hausdorff space K
has property (∗) if for every nonempty open subset U of K there exists an
open and closed subset V of U which is homeomorphic to K. We show that
if K is a compact Hausdorff space with property (∗) and X is a Banach space
which contains a subspace isomorphic to the space C(K) of all scalar (real
or complex) continuous functions on K and Y is a closed linear subspace of
X which does not contain any subspace isomorphic to the space C([0, 1]),
then the quotient space X/Y contains a subspace isomorphic to the space
C(K).
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1. Introduction

The Banach space of all scalar (real or complex) continuous functions on a com-
pact Hausdorff space K will be denoted by C(K). For a closed subset U of K by
C0(K||U) will be denoted the subspace of C(K) of all functions vanishing on U .
All Banach spaces considered in the paper are over the same scalar field.

Lindenstrauss and Pe lczyński in [5, Theorem 2.1] showed that if a Banach
space X contains a subspace isomorphic to the space C([0, 1]) and Y is a closed
linear subspace of X which does not contain any subspace isomorphic to the
space C([0, 1]), then the quotient space X/Y contains an isomorphic copy of the
space C([0, 1]). The paper is devoted to show the following generalization of the
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Lindenstrauss and Pe lczyński result if K is a compact Hausdorff space and Y
is a closed linear subspace of a Banach space X such that for every nonempty
open subset U of K there exists a nonempty open subset V of U such that the
space C0(K||K \ V ) is isomorphic to the space C(K) and X contains a subspace
isomorphic to the space C(K) and Y does not contain any subspace isomorphic to
the space C([0, 1]), then the quotient space X/Y contains a subspace isomorphic
to the space C(K). We will say that an infinite, zero dimensional, compact
Hausdorff space K has property (∗) if for every nonempty open subset U of K
there exists an open and closed subset V of U which is homeomorphic to K. It
is clear that Hausdorff compact spaces with property (∗) satisfy the assumptions
of the theorem above. There are quite many compact Hausdorff spaces with
property (∗), for example: (1) Cantor cubes {0, 1}Γ for every infinite set Γ, (2)
products of the two arrows space LΓ for every nonempty set Γ, (3) βN \ N. Our
result for K = {0, 1}N provides the Lindenstrauss and Pe lczyński theorem.

The proof of our theorem is a modification of the idea of Lindenstrauss and
Pe lczyński. There are some differences between the situation we consider and the
situation considered in [5]. The space K may not have enough many open and
closed subsets and we can not apply in an easy way the Haar system of functions
in the proof. Moreover in [5] only real scalars are considered. For complex scalars
Lemma 2.1 in [5] is not valid (it may be modified but it needs an explaination).
Our approach is independent from Lindenstrauss and Pe lczyński results and it is
self-contained. Instead of the Haar system we work with binary trees. First we
present a general method of constructions of subspaces isomorphic to the space
C([0, 1]) in C(K) spaces. This part of our considerations contains technicalities
we need in the proof of our main result. It is of course possible to apply in the
proof of Theorem 4 sequences that are close to the Haar system of functions, but
then the technicalities that should be presented would be similar to these in the
proof of Theorem 3.

The paper is divided into two sections. The second section contains main
results and its consequences.

2. Main results

We will construct isomorphic embeddings of the space C([0, 1]) applying the
following fact (see [6, Fact 3]).

Proposition 1. If (en) is a sequence in a Banach space X such that

(1) en = e2n + e2n+1 for every n,

(2) there exist constants 0 < c 6 C such that
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c max
2n6k<2n+1

|ak| 6
∥∥∥2n+1−1∑
k=2n

akek

∥∥∥ 6 C max
2n6k<2n+1

|ak|

for every n and for every scalars a2n , . . . , a2n+1−1, then the closed linear hull of
the set {en : n ∈ N} in X is isomorphic to C([0, 1]). Moreover, if c = C, the
subspace is isometric to C({0, 1}N).

Our constructions of sequences with properties (1) and (2) above will apply
the following well known fact.

Proposition 2. If (fn) is a sequence in a Banach space X such that

f2n+1 = fn − f2n

for every n, then

(a) for every n, there exists a unique pair (l, p) such that l ∈ 2N ∪ {1}, p ∈ N,
2n+ 2 = 2p(l + 1) and

f2n+1 = fl −
p∑
j=1

f2j l+2j−2,

(b) if we gather together for each n all representations above of all members of
the set {f2n , . . . , f2n+1−1}, then every element of the set {fj : j = 2, 4, . . . ,
2n+1 − 2} appears exactly twice and the function f1 appears only once.

