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Abstract

In this paper we consider controlled McKean-Vlasov stochastic evolution
equations on Hilbert spaces. We prove existence and uniqueness of solutions
and regularity properties thereof. We use relaxed controls, adapted to a
current of sub-sigma algebras generated by observable processes, and taking
values from a Polish space. We introduce an appropriate topology based
on weak star convergence. We prove continuous dependence of solutions on
controls with respect to appropriate topologies. Theses results are then used
to prove existence of optimal controls for Bolza problems. Then we develop
the necessary conditions of optimality based on semi-martingale represen-
tation theory on Hilbert spaces. Next we show that the adjoint processes
arising from the necessary conditions optimality can be constructed from
the solution of certain BSDE.
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1. Introduction

It is well known that stochastic differential equations of Itô type generate linear
diffusion. A more general class of stochastic systems is governed by McKean-
Vlasov equations in which the coefficients are not only functions of the state
but also of the probability measure induced by the state itself. This makes the
corresponding diffusion nonlinear. A special case of McKean-Vlasov equation is
the mean-field equation in which the coefficients depend not only on the state
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but also on its mean. This class of systems have been studied extensively in
the literature [13, 14, 17,] after McKean introduced this model in [18]. Control
problems involving this general model have been studied in [1, 2, 3, 4].

In recent years intensive research has been going on in the area of necessary
conditions of optimality for stochastic systems governed by Itô differential equa-
tions defined on finite as well as infinite dimensional spaces along the line of the
Pontryagin minimum principle [1, 2, 3, 4, 5, 6, 7, 9, 10, 16]. See also the extensive
references given therein. Control of McKean-Vlasov type stochastic differential
equations were studied in [1, 2, 3, 4, 19]. In [19] Shen and Siu consider maximum
principle for jump-diffusion mean-field model on finite dimensional spaces giving
some examples from finance. Here in this paper we wish to study the question
of existence of optimal controls as well as present necessary conditions of op-
timality for the general class of McKean-Vlasov evolution equations on infinite
dimensional Hilbert spaces.

Shen and Siu [19] presented maximum principle for a class of finite dimen-
sional jump-diffusion stochastic differential equations. The cost functional is of
Bolza type. In [16], Hu and Peng developed some fundamental results on the
question of existence and uniqueness of a class of backward stochastic evolution
equations (BSDE) on Hilbert spaces. In [2], we considered control of McKean-
Vlasov equations and presented existence of optimal controls. In [4], we consid-
ered McKean-Vlasov equations on finite dimensional spaces and developed HJB
equations. The author is not aware of any literature where the question of exis-
tence of optimal controls and necessary conditions of optimality for the general
McKean-Vlasov stochastic evolution equations on infinite dimensional Hilbert
spaces have been considered. This is what motivates us to consider optimal
control of these equations on infinite dimensional spaces and develop necessary
conditions of optimality thereof.

The paper is organized as follows. In Section 2, we present the mathemati-
cal model of the controlled system followed by some mathematical framework in
Section 3. In Section 4, after basic assumptions are introduced, we prove the exis-
tence and uniqueness of mild solutions and their regularity properties. Existence
of optimal control is proved in Section 5. In Section 6, we present the necessary
conditions of optimality. For illustration of the abstract results, in Section 7 we
consider some examples of linear quadratic regulator problems involving linear
McKean-Vlasov dynamics.

2. System model

LetX andH denote a pair of real separable Hilbert spaces and {Ω,F ,Ft, t ∈ I, P}
a complete filtered probability space with Ft ⊂ F a family of nondecreasing com-
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plete sub-sigma algebras of the sigma algebra F and I ≡ [0, T ], T < ∞. Let
W ≡ {W (t), t ∈ I}, denote an H-Wiener process with covariance operator R
in the sense that for any h ∈ H, (W (t), h) is a real Brownian motion on I with
variance E(W (t), h)2 = t(Rh, h). If the operator R = IH , the identity operator in
H, we say that W is a cylindrical Brownian motion or cylindrical Wiener process;
and if R is nuclear we have the H-valued Wiener process. Since we are interested
in controlled evolution equation we must now introduce the class of feasible con-
trols. Let U be a compact Polish space andM(U) the space of Borel measures on
the sigma algebra B(U) on U. LetM1(U) ⊂M(U) denote the space of probabil-
ity measures on U. Let Gt ⊂ Ft denote another current of nondecreasing family of
sub-sigma algebras of sigma-algebras Ft and let Lα∞(I,M1(U)) denote the class
of weak star measurable Gt-adapted M1(U) valued random processes. For any
Banach space Z, let C(U,Z) denote the Banach space of Z-valued continuous
functions defined on U furnished with the standard sup-norm topology, that is,
for any φ ∈ C(U,Z), its norm is given by ‖ φ ‖≡ sup{|φ(ξ)|Z , ξ ∈ U}. For any
φ ∈ C(U,Z) and u ∈M1(U), the integral Φ(u) ≡

∫
U φ(ξ)u(dξ) is well defined as

Bochner integral with values in Z.

Now we are prepared to introduce the system considered in this paper. It is
governed by the following McKean-Vlasov controlled evolution equation on the
Hilbert space X driven by the H-Brownian motion W and the control measure u:

(1)
dx = Axdt+ f(t, x, µ, u)dt+ σ(t, x, µ, u)dW, x(0) = x0,

and µ(t) = P(x(t)), t ∈ I ≡ [0, T ].

where A is the infinitesimal generator a C0-semigroup S(t), t ∈ I, on X and f
is a Borel measurable map from I × X ×M1(X) ×M1(U) to X and σ is also
a Borel measurable map from I ×X ×M1(X) ×M1(U) to L(H,X), the space
of bounded linear operators from H to X, and x0 is the initial state. We have
denoted the probability law of any stochastic process {ζ(t), t ≥ 0} by P(ζ(t)),
t ≥ 0.

The drift f and the diffusion σ are not only dependent on the current state
x(t) but also its probability law µ(t) ≡ P(x(t)), the measure induced by the X-
valued random variable x(t). We assume throughout the paper that both f and
σ are given by

f(t, x, µ, u) ≡
∫
U
f(t, x, µ, ξ)u(dξ), σ(t, x, µ, u) ≡

∫
U
σ(t, x, µ, ξ)u(dξ)

for any u ∈ M1(U). In case both X and H are finite dimensional, this class
of models arise naturally in finance where the objective functional is of mean-
variance type maximizing terminal wealth while minimizing variance. Also such
models are known to arise in biological population process.
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3. Mathematical framework

Let B(X) denote the Borel σ-algebra generated by closed (or open) subsets of
the Hilbert space X and M1(X) is the space of probability measures on B(X)
carrying the usual topology of weak convergence. Let C(X) denote the space of
continuous functions on X. We use the notation (µ, ϕ) ≡ µ(ϕ) ≡

∫
X ϕ(x)µ(dx)

whenever this integral makes sense. Throughout this paper we let γ denote the
continuous function γ(x) ≡ 1 + |x|, x ∈ X, and introduce the Banach space

Cρ(X) =

{
ϕ ∈ C(X) : ||ϕ||Cρ(X) ≡ sup

x∈X

|ϕ(x)|
γ2(x)

+ sup
x 6=y

|ϕ(x)− ϕ(y)|
|x− y|

<∞
}
.

