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b Laboratory of Mathematics, University of Sidi Bel-Abbès
P.O. Box 89, Sidi Bel-Abbès 22000, Algeria

c Department of Mathematics, Faculty of Science, King Abdulaziz University
P.O. Box 80203, Jeddah 21589, Saudi Arabia

e-mail: abbasmsaid@yahoo.fr
benchohra@univ-sba.dz

Abstract

In this paper we use the upper and lower solutions method combined
with Schauder’s fixed point theorem and a fixed point theorem for condens-
ing multivalued maps due to Martelli to investigate the existence of solutions
for some classes of partial Hadamard fractional integral equations and in-
clusions.
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1. Introduction

The fractional calculus deals with extensions of derivatives and integrals to non-
integer orders. There has been a significant development in ordinary and partial
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fractional differential and integral equations in recent years; see the monographs
of Abbas et al. [7, 8], Kilbas et al. [21], Miller and Ross [26], the papers of
Abbas et al. [1, 9], Benchohra et al. [11], Vityuk and Golushkov [30, 31], and the
references therein.

The method of upper and lower solutions has been successfully applied to
study the existence of solutions for ordinary and partial differential equations
and inclusions. See the monographs by Benchohra et al. [12], Ladde et al. [23],
the papers of Abbas et al. [2, 3, 4, 5, 6, 9], Pachpatte [27], and the references
therein.

In [13], Butzer et al. investigate properties of the Hadamard fractional in-
tegral and the derivative. In [14], they obtained the Mellin transforms of the
Hadamard fractional integral and differential operators and in [28], Pooseh et al.
obtained expansion formulas of the Hadamard operators in terms of integer order
derivatives. Many other interesting properties of those operators and others are
summarized in [29] and the references therein.

In the paper, we use the method of upper and lower solutions for the existence
of solutions of the following Hadamard partial fractional integral equation

u(x, y) = µ(x, y)

(1)

+
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 f(s, t, u(s, t))

st
dtds; if (x, y) ∈ J,

where J := [1, a]× [1, b], a, b > 1, r1, r2 > 0, µ : J → R, f : J × R→ R are given
continuous functions, and Γ(·) is the (Euler’s) Gamma function defined by

Γ(ζ) =

∫ ∞
0

tζ−1e−tdt; ζ > 0.

Next, we we discuss the existence of solutions of the following Hadamard partial
fractional integral inclusion

(2) u(x, y)− µ(x, y) ∈ (HIrσF )(x, y, u(x, y)); (x, y) ∈ J,

where σ = (1, 1), F : J × R → P(R) is a compact valued multi-valued map,
HIrσF is the definite Hadamard integral for the set-valued function F of order
r = (r1, r2) ∈ (0,∞) × (0,∞), µ : J → R is a given continuous function, and
P(R) is the family of all nonempty subsets of R.

Our approach is based on a combination of Schauder’s fixed point theorem
[18] with the concept of upper and lower solutions for the integral equation (1),
and on a combination of a fixed-point theorem for condensing multivalued maps
due to Martelli [25] with the concept of upper and lower solutions for the integral
inclusion (2).
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The paper initiates the application of upper and lower solutions method to these
new classes of problems.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout the paper. Denote by L1(J,R) the Banach space of functions
u : J −→ R that are Lebesgue integrable with norm

‖u‖L1 =

∫ a

1

∫ b

1
|u(x, y)| dxdy.

Let C := C(J,R) be the Banach space of continuous functions u : J → R with
the norm

‖u‖C = sup
(x,y)∈J

|u(x, y)|.

Let (X, d) be a metric space. We use the following notation:

P(X) = {Y ⊂ X : Y is nonempty}

Pcp,cv(X) = {Y ∈ P(X) : Y is compact and convex}.

A multivalued map G : X → P(X) has convex (closed) values if G(x) is convex
(closed) for all x ∈ X. We say that G is bounded on bounded sets if G(B) is
bounded in X for each bounded set B of X, i.e.,

sup
x∈B
{sup{ ‖u‖ : u ∈ G(x)}} <∞.