The following result shows what is needed to construct an isomorphic copy
of the space C([0, 1]) in a C(K) space.

Theorem 3. Let K be a compact Hausdorff space. If there exist 0 < δ < 1 and
a sequence {fn : n ∈ 2N ∪ {1}} ⊂ C(K) and sequences (Vn) and (Un) of open
nonempty subsets of K with the following properties:

(1) U2n ∪ U2n+1 ⊂ Vn ⊂ Vn ⊂ Un and U2n ∩ U2n+1 = ∅ for every n ∈ N,

(2) |fn(t)| 6 δ
4n for every t ∈ K \ Un and n ∈ 2N ∪ {1},

(3) |1− fn(t)| 6 δ
4n for every t ∈ Vn and n ∈ 2N ∪ {1},

(4) ‖fn‖ = 1 for every n ∈ 2N ∪ {1},

then the closed linear hull of the set {fn : n ∈ 2N ∪ {1}} in C(K) is isomorphic
to the space C([0, 1]). Moreover, if for every n we put

f2n+1 = fl −
p∑
j=1

f2j l+2j−2 ,
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where 2n+ 2 = 2p(l + 1), l ∈ 2N ∪ {1}, p ∈ N, then the following inequalities

(
1− δ

2

)
max

2n6k<2n+1
|ak| 6

∥∥∥2n+1−1∑
k=2n

akfk

∥∥∥ 6
(
3 +

2δ

5

)
max

2n6k<2n+1
|ak|

hold for every n and for every scalars a2n , . . . , a2n+1−1.

Proof. According to Proposition 2 we have equality fn = f2n+f2n+1 for every n.

Let hn =
∑2n+1−1

k=2n |fk|. It is easy to check that

h1(t) = |f2(t)|+ |f1(t)− f2(t)| 6

{
1 + δ

4 + δ
42

if t ∈ V2 ∪ V3

3 if t ∈ K.

We will show the following inequality

hn(t) 6

1 + δ
4 +

∑2n−1
k=1

2δ
42k

if t ∈
⋃2n+1−1
k=2n Vk

3 + δ
4 +

∑2n−1
k=1

2δ
42k

if t ∈ K.

It is clear that if r, s ∈ N and r < s, then Us ⊂ Ur if and only if s ∈ [2mr, 2mr +
2m − 1] where m is the integer part of log2

s
r . For every k ∈ N, let lk ∈ 2N ∪ {1}

and pk ∈ N be such that (lk + 1)2pk = 2k + 2.
We start with the first inequality. Let 2k + 1 ∈ [2n, 2n+1 − 1]. It is easy to

see that

[2pk lk, 2
pk lk + 2pk − 1] ∩ N

= {2k + 1} ∪
pk⋃
j=1

[2pk−j(2jlk + 2j − 2), 2pk−j(2jlk + 2j − 2) + 2pk−j − 1] ∩ N.

Hence U2k+1 ⊂ Ulk and U2k+1 ∩ U2j lk+2j−2 = ∅ for each j = 1, . . . , pk and

|f2k+1(t)| 6 1 +

pk∑
j=1

δ

42j lk+2j−2

for every t ∈ V2k+1. If j ∈ [2pk−r(2rlk+2r−2), 2pk−r(2rlk+2r−2)+2pk−r−1] for
some r ∈ {1, . . . , pk}, then Vj ⊂ V2rlk+2r−2 ⊂ Vlk and U2rlk+2r−2∩U2mlk+2m−2 = ∅
for every m ∈ {1, 2, . . . , pk}, m 6= r and

|f2k+1(t)| 6 |(flk − f2rlk+2r−2)(t)|+
pk∑

m=1,m 6=r

δ

42mlk+2m−2

6
δ

4lk
+

pk∑
m=1

δ

42mlk+2m−2
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for every t ∈ Vj . If j ∈ [2n, 2n+1 − 1] \ [2pk lk, 2
pk lk + 2pk − 1], then we have

|f2k+1(t)| 6 δ

4lk
+

pk∑
m=1

δ

42mlk+2m−2

for every t ∈ Vj . Moreover, for every k we have

|f2k(t)| 6

{
1 if t ∈ V2k

δ
42k

if t ∈
⋃2n−1
j=2n−1,j 6=2k Vj .