For p ≥ 1, let Ms
γp(X) denote the Banach space of signed measures m on X

satisfying ||µ||γp ≡
(∫
X γ

p(x)|m|(dx)
)1/p

<∞, where |m| = m++m− denotes the
total variation of the signed measure m, with m = m+ −m− being the Jordan
decomposition of m. Let Mγ2(X) = Ms

γ2(X) ∩ M1(X) denote the class of

probability measures possessing second moments. We put onMγ2(X) a topology
induced by the following metric:

ρ(µ, ν) = sup {(µ− ν)(ϕ) ≡ (ϕ, µ− ν) : ϕ ∈ Cρ(X) and ||ϕ||Cρ(X) ≤ 1}.

Then (Mγ2(X), ρ) ≡ M2,ρ(X) forms a complete metric space. Note that this
is a closed bounded subset of the closed unit ball in the linear metric space
Ms

2,ρ(X) ≡ (Ms
γ2 , ρ).Define I ≡ [0, T ] with T <∞.We denote by C(I,M2,ρ(X))

the complete metric space of continuous functions from I to M2,ρ(X) with the
metric:

D(µ, ν) = sup{ρ(µ(t), ν(t)), t ∈ I}

for any µ, ν ∈ C(I,M2,ρ(X)). From now on all stochastic processes considered
in this paper are assumed to be based on the complete filtered probability space
(Ω,F ,Ft≥0, P ) with FT ⊆ F . For convenience of notation we denote the space
L2((Ω,F , P ), X) by L2(Ω, X) and let C(I, L2(Ω, X)) denote the Banach space of
continuous F-measurable functions defined on I and taking values from L2(Ω, X)
satisfying the condition supt∈I E|x(t)|2X <∞. Let Λ2 denote the closed subspace
of C(I;L2(Ω, X)) consisting of continuous Ft-adapted (progressively measurable)
X-valued random processes x = {x(t) : t ∈ I ≡ [0, T ]}. Then, Λ2 is a Banach
space with respect to the norm topology given by |x|Λ2 = (supt∈I E|x(t)|2)1/2.

We denote by LFT2 (Ω, X) the space of FT measurable X valued random variables
having finite second moments. Similarly, we use LF2 (I,X) ≡ LF2 (I × Ω, X) to
denote the Banach space of Ft-adapted X-valued norm-square integrable random
processes defined on I. Let LR(H,X) denote the completion of the space of linear
operators from H to X with respect to the inner product < K,L >≡ Tr(KRL∗)
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and norm |K|R ≡
√
Tr(KRK∗). Clearly this is a Hilbert space. In the sequel

we also need the Hilbert space LF2 (I,LR(H,X)) which consists of Ft-adapted
LR(H,X) valued random processes having finite square integrable norms in the
sense that for any K ∈ LF2 (I,LR(H,X)) we have E

∫
I |K|

2
Rdt <∞.

4. Basic assumptions and existence of solutions

Now we are prepared to introduce the basic assumptions. In order to study
control problems involving the system (1) we must now state the basic properties
of the drift and the diffusion operators {f, σ} including the semigroup generator.

Basic Assumptions:

(A1): The operator A is the infinitesimal generator of a C0-semigroup S(t),
t ≥ 0, on the Hilbert space X satisfying

sup
{
‖ S(t) ‖L(E), t ∈ I

}
≤M <∞.

(A2): The function f : I × X ×M1(X) × U −→ X is measurable in the first
argument and continuous with respect to the rest of the arguments. Further,
there exists a constant K 6= 0 such that

|f(t, x, µ, ξ)|2X ≤ K2{1 + |x|2X + |µ|2Mγ2
}, ∀ x, y ∈ X, ξ ∈ U

|f(t, x1, µ1, ξ)− f(t, x2, µ2, ξ)|2X ≤ K2{|x1 − x2|2X + ρ2(µ1, µ2)},

for all x1, x2 ∈ X,µ1, µ2 ∈M2,ρ(X) uniformly with respect to t ∈ I, ξ ∈ U.

(A3): The incremental covariance of the Brownian motion W denoted by R ∈
L+
s (H) (symmetric, positive). The diffusion σ : I×X×M1(X)×U −→ L(H,X)

is measurable in the first argument and continuous with respect to the rest of the
variables and there exists a constant KR 6= 0 such that

|σ(t, x, µ, ξ)|2R ≤ K2
R{1 + |x|2X + |µ|2Mγ2

}, ∀ x, y ∈ X,µ ∈Mγ2

|σ(t, x1, µ1, ξ)− σ(t, x2, µ2, ξ)|2R ≤ K2
R{|x1 − x2|2X + ρ2(µ1, µ2)}

for all x1, x2 ∈ X and µ1, µ2 ∈M2,ρ(X) uniformly with respect to (t, ξ) ∈ I ×U,
where |σ|2R = tr(σRσ∗).

For admissible controls, let Gt, t ≥ 0, denote a nondecreasing family of sub-
sigma algebras of the current of sigma algebras Ft, t ≥ 0. Let U be a compact
Polish space and M1(U) the space of probability measures on U. For admissible
controls, we choose the set Uad ≡ LG∞(I,M1(U)) ⊂ LF∞(I,M(U)) which con-
sist of Gt-adapted M1(U)-valued random processes, endowed with the weak star
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topology. This is the class of relaxed controls. It follows from Alaoglu’s theorem
that Uad is weak star compact. In contrast, let Ur denote the class of measur-
able functions on I with values in U, called regular controls. It is clear that the
following embedding Ur ↪→ Uad, through the mapping Ur 3 u(·) −→ δu(·) ∈ Uad,
is continuous. It follows from the well known Krien-Millman theorem that the
closed convex hull of the extremals of any weak star compact set is weak star
compact. The set of extremals of Uad is given by Ur, and hence Uad = clco(Ur).
Thus any relaxed control from Uad can be approximated as closely as required by
regular controls from Ur. There are several reasons for choosing relaxed controls.
For example, it is well known from control theory of deterministic systems that
there are examples (time optimal control) where optimal control does not exist
in the regular class Ur but does so in the relaxed class Uad. For relaxed controls,
the set U can be non-convex, discrete etc.

To prove the existence of solution of the stochastic evolution equation (1) we
need the following.