G is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set G(x0)
is a closed subset of X, and if for each open set N of X containing G(x0), there
exists an open neighborhood N0 of x0 such that G(N0) ⊆ N. Finally, we say that
G has a fixed point if there exists x ∈ X such that x ∈ G(x).

Definition 2.1 [10]. An upper semicontinuous map G : X → P(X) is said
to be condensing, if for any bounded subset B ⊆ X with α(B) 6= 0, we have
α(G(B)) < α(B), where α denotes the Kuratowski measure of noncompactness.

Remark 2.2. A completely continuous multivalued map is the easiest example
of a condensing map.

Definition 2.3. The selection set of a multivalued map G : J → P(R) is defined
by

SG = {u ∈ L1(J) : u(x, y) ∈ G(x, y) , a.e. (x, y) ∈ J}.
For each u ∈ C, the set SF◦u known as the set of selectors of F ◦ u is defined by

SF◦u = {v ∈ L1(J) : v(x, y) ∈ F (x, y, u(x, y)) , a.e. (x, y) ∈ J}.
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For more details on multivalued maps we refer to the books of Deimling [15],
Djebali et al. [16], Hu and Papageorgiou [20], Kisielewicz [22], Górniewicz [17].

Definition 2.4. A multivalued map F : J ×R→ P(R) is called a Carathéodory
map if

(i) (x, y) 7−→ F (x, y, u) is measurable for each u ∈ R;

(ii) u 7−→ F (x, y, u) is upper semicontinuous for almost all (x, y) ∈ J.

F is said to be L1-Carathéodory if (i), (ii) and the following condition hold;

(iii) for each c > 0, there exists σc ∈ L1(J,R+) such that

‖F (x, y, u)‖P = sup{‖f‖ : f ∈ F (x, y, u)}

≤ σc(x, y) for all |u| ≤ c and for a.e. (x, y) ∈ J.

Lemma 2.5 [20]. Let G be a completely continuous multivalued map with non-
empty compact values. G is u.s.c. if and only if G has a closed graph.

Lemma 2.6 [24]. Let X be a Banach space. Let F : J ×X −→ Pcp,cv(X) be an
L1-Carathéodory multivalued map and let Λ be a linear continuous mapping from
L1(J,X) to C(J,X). Then the operator

Λ ◦ SF◦u : C(J,X) −→ Pcp,cv(C(J,X)),

w 7−→ (Λ ◦ SF◦u)(w) := (ΛSF◦u)(w)

is a closed graph operator.

Definition 2.7 [19, 21]. The Hadamard fractional integral of order q > 0 for a
function g ∈ L1([1, a],R), is defined as

(HIr1g)(x) =
1

Γ(q)

∫ x

1

(
log

x

s

)q−1 g(s)

s
ds.

Example 2.8. The Hadamard fractional integral of order q > 0 for the function
w : [1, e]→ R, defined by w(x) = (log x)β−1 with β > 0, is

(HIq1w)(x) =
Γ(β)

Γ(β + q)
(log x)β+q−1.

Definition 2.9. Let r1, r2 ≥ 0, σ = (1, 1) and r = (r1, r2). For w ∈ L1(J), we
define the Hadamard partial fractional integral of order r by the expression

(HIrσw)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 w(s, t)

st
dtds.
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Definition 2.10. Let G : J → P(R) and F : J × R → P(R) be set-valued
functions with nonempty values in R. (HIrσG)(x, y) is defined as

(HIrσG)(x, y) =

{∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 g(s, t)

stΓ(r1)Γ(r2)
dtds : g ∈ SG

}
is the definite Hadamard integral for the set-valued functions G of order r =
(r1, r2) ∈ (0,∞)× (0,∞).