According to Proposition 2 (b) we obtain the following inequality

hn(t) 6 1 +
δ

4
+

2n−1∑
k=1

2δ

42k
< 1 +

2δ

5

for every t ∈
⋃2n+1−1
j=2n Vj by summing all inequalities above for all 2k, 2k + 1 in

[2n, 2n+1 − 1]. The consideration above shows also that

hn(t)− |fk(t)| 6
δ

4
+

2n−1∑
k=1

2δ

42k
<

2δ

5

for every k ∈ [2n, 2n+1 − 1] and t ∈ Vk.
To show the second inequality we apply the mathematical induction. Apply-

ing the property (2) for every t /∈
⋃2n+2−1
k=2n+1 Uk we obtain

hn+1(t) =

2n+1−1∑
k=2n

(
|f2k(t)|+ |fk(t)− f2k(t)|

)
6 hn(t) + 2

2n+1−1∑
k=2n

|f2k(t)|

6 3 +
δ

4
+

2n−1∑
k=1

2δ

42k
+ 2

2n+1−1∑
k=2n

δ

42k
6 3 +

δ

4
+

2n+1−1∑
k=1

2δ

42k
6 3 +

2δ

5
.

For every t ∈ U2j ∪ U2j+1 ⊂ Vj for some j ∈ [2n, 2n+1 − 1] we have

hn+1(t) 6 hn(t) + 2
2n+1−1∑
k=2n

|f2k(t)| 6 1 +
δ

4
+

2n−1∑
k=1

2δ

42k
+ 2 + 2

2n+1−1∑
k=2n,k 6=j

δ

42k

6 3 +
δ

4
+

2n+1−1∑
k=1

2δ

42k
6 3 +

2δ

5
.

Let a2n , . . . , a2n+1−1 be arbitrary scalars. Let |aj | = max2n6k<2n+1 |ak|. Then

∥∥∥2n+1−1∑
k=2n

akfk

∥∥∥ 6
∥∥∥2n+1−1∑
k=2n

|ak||fk|
∥∥∥ 6

∥∥∥|aj |hn∥∥∥ 6
(

3 +
2δ

5

)
max

2n6k<2n+1
|ak|
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and for every t ∈ Vj we have∥∥∥∥∥
2n+1−1∑
k=2n

akfk

∥∥∥∥∥ > |aj ||fj(t)| −
2n+1−1∑
k=2n,k 6=j

|ak|fk(t)|

> |aj |
(

1− δ

4j

)
− |aj |(|hn(t)| − |fj(t)|)

>
(

1− δ

2

)
max

2n6k<2n+1
|ak|.

Thus we have shown that the sequence (fn) has properties (1) and (2) of Propo-
sition 1. Therefore the closed linear hull of the set {fn : n ∈ 2N ∪ {1}} in C(K)
is isomorphic to the space C([0, 1]).

A point x in a topological space K is called isolated if the set {x} is open
in K.

Theorem 4. Let K be a compact Hausdorff space and let Z be an infinite di-
mensional Banach space with the following property: for every nonempty open
subset U of K there exists a nonempty open subset V of U such that the space
C0(K||K \ V ) contains a subspace isomorphic to the space Z. If X is a Banach
space containing a subspace isomorphic to the space C(K) and Y is a closed lin-
ear subspace of X which does not contain any subspace isomorphic to the space
C([0, 1]), then the quotient space X/Y contains a subspace isomorphic to the
space Z.

Proof. Since Z is infinite dimensional, K has infinite many points and it does
not have isolated points. Moreover every nonempty open subset of K contains
infinite many points. Let I : C(K) → X be an isomorphic embedding. Then
there exist constants 0 < c 6 C such that c‖f‖ 6 ‖I(f)‖ 6 C‖f‖ for every
f ∈ C(K).

We will show that for every nonempty open subset U of K there exist a
nonempty open subset V of U and ε > 0 such that

‖I(f) + Y ‖ > ε‖f‖

for every f ∈ C0(K||K \ V ).
Suppose that this does not hold. Then there exists a nonempty open subset

U0 of K such that for every nonempty open subset U of U0 and for every ε > 0
there exists f ∈ C0(K||K \ U) such that

‖I(f) + Y ‖ < ε‖f‖.

Fix 0 < δ < 1.
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First Step. We find a nonempty open subset U1 of U0 and g1 ∈ C0(K||K \ U1)
such that U1 ⊂ U0 and

‖g1‖ = 1 and ‖I(g1) + Y ‖ < cδ

4
.

Let t1 ∈ U1 be such that |g1(t1)| = 1. Let f1 = g1(t1)g1. Let V1 = {t ∈ K :
|1− f1(t)| < δ

4}.