Lemma 4.1. Consider the system (1) and suppose the assumptions (A1)–(A3)
hold. Further, suppose that W ≡ {W (t), t ≥ 0} is an H-Brownian motion
with incremental covariance (operator) R ∈ L+

1 (H). Then, for every F0 mea-
surable X valued random variable x0 ∈ LF0

2 (Ω, X), and control u ∈ Uad, and
ν ∈ C(I,M2,ρ(X)), the stochastic evolution equation given by

(2) dx = Axdt+ f(t, x, ν, u)dt+ σ(t, x, ν, u)dW, x(0) = x0, t ∈ I ≡ [0, T ],

has a unique mild solution x = xν ∈ Λ2 in the sense that it satisfies the following
stochastic integral equation:

(3)

xν(t) ≡ S(t)x0 +

∫ t

0
S(t− τ)f(τ, xν(τ), ν(τ), uτ )dτ

+

∫ t

0
S(t− τ)σ(τ, xν(τ), ν(τ), uτ )dW (τ) t ∈ I.

Further the solution has a continuous modification.

Proof. First we show that for every given ν ∈ C(I,M2,ρ(X)), the solution
of the integral equation (3), if one exists, has an a-priori bound. Clearly, for
the given ν ∈ C(I,M2,ρ(X)), there exists a finite positive number b such that
‖ ν ‖C(I,M2,ρ)(X)≡ sup{‖ ν(t) ‖γ2 , t ∈ I} ≤ b. Then using equation (3) and com-
puting the expected value of the square of the norm of xν(t) one can easily obtain
the following inequality,

E|xν(t)|2X ≤ C1 + C2

∫ t

0
E|xν(s)|2Xds,(4)
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where

C1 ≡ 4M2{E|x0|2X + (TK2 +K2
R)

∫ T

0
(1 + |ν(s)|2γ2)ds}

C2 ≡ 4M2(TK2 +K2
R).

Hence, it follows from Gronwall inequality applied to (4) that

(5) sup{E|xν(t)|2X , t ∈ I} ≤ C1 exp{C2T}.

Next we show that under the assumptions (A1)–(A3), the integral equation has
a unique solution xν ∈ Λ2. For the fixed ν, define the operator Fν by

(6)

(Fνx)(t) ≡ S(t)x0 +

∫ t

0
S(t− τ)f(τ, x(τ), ν(τ), uτ )dτ

+

∫ t

0
S(t− τ)σ(τ, x(τ), ν(τ), uτ )dW (τ) t ∈ I.

It is clear from the a priori bound proved above that Fν : Λ2 −→ Λ2. We prove
that it has unique fixed point in Λ2. For any pair of x, y ∈ Λ2, it follows from the
Lipschitz property of f and σ (see (A2)-(A3)) that

sup
0≤s≤t

E|(Fνx)(s)− (Fνy)(s)|2X ≤ α(t) sup
0≤s≤t

{E|x(s)− y(s)|2X}(7)

where
α(t) = 2M2{K2t2 +K2

Rt}, t ∈ I.

For s, t ∈ I, s < t, let Λ2[s, t] denote the restriction of the Banach space Λ2 over
the interval [s, t] ⊂ I. Clearly, it follows from the inequality (7) that

‖ Fνx− Fνy ‖Λ2[0,t]≤
√
α(t) ‖ x− y ‖Λ2[0,t], t ∈ I.(8)

Since α is a continuous and monotone increasing function of t ∈ I, with α(0) =
0, there exists t1 ∈ I ≡ (0, T ] such that α(t1) < 1. Thus it follows from the
expression (8) that Fν is a contraction on Λ2[0, t1] and therefore by Banach fixed
point theorem it has a unique fixed point x1 ∈ Λ2[0, t1]. Further, it follows from
the well known factorization technique [12] that x1 has a continuous modification
which we continue to denote by x1. Clearly x1(t1) is Ft1 measurable and it belongs
to L2(Ω, X). Using this x1(t1) as the initial condition, we consider the integral
operator Fν over the interval [t1, T ] giving

(9)

(Fνx)(t) ≡ S(t− t1)x1(t1) +

∫ t

t1

S(t− τ)f(τ, x(τ), ν(τ), uτ )dτ

+

∫ t

t1

S(t− τ)σ(τ, x(τ), ν(τ), uτ )dW (τ) t ∈ [t1, T ].
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Again it follows from the property of the function α that there exists t2 ∈ (t1, T ]
such that α(t2 − t1) < 1 and therefore the operator Fν restricted to the Banach
space Λ2[t1, t2] is a contraction and hence by the Banach fixed point theorem,
it has unique fixed point x2 ∈ Λ2[t1, t2] having continuous modification. We
continue this process starting with x(t2) ≡ x2(t2) for the remaining interval
[t2, T ]. Since I is a compact interval, it can be covered by the union of a finite
number of compact subintervals {[ti, ti+1]}n−1

i=0 , with t0 = 0 and tn = T. Then the
solution of the integral equation (3) is given by the concatenation of the processes
{x1, x2, . . . , xn} defined on the intervals {Ii, i = 1, 2 . . . , n} proving that xν ∈ Λ2

is a unique fixed point of the operator Fν . This proves that the integral equation
(3) has a unique solution and hence the evolution equation (2) has a unique mild
solution. This completes the proof.

Now we are prepared to consider the question of existence of solution of the
McKean-Vlasov evolution equation (1). By a solution of this equation, we mean
the solution of the following integral equation

x(t) = S(t)x0 +

∫ t

0
S(t− s)f(s, x(s), µ(s), us)ds

+

∫ t

0
S(t− s)σ(s, x(s), µ(s), us)dW (s), t ∈ I,(10)

with µ(t) = P(x(t)), t ∈ I.

Theorem 4.2. Consider the system (1) and suppose the assumptions of Lemma
4.1 hold. Then the system (1) has a unique mild solution x ∈ Λ2 satisfying the
integral equation (10) with probability law µ ∈ C(I,M2,ρ(X)) such that P(x(t)) =
µ(t) for all t ∈ I.

Proof. For any given ν ∈ C(I,M2,ρ(X)), consider the evolution equation (2).
By Lemma (4.1), we know that it has a unique mild solution xν ∈ Λ2 having con-
tinuous modification. Define the operator Φ : C(I,M2,ρ(X)) −→ C(I,M2,ρ(X))
taking values

Φ(ν)(t) ≡ P(xν(t)), t ∈ I.