Similarly,(
HIrσF

)
(x, y, u(x, y))

=

{∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 f(s, t)

stΓ(r1)Γ(r2)
dtds : f ∈ SF◦u

}
is the definite Hadamard integral for the set-valued functions F of order r which
is defined as

Theorem 2.11 (Martelli’s fixed point theorem) [25]. Let X be a Banach space
and N : X → Pcl,cv(X) be an u. s. c. and condensing map. If the set Ω := {u ∈
X : λu ∈ N(u) for some λ > 1} is bounded, then N has a fixed point.

3. Existence results for partial Hadamard fractional integral
equations

Let us start by defining what we mean by a solution of the integral equation (1).

Definition 3.1. A function u ∈ C is said to be a solution of (1) if u satisfies
equation (1) on J.

Definition 3.2. A function z ∈ C is said to be a lower solution of the integral
equation (1) if z satisfies

z(x, y) ≤ µ(x, y) +

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 f(s, t, z(s, t))

stΓ(r1)Γ(r2)
dtds; (x, y) ∈ J.

The function z is said to be an upper solution of (1) if the reversed inequality
holds.

Further, we present our main result for the equation (1).

Theorem 3.3. Assume that the following hypothesis holds:
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(H) There exist v and w ∈ C, lower and upper solutions for the equation (1) and
such that v ≤ w.

Then the integral equation (1) has at least one solution u such that

v(x, y) ≤ u(x, y) ≤ w(x, y) for all (x, y) ∈ J.

Proof. Consider the following modified integral equation:
(3)

u(x, y) = µ(x, y)+
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 g(s, t, u(s, t))

st
dtds,

where

g(x, y, u(x, y)) = f(x, y, h(x, y, u(x, y))),

h(x, y, u(x, y)) = max{v(x, y),min{u(x, y), w(x, y)}},

for each (x, y) ∈ J.
A solution of (3) is a fixed point of the operator N : C → C defined by

(Nu)(x, y) = µ(x, y)+
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
log

x

s

)r1−1(
log

y

t

)r2−1 g(s, t, u(s, t))

st
dtds.

Notice that g is a continuous function, and from (H) there exists M > 0 such
that

(4) |g(x, y, u)| ≤M, for each (x, y) ∈ J, and u ∈ IR.

Set

η = ‖µ‖C +
M(log a)r1(log b)r2

Γ(1 + r1)Γ(1 + r2)

and

D = {u ∈ C : ‖u‖C ≤ η}.

Clearly D is a closed convex subset of C and N maps D into itself. We shall show
that N satisfies the assumptions of Schauder fixed point theorem. The proof will
be given in several steps.

Step 1. N is continuous.



Partial Hadamard fractional integral equations and inclusions 111

Let {un} be a sequence such that un → u in D. Then

|(Nun)(x, y)− (Nu)(x, y)|

≤ 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

∣∣∣log
x

s

∣∣∣r1−1 ∣∣∣log
y

t

∣∣∣r2−1

× |g(s, t, un(s, t))− g(s, t, u(s, t))|
st

dtds

≤ 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

∣∣∣log
x

s

∣∣∣r1−1 ∣∣∣log
y

t

∣∣∣r2−1

×
sup(s,t)∈J |g(s, t, un(s, t))− g(s, t, u(s, t))|

st
dtds

≤ (log a)r1(log b)r2

Γ(1 + r1)Γ(1 + r2)
sup

(s,t)∈J
|g(s, t, un(s, t))− g(s, t, u(s, t))|.

For each (x, y) ∈ J, set (g ◦ u)(x, y) := g(x, y, u(x, y)). Thus, we get

|(Nun)(x, y)− (Nu)(x, y)|

≤ (log a)r1(log b)r2

Γ(1 + r1)Γ(1 + r2)
sup

(s,t)∈J
|(g ◦ un)(s, t)− (g ◦ u)(s, t))|

≤ (log a)r1(log b)r2

Γ(1 + r1)Γ(1 + r2)
‖g ◦ un − g ◦ u‖C .