Second Step. Since V1 contains at least two points, we find nonempty open
subsets U2, U3 of V1 such that U2 ∩U3 = ∅. According to our assumption we find
g2 ∈ C0(K||K \ U2) such that

‖g2‖ = 1, and ‖I(g2) + Y ‖ < cδ

42
.

Let t2 ∈ U2 be such that |g2(t2)| = 1. Let f2 = g2(t2)g2. Let V2 = {t ∈ K :
|1− f2(t)| < δ

42
}, and V3 be any nonempty open subset of U3 such that V3 ⊂ U3.

Next Steps. Continuing the procedure we are able to find sequences (Vn) and
(Un) of nonempty open subsets of U0 and a sequence {fn : n ∈ 2N ∪ {1}} in
C(K) with the following properties:

(1) U2n ∪ U2n+1 ⊂ Vn ⊂ Vn ⊂ Un ⊂ U0 and U2n ∩ U2n+1 = ∅ for every n ∈ N,

(2) |fn(t)| = 0 for every t ∈ K \ Un and n ∈ 2N ∪ {1},
(3) |1− fn(t)| 6 δ

4n for every t ∈ Vn and n ∈ 2N ∪ {1},
(4) ‖fn‖ = 1 for every n ∈ 2N ∪ {1},
(5) ‖I(fn) + Y ‖ < cδ

4n for every n ∈ 2N ∪ {1}.

For every n ∈ 2N ∪ {1}, let hn ∈ Y be such that ‖I(fn)− hn‖ 6 cδ
4n . For every n

we define

f2n+1 = fl −
p∑
j=1

f2j l+2j−2 and h2n+1 = hl −
p∑
j=1

h2j l+2j−2 ,

where 2n + 2 = 2p(l + 1), l ∈ 2N ∪ {1}, p ∈ N. Then fn = f2n + f2n+1 and
hn = h2n + h2n+1 for every n ∈ N. In view of Proposition 2 we have

∥∥∥2n+1−1∑
k=2n

I(fk)− hk
∥∥∥ 6

cδ

4
+

2n−1∑
k=1

2cδ

42k
<

2cδ

5
.
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According to Theorem 3 for every n and every scalars a2n , . . . , a2n+1−1 we have

∥∥∥2n+1−1∑
k=2n

akhk

∥∥∥ 6
∥∥∥2n+1−1∑
k=2n

akI(fk)
∥∥∥+

∥∥∥2n+1−1∑
k=2n

ak(I(fk)− hk)
∥∥∥

6
(
C
(

3 +
2δ

5

)
+

2n+1−1∑
k=2n

‖I(fk)− hk‖
)

max
2n6k<2n+1

|ak|

6 C
(

3 +
4δ

5

)
max

2n6k<2n+1
|ak|

and

∥∥∥2n+1−1∑
k=2n

akhk

∥∥∥ >
∥∥∥2n+1−1∑
k=2n

akI(fk)
∥∥∥− ∥∥∥2n+1−1∑

k=2n

ak(I(fk)− hk)
∥∥∥

>
(
c
(

1− δ

2

)
−

2n+1−1∑
k=2n

‖I(fk)− hk‖
)

max
2n6k<2n+1

|ak|

> c
(

1− 9δ

10

)
max

2n6k<2n+1
|ak|.

According to Proposition 1 the space Y contains a subspace isomorphic to the
space C([0, 1]). This contradicts our assumption. Therefore, for every nonempty
open subset U of K there exists a nonempty open subset V of U and ε > 0 such
that

‖I(f) + Y ‖ > ε‖f‖

for every f ∈ C0(K||K\V ). This shows that the space C0(K||K\V ) is isomorphic
to a subspace of X/Y .

An inspection of arguments used in the proof above shows that without the
homogenity assumption there holds the following version of Theorem 4.

Theorem 5. Let K be a compact Hausdorff space without isolated points. If X
is a Banach space containing a subspace isomorphic to the space C(K) and Y is
a closed linear subspace of X which does not contain any subspace isomorphic to
the space C([0, 1]), then the quotient space X/Y contains a subspace isomorphic
to a space C0(K||K \ U) for some nonempty open subset U of K.

It is easy to find a compact Hausdorff space K such that for every open
subset U of K there exists an open nonempty subset V of U for which spaces
C0(K||K \ V ) and C(K) are not isomorphic. This property has for example the
lexicographic square (see [4]). If U is an open and closed subset of K, then we
have equality C0(K||K \ U) = C(U). A Hausdorff compact space K is called
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zero dimensional if it has a base of topology consisting of open and closed sets.
We will say that an infinite, zero dimensional, compact Hausdorff space K has
property (∗) if for every nonempty open subset U of K there exists a nonempty
open and closed subset V of U which is homeomorphic to K. As a straightforward
consequence of Theorem 4 we obtain the following corollary.