It is clear that if the operator Φ has a fixed point in C(I,M2,ρ(X)), that is
Φ(µ) = µ, then equation (1) has a unique mild solution and conversely, if equation
(1) has a mild solution x ∈ Λ2, then P(x(t)) = µ(t), t ∈ I, and µ is the fixed
point of the operator Φ. Thus it suffices to prove that Φ has a unique fixed point
C(I,M2,ρ(X)). For any fixed but arbitrary F0-measurable initial condition x0 ∈
L2(Ω, X) and control u ∈ Uad, consider the evolution equation (2) corresponding
to ν = λ and ν = ϑ separately where λ, ϑ ∈ C(I,M2,ρ(X)). By Lemma 4.1,
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equation (2) has unique mild solutions xλ, xϑ ∈ Λ2 corresponding to λ and ϑ
respectively. Clearly, these are solutions of the following integral equations

(11)

xλ(t) ≡ S(t)x0 +

∫ t

0
S(t− τ)f(τ, xλ(τ), λ(τ), uτ )dτ

+

∫ t

0
S(t− τ)σ(τ, xλ(τ), λ(τ), uτ )dW (τ) t ∈ I.

(12)

xϑ(t) ≡ S(t)x0 +

∫ t

0
S(t− τ)f(τ, xϑ(τ), ϑ(τ), uτ )dτ

+

∫ t

0
S(t− τ)σ(τ, xϑ(τ), ϑ(τ), uτ )dW (τ) t ∈ I.

Subtracting equation (12) from equation (11) and following similar steps as in
the proof of Lemma 4.1, the reader can easily verify that

(13)

sup
0≤t≤τ

E|xλ(t)− xϑ(t)|2X

≤ α(τ)

{
sup

0≤t≤τ
E|xλ(t)− xϑ(t)|2X + sup

0≤t≤τ
ρ2(λ(t).ϑ(t))

}
.

Using the inequality (13) and choosing τ = t1 ∈ (0, T ], sufficiently small, so that
α(t1) < (1/3), we arrive at the following inequality

(14) sup
0≤t≤t1

E|xλ(t)− xϑ(t)|2X ≤ (1/2) sup
0≤t≤t1

ρ2(λ(t), ϑ(t)).

Recall that by definition of the operator Φ, (Φλ)(t) = P(xλ(t)) and (Φϑ)(t) =
P(xϑ(t)) for t ∈ I. Then computing the distance between the measures (Φλ)(t)
and (Φϑ)(t), it follows from the definition of the metric ρ that

(15)

ρ((Φλ)(t), (Φϑ)(t))

= sup
{
< ϕ, (Φλ)(t)− (Φϑ)(t) >: ϕ ∈ Cρ, ‖ ϕ ‖Cρ≤ 1

}
= sup

{
E[ϕ(xλ(t))− ϕ(xϑ(t))] : ϕ ∈ Cρ, ‖ ϕ ‖Cρ≤ 1

}
≤ E|xλ(t)− xϑ(t)|X .

Clearly, it follows from the above inequality that

sup
0≤t≤t1

ρ2((Φλ)(t), (Φϑ)(t)) ≤ sup
0≤t≤t1

E|xλ(t)− xϑ(t)|2X .(16)

Therefore, it follows from the inequalities (14) and (16) that

sup
0≤t≤t1

ρ2((Φλ)(t), (Φϑ)(t)) ≤ (1/2) sup
0≤t≤t1

ρ2(λ(t), ϑ(t)).
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from which we arrive at the following inequality

sup
0≤t≤t1

ρ((Φλ)(t), (Φϑ)(t)) ≤ (1/
√

2) sup
0≤t≤t1

ρ(λ(t), ϑ(t)).(17)

This shows that Φ is a contraction on the restriction C([0, t1],M2,ρ(X)) of the
metric space C([0, T ],M2,ρ(X)) and hence by Banach fixed point theorem, it has
a unique fixed point, say, µ1 ∈ C([0, t1],M2,ρ(X)), that is, (Φµ1)(t) = µ1(t),
t ∈ [0, t1]. Next, choosing t2 ∈ (t1, T ] such that α(t2 − t1) ≤ (1/3) and carrying
out similar analysis, we arrive at the following inequality,

sup
t1≤t≤t2

ρ((Φλ)(t), (Φϑ)(t)) ≤ (1/
√

2) sup
t1≤t≤t2

ρ(λ(t), ϑ(t)).(18)

Thus Φ, restricted to the metric space C([t1, t2],M2,ρ(X)), is again a contraction
and hence it has a unique fixed point µ2 ∈ C([t1, t2],M2,ρ(X)) giving Φµ2 = µ2

for t ∈ [t1, t2] with µ2(t1) = µ1(t1). Continuing this process we can exhaust the
interval in a finite number steps and obtain a finite sequence of measure valued
functions {µi ∈ C([ti−1, ti],M2,ρ(X)), i = 1, 2, . . . , n} with t0 = 0, tn = T. Again,
by concatenation of these measure valued functions, we obtain µ which coincides
with µi on the interval [ti−1, ti] for i ∈ {1, 2, . . . , n} satisfying (Φµ)(t) = µ(t),
t ∈ I proving that Φ has a unique fixed point in C(I,M2,ρ(X)). Hence the
McKean-Vlasov evolution equation (1) has unique mild solution x ∈ Λ2 with
probability law µ ∈ C(I,M2,ρ(X)). This completes the proof.

Corollary 4.3. Suppose the assumptions of Theorem 4.2 hold with the admissible
controls Uad ≡ LG∞(I,M1(U)). Then the solution set Ξ ≡ {x(u), u ∈ Uad} is a
bounded subset of Λ2 and the corresponding set of measure valued functions lies
in a bounded subset of C(I,M2,ρ(X)).

Proof. We present a brief outline. Let x(u) ∈ Λ2 denote the solution of the
integral equation (10) corresponding to any control u ∈ Uad and let µu ∈
C(I,M2,ρ(X)) denote the associated measure valued function. It follows from
the first part of the assumptions (A2)–(A3) that, for any given x ∈ X and
µ ∈ Mγ2(X), both f and σ are uniformly bounded with respect to controls.
Hence, using the integral equation (10), and the fact that

(19)

|µu(s)|2Mγ2
≡
∫
X
γ2(x)µu(s)(dx)

=

∫
X

(1 + |x|X)2µu(s)(dx) ≤ 2(1 + E|xu(s)|2X),

it is easy to verify that, for every u ∈ Uad, we have

E|x(u)(t)|2E ≤ C1(T ) + C2(T )

∫ t

0
E|x(u)(s)|2Eds, t ∈ I,(20)
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where

C1(T ) ≡ 4M2{E|x0|2E + 3K2T 2 + 3K2
RT}and C2(T ) ≡ 12M2(K2T +K2

R).

The constants C1 and C2 are independent of control. Thus the first conclusion
follows from Gronwall inequality applied to the expression (20) and the second
conclusion follows from the first and the inequality (19). This completes the
proof.

Remark 4.4. In Theorem 4.1, we assumed that {f, σ} satisfy uniform Lipschitz
condition. In fact this uniform Lipschitz condition is not essential. By using
stopping time arguments this can be relaxed to local Lipschitz condition.