From the Lebesgue’s dominated convergence theorem and the continuity of the
function g, we get

|(Nun)(x, y)− (Nu)(x, y)| → 0 as n→∞.

Step 2. N(D) is bounded.
This is clear since N(D) ⊂ D and D is bounded.

Step 3. N(D) is equicontinuous.
Let (x1, y1), (x2, y2) ∈ (1, a]× (1, b], x1 < x2, y1 < y2, and let u ∈ D. Then

|(Nu)(x2, y2)− (Nu)(x1, y1)| ≤ |µ(x1, y1)− µ(x2, y2)|

+

∫ x1

1

∫ y1

1

∣∣∣∣(log
x2

s

)r1−1 (
log

y2

t

)r2−1
−
(

log
x1

s

)r1−1 (
log

y1

t

)r2−1
∣∣∣∣

× |g(s, t, u(s, t))|
stΓ(r1)Γ(r2)

dtds
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+
1

Γ(r1)Γ(r2)

∫ x2

x1

∫ y2

y1

∣∣∣log
x2

s

∣∣∣r1−1 ∣∣∣log
y2

t

∣∣∣r2−1 |g(s, t, u(s, t))|
st

dtds

+
1

Γ(r1)Γ(r2)

∫ x1

1

∫ y2

y1

∣∣∣log
x2

s

∣∣∣r1−1 ∣∣∣log
y2

t

∣∣∣r2−1 |g(s, t, u(s, t))|
st

dtds

+
1

Γ(r1)Γ(r2)

∫ x2

x1

∫ y1

1

∣∣∣log
x2

s

∣∣∣r1−1 ∣∣∣log
y2

t

∣∣∣r2−1 |g(s, t, u(s, t))|
st

dtds.

Thus

|(Nu)(x2, y2)− (Nu)(x1, y1)| ≤ |µ(x1, y1)− µ(x2, y2)|

+

∫ x1

1

∫ y1

1

∣∣∣∣(log
x2

s

)r1−1 (
log

y2

t

)r2−1
−
(

log
x1

s

)r1−1 (
log

y1

t

)r2−1
∣∣∣∣

× M

stΓ(r1)Γ(r2)
dtds

+
1

Γ(r1)Γ(r2)

∫ x2

x1

∫ y2

y1

∣∣∣log
x2

s

∣∣∣r1−1 ∣∣∣log
y2

t

∣∣∣r2−1 M

st
dtds

+
1

Γ(r1)Γ(r2)

∫ x1

1

∫ y2

y1

∣∣∣log
x2

s

∣∣∣r1−1 ∣∣∣log
y2

t

∣∣∣r2−1 M

st
dtds

+
1

Γ(r1)Γ(r2)

∫ x2

x1

∫ y1

1

∣∣∣log
x2

s

∣∣∣r1−1 ∣∣∣log
y2

t

∣∣∣r2−1 M

st
dtds

≤ |µ(x1, y1)− µ(x2, y2)|+ M

Γ(1 + r1)Γ(1 + r2)

× [2(log y2)r2(log x2 − log x1)r1 + 2(log x2)r1(log y2 − log y1)r2

+ (log x1)r1(log y1)r2− (log x2)r1(log y2)r2− 2(log x2− log x1)r1(log y2− log y1)r2 ].

As x1 → x2 and y1 → y2, the right-hand side of the above inequality tends to
zero.

As a consequence of Steps 1 to 3 together with the Arzela-Ascoli theorem,
we can conclude that N is completely continuous.

Therefore, N has a fixed point u which is a solution of the equation (3).

Step 4. The solution u of (3) satisfies

v(x, y) ≤ u(x, y) ≤ w(x, y) for all (x, y) ∈ J.

Let u be the solution of (3). We prove that

u(x, y) ≤ w(x, y) for all (x, y) ∈ J.
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Assume that u− w attains a positive maximum on J at (x, y) ∈ J, that is,

(u− w)(x, y) = max{u(x, y)− w(x, y) : (x, y) ∈ J} > 0.