Corollary 6. Let K be a compact Hausdorff space with property (∗). If a Banach
space X contains a subspace isomorphic to the space C(K) and Y is a closed
linear subspace of X which does not contain any subspace isomorphic to the space
C([0, 1]), then the quotient space X/Y contains a subspace isomorphic to the space
C(K).

The two-arrows space is the following topological space:

L = {(t, 0) : 0 < t 6 1} ∪ {(t, 1) : 0 6 t < 1}

equipped with the base of topology: at a point (t, 0) of the form{{
(s, r) : t− 1

n < s < t, 0 < s, r ∈ {0, 1}
}
∪ {(t, 0)} : n ∈ N

}
and at a point (t, 1) of the form{{

(s, r) : t < s < t+ 1
n , s < 1, r ∈ {0, 1}

}
∪ {(t, 1)} : n ∈ N

}
.

The space L is Hausdorff, compact, sequentially compact, hereditarily separable
and hereditarily Lindelöf (see [2, p. 270]).

Proposition 7. The following compact Hausdorff spaces have property (∗) :

(1) Cantor cubes {0, 1}Γ for every infinite set Γ,

(2) products of the two-arrows space LΓ for every set Γ,

(3) βN \ N.

Moreover, we have the following simple fact.

Proposition 8. Let Γ be a nonempty set. If {Kγ : γ ∈ Γ} is a family of
compact Hausdorff spaces with property (∗), then the product space Pγ∈ΓKγ has
also property (∗).

Proof of Proposition 7. The property (∗) for Cantor cubes is obvious. It is
easy to see that for every 0 6 s < t 6 1 the set

{(u, 0) : s < u 6 t} ∪ {(u, 1) : s 6 u < t}

is open and closed in L. Moreover the set is homeomorphic to L.
The fact that βN \ N has property (∗) is well known (see [3, p. 98–99]).
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The space C(L) is isometrically isomorphic to the Banach space D(0, 1) of
all scalar left continuous functions on the interval [0, 1] with a right-hand limit
at each point of [0, 1) equipped with the sup norm. Spaces C(LΓ) have many
interesting properties (see [1, 6, 7]). A Banach space X has the separable com-
plementation property if for every separable subspace Y of X there exists a
separable and complemented subspace Z of X which contains Y . As a straight-
forward consequence of Corollary 6 and Proposition 7 and [6, Corollary 8] we
obtain the following result.

Corollary 9. If a Banach space X contains an isomorphic copy of the space
C(L) and Y is a closed linear subspace of X which does not contain any subspace
isomorphic to the space C([0, 1]), then the quotient space X/Y does not have the
separable complementation property.

It is well known that for every infinite set Γ the space C([0, 1]Γ) contains a
subspace isometric to C({0, 1}Γ) and the space C({0, 1}Γ) contains a subspace
isometric to C([0, 1]Γ). As a straightforward consequence of Theorem 4 and facts
above we obtain also

Corollary 10. Let Γ be a nonempty set. If X is a Banach space containing an
isomorphic copy of the space C([0, 1]Γ) and Y is a closed linear subspace of X
that does not contain any subspace isomorphic to the space C([0, 1]), then the
quotient space X/Y contains a subspace isomorphic to the space C([0, 1]Γ).

The characteristic function of a set W is denoted by χW . The next corollary
follows from the proof of Theorem 4.

Corollary 11. Let K be a compact Hausdorff space with property (∗). If Y is a
closed linear subspace of C(K) which does not contain any subspace isomorphic
to the space C([0, 1]), then for every nonempty open subset U of K there exists a
nonempty open and closed subset V of U such that the operator J : Y → C(K)
given by the formula J(f) = fχK\V is an isomorphic embedding.

Proof. Let U be a nonempty open subset of K. We showed in the proof of
Theorem 4 that there exists a nonempty open and closed subset V of U and
0 < ε < 1 such that ‖fχV +Y ‖ > ε‖fχV ‖ for every f ∈ C(K). Consequently for
every f ∈ Y we have

‖fχK\V ‖ = ‖fχV − f‖ > ε‖fχV ‖.

and

ε‖f‖ = max{ε‖fχK\V ‖, ε‖fχV ‖} 6 ‖fχK\V ‖.
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