5. Existence of optimal control

For the proof of existence of optimal controls we use lower semicontinuity and
compactness arguments. For this we prove the continuity of the map u −→ x,
that is, the control to solution map. Since continuity is critically dependent on
the topology, we must mention the topologies used for the control space and the
solution space. For the solution space we have already the norm topology on
Λ2 (see Section 3). So we consider an admissible topology for the control space.
In a recent paper [1], we introduced a topology on the control space which is
weaker than the one we introduce here. The reason for this shift is to remove the
compactness assumption on the semigroup S(t), t ≥ 0, used in [1]. Let U be a
compact Polish space and C(U) the Banach space of continuous functions with
the usual sup-norm topology. LetM(U) denote the space of finite Borel measures
on U (more precisely on B(U) the class of Borel subsets of U). Equipped with the
norm topology induced by the total variation, this is a Banach space. It is well
known that M(U) is the topological dual of C(U) and hence for any continuous
linear functional ` ∈ (C(U))∗, there exists a unique u ∈M(U) such that

`(ϕ) =

∫
U
ϕ(ξ)u(dξ).

Since U is a compact Polish space, the space C(U) with the usual sup-norm
topology is a separable Banach space. We are interested in partially observed
relaxed controls. Let Gt, t ≥ 0, denote a nondecreasing family of complete sub-
sigma algebras of the current of sigma algebras Ft, t ≥ 0. Let λ denote the
Lebesgue measure on I and P the probability measure on Ω and λ × P the
product measure on I × Ω. Let Pr denote the sigma algebra generated by Gt-
predictable subsets of the set I ×Ω and µ the restriction of the product measure
λ × P onto Pr. We assume that (I × Ω,Pr, µ) is a complete separable measure
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space. Let L1(µ,C(U)) denote the Lebegue-Bochner space. Since M(U) does
not satisfy RNP (Radon-Nikodym property), it follows from the theory of lifting
that its topological dual is given by Lα∞(µ,M(U)) which consists of weak star µ-
measurable essentially bounded random processes with values inM(U). In other
words

(L1(µ,C(U)))∗ ∼= Lα∞(µ,M(U)).

Thus for any continuous linear functional ` ∈ L1(µ,C(U)))∗ there exists a unique
u ∈ Lα∞(µ,M(U)) such that

`(ϕ) =

∫
U×I×Ω

ϕ(t, ω, ξ)ut,ω(dξ)dµ ≡
∫
I×Ω

ut,ω(ϕt,ω)dµ.

For the set of admissible controls our natural choice is the set U ≡ Lα∞(µ,M1(U)) ⊂
Lα∞(µ,M(U)). Since the measure space (I × Ω,Pr, µ) is complete separable, the
Banach space L1(µ,C(U)) is separable and hence, it follows from [see Dunford &
Schwartz [15], Theorem V.5.1, p. 426] that the set Lα∞(µ,M1(U)) is metrizable
with the metric δ given by,

δ(u, v) =

∞∑
n=1

(1/2n)
|
∫
I×Ω

{
ut,ω(gnt,ω)− vt,ω(gnt,ω

}
dµ|

1 + |
∫
I×Ω

{
ut,ω(gnt,ω)− vt,ω(gnt,ω

}
dµ|

,

where the set {gn} is dense in L1(µ,C(U)). With respect to this metric topology,
(U , δ) ≡ Uδ is a compact metric space. This topology is rather weak. We use
slightly stronger topology. For the space U we introduce the following metric
topology. Let D ≡ {gn} be a dense subset of L2(µ,C(U)) and define the function
d : U × U −→ [0, 1] by

d(u, v) ≡
∞∑
n=1

(1/2n) min

{
1,

(∫
I×Ω
|ut,ω(gn)− vt,ω(gn)|2dµ

)1/2}

for u, v ∈ U where ut,ω(g) ≡
∫
U gt,ω(ξ)ut,ω(dξ). The reader can easily verify that

d defines a metric on U . We denote this metric space by Ud and show that it
is complete. Let {uk} ⊂ Ud be a Cauchy sequence. Then it follows from the
expression for d that, for each g ∈ L2(µ,C(U)), {uk(g)} is a Cauchy sequence
in L2(µ) ≡ L2(I × Ω,Pr, µ) and therefore it has a unique limit, say hg ∈ L2(µ).
On the other hand, it follows from Alaoglu’s theorem that Lα∞(µ,M1(U)) is
weak star compact and since this space is Hausdorf, there exists a unique uo ∈
Lα∞(µ,M1(U)) such that for every g ∈ L1(µ,C(U)) we have

lim
k→∞

∫
I×Ω

uk(g)dµ −→
∫
I×Ω

uo(g)dµ.
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Equivalently, uk(g)
w−→ uo(g) in L1(µ) for every g ∈ L1(µ,C(U)). Since (I ×

Ω,Pr, µ) is a finite measure space it is clear that L2(µ,C(U)) ⊂ L1(µ,C(U)) and
therefore uk(g)

w−→ uo(g) in L2(µ) for every g ∈ L2(µ,C(U)). Clearly, hg−uo(g) ∈
L2(µ) and it follows from Hahn-Banach theorem that there exists an e ∈ L2(µ)
with ‖ e ‖L2(µ)= 1 such that ‖ hg − uo(g) ‖L2(µ)= (e, hg − uo(g)). The reader
can easily verify from this that hg = uo(g) for every g ∈ L2(µ,C(U)). Hence we
conclude that

d(uk, uo) −→ 0, as k →∞,

and therefore Ud is a complete metric space. Let V be a closed and totally
bounded subset of Ud. Then it follows from well known Borel-Lebesgue theorem
that Vd ≡ (V, d) is a compact metric space. For admissible controls, we choose
Uad ≡ (V, d) ≡ Vd.

To prove the existence of optimal controls we use the following result on contin-
uous dependence of solutions on controls.

Theorem 5.1. Consider the control system (1) with the admissible controls
Uad = Vd. Suppose the assumptions of Theorem 4.2 hold. Then, the control to
solution map u −→ x is continuous with respect to the metric topology d on Uad
and the norm topology on Λ2.