We distinguish two cases.

Case 1. If (x, y) ∈ (1, a)× [1, b] then, there exists (x∗, y∗) ∈ (1, a)× [1, b] such
that

(5) [u(x, y∗)− w(x, y∗)] + [u(x∗, y)− w(x∗, y)]− [u(x∗, y∗)− w(x∗, y∗)] ≤ 0

for all (x, y) ∈ ([x∗, x]× {y∗}) ∪ ({x∗} × [y∗, b]) and

(6) u(x, y)− w(x, y) > 0; for all (x, y) ∈ (x∗, x]× (y∗, b].

By the definition of h one has
(7)

u(x, y) = µ(x, y) +
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 g(s, t, u(s, t))

st
dtds

for all (x, y) ∈ [x∗, x]× [y∗, b], where

g(x, y, u(x, y)) = f(x, y, w(x, y))); (x, y) ∈ [x∗, x]× [y∗, b].

Thus equation (7) gives

(8)

u(x, y) + u(x∗, y∗)− u(x, y∗)− u(x∗, y)

=

∫ x

x∗

∫ y

y∗

(
log

x

s

)r1−1 (
log

y

t

)r2−1 g(s, t, u(s, t))

stΓ(r1)Γ(r2)
dtds.

Since w is an upper solution to (1) then using (8) we get

u(x, y)+u(x∗, y∗)−u(x, y∗)−u(x∗, y) ≤ w(x, y)+w(x∗, y∗)−w(x, y∗)−w(x∗, y),

which gives,

(9)
[u(x, y)− w(x, y)] ≤ [u(x, y∗)− w(x, y∗)] + [u(x∗, y)− w(x∗, y)]

− [u(x∗, y∗)− w(x∗, y∗)].
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Thus from (5), (6) and (9) we obtain the contradiction

0 < [u(x, y)− w(x, y)] ≤ [u(x, y∗)− w(x, y∗)]

+[u(x∗, y)−w(x∗, y)]− [u(x∗, y∗)−w(x∗, y∗)] ≤ 0; for all (x, y) ∈ [x∗, x]× [y∗, b].

Case 2. If x = 1, then

w(1, y) < u(1, y) ≤ w(1, y)

which is a contradiction. Thus

u(x, y) ≤ w(x, y) for all (x, y) ∈ J.

Analogously, we can prove that

u(x, y) ≥ v(x, y), for all (x, y) ∈ J.

This shows that the integral equation (3) has a solution u satisfying v ≤ u ≤ w
which is also a solution of (1).

4. Existence results for partial Hadamard fractional integral
inclusions

Definition 4.1. A function v ∈ C is said to be a lower solution of (2) if there
exists a function f1 ∈ SF◦v such that v satisfies

v(x, y) ≤ µ(x, y) +

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 f1(s, t)

stΓ(r1)Γ(r2)
dtds; (x, y) ∈ J.

A function w is said to be an upper solution of (2) if there exists a function
f2 ∈ SF◦w such that w satisfies

w(x, y) ≥ µ(x, y) +

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 f2(s, t)

stΓ(r1)Γ(r2)
dtds; (x, y) ∈ J.

Theorem 4.2. Assume that the following hypotheses

(H1) The multifunction F : J × R −→ Pcp,cv(R) is L1-Carathéodory,

(H2) There exist v and w ∈ C, lower and upper solutions for the integral inclusion
(2) such that v ≤ w,

hold. Then the Hadamard integral inclusion (2) has at least one solution u such
that

v(x, y) ≤ u(x, y) ≤ w(x, y) for all (x, y) ∈ J.
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Proof. Solutions of the inclusion (2) are solutions of the Hadamard integral
inclusion

u(x, y) ∈
{
µ(x, y) + (HIrσf)(x, y) : f ∈ SF◦u

}
; (x, y) ∈ J.