Proof. Let {un, uo} ∈ Uad be a sequence and suppose un
d−→ uo. Let {xn, xo} ∈

Λ2, with xn(0) = xo(0) = x0, denote the solutions of the integral equation
(11) corresponding to the controls {un, uo} respectively and let {µn, µo} ∈
C(I,M2,ρ(X)) denote the corresponding measure valued functions with µn(0) =

µo(0) = P(x0). We show that xn
s−→ xo in Λ2 and µn

s−→ µo in C(I,M2,ρ(X)).
Using the integral equation (10) corresponding to controls {un} and uo respec-
tively we have

(21)

xn(t) = S(t)x0 +

∫ t

0
S(t− s)f(s, xn(s), µn(s), uns )ds

+

∫ t

0
S(t− s)σ(s, xn(s), µn(s), uns )dW (s), t ∈ I,

(22)

xo(t) = S(t)x0 +

∫ t

0
S(t− s)f(s, xo(s), µo(s), uos)ds

+

∫ t

0
S(t− s)σ(s, xo(s), µo(s), uos)dW (s), t ∈ I.

Subtracting equation (22) from (21) and rearranging terms suitably we arrive at
the following expression,
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xn(t)− xo(t) =

∫ t

0
S(t− s)

[
f(s, xn(s), µn(s), uns )− f(s, xo(s), µo(s), uns )

]
ds

+

∫ t

0
S(t− s)

[
σ(s, xn(s), µn(s), uns )− σ(s, xo(s), µo(s), uns )

]
dW (s)(23)

+ en1 (t) + en2 (t), t ∈ I,

where the processes {en1 , en2} are given by

en1 (t) =

∫ t

0
S(t− s)

[
f(s, xo(s), µo(s), uns )− f(s, xo(s), µo(s), uos)

]
ds(24)

en2 (t) =

∫ t

0
S(t− s)

[
σ(s, xo(s), µo(s), uns )− σ(s, xo(s), µo(s), uos)

]
dW (s).(25)

Using the assumptions (A2)–(A3) and computing the expected value of the square
of the X-norm, it follows from the expression (23) that

(26)

E|xn(t)− xo(t)|2X

≤ 23M2(K2t+K2
R)

∫ t

0

{
E|xn(s)− xo(s)|2X + ρ2(µn(s), µo(s))

}
ds

+ 23
(
E|en1 (t)|2X + E|en2 (t)|2X

)
, t ∈ I.

¿From the definition of the metric ρ, the reader can easily verify that

ρ2(µn(s), µo(s)) ≤ E|xn(s)− xo(s)|2X , ∀ s ∈ I.(27)

Then using this inequality in (26) we obtain

(28)
E|xn(t)− xo(t)|2X ≤ 24M2(K2t+K2

R)

∫ t

0

{
E|xn(s)− xo(s)|2X

}
ds

+ 23
(
E|en1 (t)|2X + E|en2 (t)|2X

)
, t ∈ I.

For each n ∈ N, define the function ηn as follows

(29) ηn(t) ≡ 23
(
E|en1 (t)|2X + E|en2 (t)|2X

)
, t ∈ I,

and a function C given by C(t) = 24M2(K2t + K2
R), t ∈ I. Then, by virtue of

Gronwall inequality, it follows from the inequality (28) that

(30) E|xn(t)− xo(t)|2X ≤ ηn(t) + C(t)

∫ t

0
exp

{∫ t

θ
C(s)ds

}
ηn(θ)dθ.
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Considering the processes en1 and en2 , it is easy to verify that, for each t ∈ I, we
have

E|en1 (t)|2X ≤M2tE

∫ t

0
|f(s, xo(s), µo(s), uns )− f(s, xo(s), µo(s), uos)|2Xds(31)

E|en2 (t)|2X ≤M2E

∫ t

0
‖ (σ(s, xo(s), µo(s), uns )− σ(s, xo(s), µo(s), uos)) ‖2R ds(32)

where we have used the notation ‖σ ‖2R = Tr(σRσ∗). Using the elementary
properties of conditional expectations and the fact that Gt ⊂ Ft for all t ≥ 0, it
follows from the above inequalities that

sup
t∈I

E|en1 (t)|2X ≤ (M2T )E

∫ T

0
|f(s, xo(s), µo(s), uns )− f(s, xo(s), µo(s), uos)|2Xds

= (M2T )

∫
I×Ω

E
{
|f(s, xo(s), µo(s), uns )− f(s, xo(s), µo(s), uos)|2X |Gs} dµ(33)

and

sup
t∈I

E|en2 (t)|2X ≤M2E

∫ T

0
‖ (σ(s, xo(s), µo(s), uns )− σ(s, xo(s), µo(s), uos)) ‖2R ds

= M2

∫
I×Ω

E
{
‖ (σ(s, xo(s), µo(s), uns )− σ(s, xo(s), µo(s), uos)) ‖2R |Gs

}
dµ(34)

It follows from the assumptions (A1)–(A3), particularly the growth properties,
that along the process {xo, µo} the integrands in the expressions (33) and (34)
belong to L1(µ,C(U)) and by Corollary 4.3 they are dominated by integrable
functions (processes). Thus, by Lebesgue dominated convergence theorem, as

un
d−→ uo, the integrals on the righthand side of the above expressions converge

to zero. Consequently, it follows from (29) that the function ηn(t)→ 0 uniformly
on I as n→∞. Using this fact in the inequality (30) we conclude that

(35) lim
n→∞

sup{E|xn(t)− xo(t)|2X , t ∈ I} = 0,

and hence xn
s−→ xo in Λ2. This proves the continuity as stated in the theorem.

Remark 5.2. As a corollary of the above theorem, we observe that as un
d−→ uo,

the probability measure valued process µn
s−→ µo in C(I,M2,ρ(X)). This follows

readily from Theorem 5.1 and the inequality (27).
Now we are prepared to consider the question of existence of optimal control.

The objective functional (cost) is given by

(36) J(u) ≡ E

{∫ T

0
`(t, x(t), µ(t), ut)dt+ Φ(x(T ), µ(T ))

}
,
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where x is the mild solution of the McKean-Vlasov evolution (1) corresponding to
control u ∈ Uad. Our objective is to find a control that minimizes this functional.

Theorem 5.3. Consider the system (1) with the cost functional (36) and ad-
missible controls Uad = Vd. Suppose ` and Φ are Borel measurable in all the
arguments, and lower semicontinuous in (x, µ) on X ×M2,ρ(X) and continuous
on U satisfying the following properties:

(C1): There exist an α1 ∈ L+
1 (I) and a nonnegative number α2 <∞ so that

|`(t, x, µ, ξ)| ≤ α1(t) + α2{1 + |x|2X + |µ|2Mγ2
} ∀ (t, x, µ, ξ) ∈ I ×X ×Mγ2 × U.

(C2): There exists a nonnegative constant β <∞ so that

|Φ(x, µ)| ≤ β{1 + |x|2X + |µ|2Mγ2
} ∀ (x, µ) ∈ X ×Mγ2 .

Then there exists an optimal control uo minimizing the functional (36).

Proof. Since Uad is compact in the metric topology d, it suffices to verify that
the functional u −→ J(u) is lower semicontinuous in this topology. Let {un} ∈
Uad and suppose un

d−→ uo. Let {xn, µn} denote the mild solutions of equation
(1) corresponding to the sequence of controls {un}, and {xo, µo} the solution

corresponding to control uo. Then it follows from Theorem 5.1 that, as un
d−→

uo, xn
s−→ xo in Λ2 and the corresponding sequence of measures µn

s−→ µo

in C(I,M2,ρ(X)). Further, recall that {xn, xo} have continuous (modifications)
versions. Thus, it follows from lower semicontinuity of ` and Φ that, along a
subsequence if necessary,

`(t, xo(t), µo(t), uot ) ≤ lim `(t, xn(t), µn(t), unt )(37)

Φ(xo(T ), µo(T )) ≤ lim Φ(xn(T ), µn(T ))(38)

µ a.e. in I×Ω. Since the norm topology of Λ2 is stronger than the norm topology
of LF2 (I,X) it is easy to verify that the subsequence referred to above can be
chosen independently of (t, ω) ∈ I×Ω. Clearly, it follows from (37) and (38) that

(39)

E

{∫
I
`(t, xo(t), µo(t), uot )dt+ Φ(xo(T ), µo(T ))

}
≤ E

{∫ T

0
lim `(t, xn(t), µn(t), unt )dt+ lim Φ(xn(T ), µn(T ))

}
.
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Since ` and Φ satisfy the assumptions (C1) and (C2), it follows from generalized
Fatou’s Lemma that

(40)

E

{∫ T

0
lim `(t, xn(t), µn(t), unt )dt+ lim Φ(xn(T ), µn(T ))

}
≤ lim E

{∫ T

0
`(t, xn(t), µn(t), unt )dt+ Φ(xn(T ), µn(T ))

}
.

Thus it follows from the definition of the cost functional J and the inequalities
(39) and (40) that

J(uo) ≤ lim J(un)(41)

proving that J is lower semicontinuous on Uad in the metric topology d. Since
Uad is compact in this metric topology, J attains its minimum at some point
u∗ ∈ Uad. This completes the proof.

Remark 5.4. The metric topology d on the space of admissible controls can
be replaced by the natural weak star topology on Lα∞(µ,M1(U)) provided the
semigroup generated by the unbounded operator A is compact [1].

6. Necessary conditions of optimality

Given that optimal control exists, we can proceed to develop the necessary con-
ditions of optimality which can be used to determine the optimal policy. To
develop the necessary conditions one requires more regularity properties for the
drift and the diffusion operators including the cost integrands. For this reason
we introduce the following additional assumptions:

(A4): The drift f = f(t, x, µ, u) and the diffusion operator σ = σ(t, x, µ, u)
are Borel measurable in all the arguments and once continuously Fréchet dif-
ferentiable in their second and third argument, and the Fréchet derivatives are
uniformly bounded on I × X × Mγ2(X) × U and measurable in the uniform
operator topology.

(A5): The cost integrands ` = `(t, x, µ, u) and Φ = Φ(x, µ) are Borel measurable
in all the variables and once continuously Gâteaux differentiable with respect to
the arguments x, µ ∈ X ×Mγ2(X), and there exist constants C1, C2 > 0 so that
their Gâteaux derivatives satisfy the following growth conditions:

|`x(t, x, µ, ξ)|X ≤ C1(1 + |x|X + |µ|Mγ2 (X)) ∀ (t, x, µ, ξ) ∈ I ×X ×Mγ2(X)× U ;

|`µ(t, x, µ, u)|Cρ(X) ≤ C1(1+ |x|X+|µ|Mγ2 (X)) ∀ (t, x, µ, ξ) ∈ I×X×Mγ2(X)×U

|Φx(x, µ)|X ≤ C2(1 + |x|E + |µ|Mγ2 (X)) ∀ (x, µ) ∈ X ×Mγ2(X)

|Φµ(x, µ)|Cρ(X) ≤ C2(1 + |x|X + |µ|Mγ2 (X)) ∀(x, µ) ∈ X ×Mγ2(X).
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In the sequel we will be required to use the properties of semimartingales.
Let SMc

2(I,X) denote the space of continuous, norm-square integrable Ft
semi-martingales with values in the Hilbert space X starting from zero. Ev-
ery such semimartingale has the following integral representation. For each M ∈
SMc

2(I,X) ⊂ LF2 (I,X), there exists a unique pair of intensity (φ,Q) ∈ LF2 (I,X)×
LF2 (I,LR(H,X)) such that

Mt =

∫ t

0
φ(s)ds+

∫ t

0
Q(s)dW (s), t ∈ I.

For M1,M2 ∈ SMc
2(I,X), with the intensities (φ1, Q1) and (φ2, Q2) respectively,

one introduces the scalar product

(M1,M2)SMc
2(I,X) ≡ E

{∫ T

0
(φ1(s), φ2(s))Xds+

∫ T

0
Tr(Q1(s)RQ∗2(s))ds

}
.

Completion of SMc
2(I,X) with respect to the above inner product turns it into

a Hilbert space which we continue to denote by the same symbol. The associated
norm is given by ‖ · ‖SMc

2(I,X) where

‖M ‖2SMc
2(I,X)= E

{∫ T

0
|φ(s)|2Xds+

∫ T

0
Tr(Q(s)RQ∗(s))ds

}
.

Now we return to the control problem. To develop the necessary conditions of
optimality we need the so-called variational equation. This equation characterizes
the Gâteaux differential of the solution of the state equation (1) with respect to
controls u ∈ Uad. We present this in the following lemma.

Lemma 6.1. Suppose the assumptions (A1)–(A4) including those of Theorem
5.3 hold, and let {xo, µo, uo} be the optimal state-control process with µo(t) =
P(xo(t)), t ∈ I. Then, for any u ∈ Uad, there exists a unique pair (z, ν) ∈
Λ2×C(I,Ms

γ2(X)) which is the mild solution of the following variational equation

(42)

dz = Azdt+ fx(t, xo(t), µo(t), uot )zdt+ fµ(t, xo(t), µo(t), uot )ν(t)dt

+ σx(t, xo(t), µo(t), uot ; z(t))dW (t) + σµ(t, xo(t), µo(t), uot ; ν(t))dW (t)

+ dΛu−uo(t), z(0) = 0, t ∈ I,

where Λ ∈ SMc
2(I,X) is the semi-martingale given by

(43) dΛu−uo(t) = f(t, xo(t), µo(t), ut − uot )dt+ σ(t, xo(t), µo(t), ut − uot )dW (t),

starting from Λu−uo(0) = 0. The solution {z, ν} is the strong limit of (1/ε)(xε −
xo) and (1/ε)(µε−µo) in Λ2 and C(I,Ms

γ2(X)) respectively where {xε, xo} ∈ Λ2
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and {µε, µo} ∈ C(I,M2,ρ(X)) are the solutions of the integral equation (10)
corresponding to the controls {uε, uo} ∈ Uad respectively. Further, for any fixed
u ∈ Uad, Λu−uo −→ z is a continuous linear map from SMc

2(I,X) to Λ2.