Consider the following modified integral inclusion:

(10) u(x, y)− µ(x, y) ∈ (HIrσF )(x, y, (gu)(x, y)); (x, y) ∈ J,

where g : C −→ C be the truncation operator defined by

(gu)(x, y) =


v(x, y); u(x, y) < v(x, y),
u(x, y); v(x, y) ≤ u(x, y) ≤ w(x, y),
w(x, y); w(x, y) < u(x, y).

A solution to (10) is a fixed point of the operator N : C → P(C) defined by

(Nu)(x, y)=

h ∈C :

h(x, y) = µ(x, y)

+
∫ x

1

∫ y
1

(
log x

s

)r1−1(
log y

t

)r2−1 f(s,t)
stΓ(r1)Γ(r2)dtds; (x, y) ∈ J

,
where

f ∈ S̃F◦g(u)

= {f ∈ SF◦g(u) : f(x, y) ≥ f1(x, y) on A1 and f(x, y) ≤ f2(x, y) on A2},

A1 = {(x, y) ∈ J : u(x, y) < v(x, y) ≤ w(x, y)},

A2 = {(x, y) ∈ J : v(x, y) ≤ w(x, y) < u(x, y)},

and

S1
F◦g(u) = {f ∈ L1(J) : f(x, y) ∈ F (t, x, (gu)(x, y)); for (x, y) ∈ J}.

Remark 4.3. (A) For each u ∈ C, the set S̃F◦g(u) is nonempty. In fact, (H1)
implies that there exists f3 ∈ SF◦g(u), so we set

f = f1χA1 + f2χA2 + f3χA3 ,

where χAi is the characteristic function of Ai; i = 1, 2, 3 and

A3 = {(x, y) ∈ J : v(x, y) ≤ u(x, y) ≤ w(x, y)}.

Then, by decomposability, f ∈ S̃F◦g(u).
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(B) By the definition of g it is clear that F (·, ·, (gu)(·, ·)) is an L1-Carathéodory
multivalued map with compact convex values and there exists φ ∈ C(J,R+) such
that

‖F (t, x, (gu)(x, y))‖P ≤ φ(x, y); for each u ∈ R and (x, y) ∈ J.

Set

φ∗ := sup
(x,y)∈J

φ(x, y).

From the fact that g(u) = u for all v ≤ u ≤ w, the problem of finding the
solutions of the integral inclusion (2) is reduced to finding the solutions of the
operator inclusion u ∈ N(u). We shall show that N is a completely continuous
multivalued map, u.s.c. with convex and closed values. The proof will be given
in several steps.

Step 1. N(u) is convex for each u ∈ C.
Indeed, if h1, h2 belong to N(u), then there exist f?1 , f

?
2 ∈ S̃F◦g(u) such that for

each (x, y) ∈ J we have

hi(x, y) = µ(x, y) +

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 f?i (s, t)

stΓ(r1)Γ(r2)
dtds; i = 1, 2.

Let 0 ≤ ξ ≤ 1. Then, for each (x, y) ∈ J, we have

(ξh1 + (1− ξ)h2)(x, y) = µ(x, y)

+

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 ((ξf?1 + (1− ξ)f?2 ))(s, t)

stΓ(r1)Γ(r2)
dtds.

Since S̃F◦g(u) is convex (because F has convex values), we have

ξh1 + (1− ξ)h2 ∈ N(u).

Step 2. N sends bounded sets of C into bounded sets.

Indeed, we can prove that N(C) is bounded. It is enough to show that there
exists a positive constant ` such that for each h ∈ N(u), u ∈ C one has ‖h‖C ≤ `.
If h ∈ N(u), then there exists f ∈ S̃F◦g(u) such that for each (x, y) ∈ J we have

h(x, y) = µ(x, y) +

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 f(s, t)

stΓ(r1)Γ(r2)
dtds.

Then we get

|h(x, y)| ≤ |µ(x, y)|+
∫ x

1

∫ y

1

∣∣∣log
x

s

∣∣∣r1−1 ∣∣∣log
y

t

∣∣∣r2−1 φ(s, t)

stΓ(r1)Γ(r2)
dtds.
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Thus, we obtain

|h(x, y)| ≤ ‖µ‖C +

∫ x

φ∗

∫ y

1

∣∣∣log
x

s

∣∣∣r1−1 ∣∣∣log
y

t

∣∣∣r2−1 φ∗

stΓ(r1)Γ(r2)
dtds

≤ ‖µ‖C +
(log a)r1(log b)r2φ∗

Γ(1 + r1)Γ(1 + r2)
:= `.

Hence
‖h‖C ≤ `.

Step 3. N sends bounded sets of C into equi-continuous sets.
Let (x1, y1), (x2, y2) ∈ J, x1 < x2, y1 < y2 and Bρ = {u ∈ C : ‖u‖C ≤ ρ} be a
bounded set of C. For each u ∈ Bρ and h ∈ N(u), there exists f ∈ S̃F◦g(u) such
that for each (x, y) ∈ J, we get

|h(x2, y2)− h(x1, y1)| ≤ |µ(x1, y1)− µ(x2, y2)|

+

∫ x1

1

∫ y1

1

∣∣∣∣(log
x2

s

)r1−1 (
log

y2

t

)r2−1
−
(

log
x1

s

)r1−1 (
log

y1

t

)r2−1
∣∣∣∣

× |f(s, t)|
stΓ(r1)Γ(r2)

dtds

+
1

Γ(r1)Γ(r2)

∫ x2

x1

∫ y2

y1

∣∣∣log
x2

s

∣∣∣r1−1 ∣∣∣log
y2

t

∣∣∣r2−1 |f(s, t)|
st

dtds

+
1

Γ(r1)Γ(r2)

∫ x1

1

∫ y2

y1

∣∣∣log
x2

s

∣∣∣r1−1 ∣∣∣log
y2

t

∣∣∣r2−1 |f(s, t)|
st

dtds

+
1

Γ(r1)Γ(r2)

∫ x2

x1

∫ y1

1

∣∣∣log
x2

s

∣∣∣r1−1 ∣∣∣log
y2

t

∣∣∣r2−1 |f(s, t)|
st

dtds.

Hence

|h(x2, y2)− h(x1, y1)| ≤ |µ(x1, y1)− µ(x2, y2)|+ φ∗

Γ(1 + r1)Γ(1 + r2)

× [2(log y2)r2(log x2 − log x1)r1 + 2(log x2)r1(log y2 − log y1)r2

+ (log x1)r1(log y1)r2 − (log x2)r1(log y2)r2

− 2(log x2 − log x1)r1(log y2 − log y1)r2 ].

As x1 → x2 and y1 → y2, the right-hand side of the above inequality tends to
zero.

As a consequence of Steps 1 to 3 together with the Arzelá-Ascoli theorem, we
conclude that N is completely continuous and therefore a condensing multivalued
map.
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Step 4. N has a closed graph.
Let un → u∗, hn ∈ N(un) and hn → h∗. We need to show that h∗ ∈ N(u∗).
hn ∈ N(un) means that there exists fn ∈ S̃F◦g(un) such that, for each (x, y) ∈ J,
we have

hn(x, y) = µ(x, y) +

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 fn(s, t)

stΓ(r1)Γ(r2)
dtds.

We have to show that there exists f∗ ∈ S̃F◦g(u∗) such that, for each (x, y) ∈ J,

h∗(x, y) = µ(x, y) +

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 f∗(s, t)

stΓ(r1)Γ(r2)
dtds.

Consider the linear continuous operator

Λ : L1(J) −→ C(J),

f 7−→ Λf

defined by

(Λf)(x, y) =

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 f(s, t)

stΓ(r1)Γ(r2)
dtds.

Remark 4.3 (B) implies that the operator Λ is well defined. From Lemma 2.6, it
follows that Λ ◦ S̃F◦u is a closed graph operator. Clearly we have

|hn(x, y)− h∗(x, y)| =
∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 |fn(s, t)− f∗(s, t)|
stΓ(r1)Γ(r2)

dtds

→ 0 as n→∞.

Moreover, from the definition of Λ, we deduce

hn − µ ∈ Λ(S̃F◦g(un)).

Since un → u∗, it follows from Lemma 2.6 that, for some f∗ ∈ Λ(S̃F◦g(u∗)), we
have

h∗(x, y) = µ(x, y) +

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 f∗(s, t)

stΓ(r1)Γ(r2)
dtds.

From Lemma 2.5, we conclude that N is u.s.c.

Step 5. The set Ω = {u ∈ C : λu ∈ N(u) for some λ > 1} is bounded.
Let u ∈ Ω. Then, there exists f ∈ Λ(S̃F◦g(u)), such that

λu(x, y) = µ(x, y) +

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 f(s, t)

stΓ(r1)Γ(r2)
dtds.
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As in Step 2, this implies that for each (x, y) ∈ J, we have

‖u‖C ≤
`

λ
< `.

This shows that Ω is bounded. As a consequence of Theorem 2.11, we deduce
that N has a fixed point which is a solution of (10) on J.

Step 6. The solution u of (10) satisfies

v(x, y) ≤ u(x, y) ≤ w(x, y); for all (x, y) ∈ J.

First, we prove that

u(x, y) ≤ w(x, y); for all (x, y) ∈ J.

Assume that u− w attains a positive maximum on J at (x, y) ∈ J, that is,

(u− w)(x, y) = max{u(x, y)− w(x, y); (x, y) ∈ J} > 0.

We distinguish the following cases:

Case 1. If (x, y) ∈ (1, a)× [1, b] then, there exists (x∗, y∗) ∈ (1, a)× [1, b] such
that

(11) [u(x, y∗)− w(x, y∗)] + [u(x∗, y)− w(x∗, y)]− [u(x∗, y∗)− w(x∗, y∗)] ≤ 0

for all (x, y) ∈ ([x∗, x]× {y∗}) ∪ ({x∗} × [y∗, b]) and

(12) u(x, y)− w(x, y) > 0; for all (x, y) ∈ (x∗, x]× (y∗, b].

For all (x, y) ∈ [x∗, x]× [y∗, b], we have

(13) u(x, y) = µ(x, y) +
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 f(s, t)

st
dtds,

where f ∈ SF◦u. Thus equation (13) gives

(14)

u(x, y) + u(x∗, y∗)− u(x, y∗)− u(x∗, y)

=

∫ x

x∗

∫ y

y∗

(
log

x

s

)r1−1 (
log

y

t

)r2−1 f(s, t)

stΓ(r1)Γ(r2)
dtds.
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From (14) and the fact that w is an upper solution to (2) we get

u(x, y)+u(x∗, y∗)−u(x, y∗)−u(x∗, y) ≤ w(x, y)+w(x∗, y∗)−w(x, y∗)−w(x∗, y),

which gives,

(15)
[u(x, y)− w(x, y)] ≤ [u(x, y∗)− w(x, y∗)] + [u(x∗, y)− w(x∗, y)]

− [u(x∗, y∗)− w(x∗, y∗)].

Thus from (11), (12) and (15) we obtain the contradiction

0 < [u(x, y)− w(x, y)] ≤ [u(x, y∗)− w(x, y∗)]

+ [u(x∗, y)− w(x∗, y)]− [u(x∗, y∗)− w(x∗, y∗)] ≤ 0;

for all (x, y) ∈ [x∗, x]× [y∗, b].

Case 2. If x = 1, then

w(1, y) < u(1, y) ≤ w(1, y)

which is a contradiction. Thus

u(x, y) ≤ w(x, y); for all (x, y) ∈ J.

Analogously, we can prove that

u(x, y) ≥ v(x, y); for all (x, y) ∈ J.

This shows that the problem (10) has a solution u satisfying v ≤ u ≤ w which is
solution of the integral inclusion (2).
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