Proof. Let uo ∈ Uad denote the optimal control and u ∈ Uad any other control.
Since the admissible set Uad consists of relaxed controls, it is evident that uε ≡
uo+ε(u−uo) ∈ Uad for all ε ∈ (0, 1). Let {xε, µε} and {xo, µo} denote the solutions
of the integral equation (10) corresponding to the controls {uε, uo} respectively.
Define

zε(t) ≡ (1/ε)(xε(t)− xo(t)), νε(t) ≡ (1/ε)(µε(t)− µo(t)), t ∈ I.

Considering the integral equation (10) corresponding to the controls uε and uo

respectively and subtracting one from the other and dividing by ε, we obtain

zε(t) =

∫ t

0
S(t− s)(1/ε)[f(s, xε(s), µε(s), uo)− f(s, xo(s), µo(s), uos)]ds

+

∫ t

0
S(t− s)(1/ε)[σ(s, xε(s), µε(s), uo)− σ(s, xo(s), µo(s), uos)]dW (s)

+

∫ t

0
S(t− s)f(s, xε(s), µε(s), us − uos)ds(44)

+

∫ t

0
S(t− s)σ(s, xε(s), µε(s), us − uos)dW (s), t ∈ I.

Using the Lipschitz properties (A2) and (A3) and computing the expected value
of the norm square it follows from (44) that

(45)

E|zε(t)|2X ≤ 16M2(K2t+K2
R)

∫ t

0
E|zε(s)|2Xds

+ 16M2(K2t+K2
R)

∫ t

0
(1/ε2)ρ2(µε(s), µo(s))ds

+ E|V u−uo
ε (t)|2X , t ∈ I,

where the process V u−uo
ε is given by the convolution integral of the semimartingale

Λu−uo
ε ∈ SMc

2(I,X) with respect to the semigroup S(t), t ≥ 0, that is,

V u−uo
ε (t) =

∫ t

0
S(t− s)dΛu−uo

ε (s) =

∫ t

0
S(t− s)f(s, xε(s), µε(s), us − uos)ds

+

∫ t

0
S(t− s)σ(s, xε(s), µε(s), us − uos)dW (s), t ∈ I.(46)

Clearly, the semimartingale Λu−uo
ε is given by the Itô differential,

dΛu−u
o

ε (t) = f(t, xε(t), µε(t), ut − uot )dt+ σ(t, xε(t), µε(t), ut − uot )dW (t), t ∈ I,



184 N.U. Ahmed

with Λu−uo
ε (0) = 0. Using the definition of the metric ρ the reader can easily

verify that

(1/ε2)ρ2(µε(t), µo(t)) ≤ E|zε(t)|2X , t ∈ I.(47)

Considering the process V u−uo
ε , it follows from the growth properties in the as-

sumptions (A2)–(A3), that

(48) sup
t∈I

E|V u−uo
ε (t)|2X ≤ 2M2(K2T+K2

R)

∫ T

0
{1+E|xε(s)|2X+|µε(s)|2Mγ2 (X)}ds

for all ε ∈ (0, 1). By virtue of Corollary 4.3, it follows from the above inequality
that there exists a finite positive number δ(T ), dependent on T , such that

(49) sup{E|V u−uo
ε (t)|2X , t ∈ I, ε ∈ (0, 1)} ≤ δ(T ), ∀ u ∈ Uad.

Defining β(T ) ≡ 32M2(K2T +K2
R) and using the estimates (47) and (49) in the

inequality (45) we arrive at the following inequality,

(50) E|zε(t)|2X ≤ β(T )

∫ t

0
E|zε(s)|2Xds+ δ(T ).

Hence it follows from Gronwall inequality that

sup
0≤ε≤1

sup
t∈I

E|zε(t)|2X ≤ δ(T ) exp{Tβ(T )} <∞,

and consequently it follows from (47) that

sup{|νε(t)|2Mγ2
, t ∈ I, 0 ≤ ε ≤ 1} ≤ δ(T ) exp{Tβ(T )} <∞.

In view of the above analysis, it is clear that the following limits are well defined

z ≡ s− lim
ε↓0

zε = s− lim
ε↓0

(1/ε)(xε − xo) in Λ2

ν ≡ s− lim
ε↓0

νε = s− lim
ε↓0

(1/ε)(µε − µo) in C(I,Ms
γ2(X))

Λu−u
o ≡ s− lim

ε↓0
Λu−u

o

ε in SMc
2(I,X).

Thus, letting ε ↓ 0 in the identities (44) and (46), it follows from assumption (A4)
including ((A2), (A3)) and dominated convergence theorem and strong conver-
gence of semimartingales with the strong convergence of their intensities, that
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(51)

z(t) =

∫ t

0
S(t− s)fx(s, xo(s), µo(s), uos)z(s)ds

+

∫ t

0
S(t− s)fµ(s, xo(s), µo(s), uos)ν(s)ds

+

∫ t

0
S(t− s)σx(s, xo(s), µo(s), uos; z(s))dW (s)

+

∫ t

0
S(t− s)σµ(s, xo(s), µo(s), uos; ν(s))dW (s) + V u−uo

t , t ∈ I,

where

(52)

V u−uo
t =

∫ t

0
S(t− s)f(s, xo(s), µo(s), us − uos)ds

+

∫ t

0
S(t− s)σ(s, xo(s), µo(s), us − uos)dW (s)

=

∫ t

0
S(t− s)dΛu−u

o
(s), t ∈ I.

It follows from our assumptions (A2) and (A3) that {Λu−uo(t), t ∈ I} is an X-
valued (norm) square integrable continuous semi-martingale. For simplicity of
notation, we introduce the following abbreviations:

F1(t) ≡ fx(t, xo(t), µo(t), uot ), F2(t) ≡ fµ(t, xo(t), µo(t), uot ),

Σ1(t; z(t)) ≡ σx(t, xo(t), µo(t), uot ; z(t)),Σ2(t; ν(t)) ≡ σµ(t, xo(t), µo(t), uot ; ν(t)).

These operators are all evaluated along the optimal path {xo, µo, uo}. It follows
from assumption (A4) that they are all bounded in operator norm uniformly on
I and therefore, for all t ∈ I, F1(t) ∈ L(X), F2(t) ∈ L(M s

γ2(X), X), Σ1(t; ·) ∈
L(X,LR(H,X)) and Σ2(t; ·) ∈ L(M s

γ2(X),LR(H,X)) respectively. Using these

notations in the integral equation (51) we obtain

z(t) =

∫ t

0
S(t− s)F1(s)z(s)ds+

∫ t

0
S(t− s)F2(s)ν(s)ds

+

∫ t

0
S(t− s)Σ1(s; z(s))dW (s) +

∫ t

0
S(t− s)Σ2(s; ν(s))dW (s)(53)

+

∫ t

0
S(t− s)dΛu−uo(s), t ∈ I.
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Clearly, this is the integral equation corresponding to the following stochastic
evolution equation,

(54)
dz = Azdt+ F1(t)zdt+ F2(t)ν(t)dt+ Σ1(t; z(t))dW (t)

+ Σ2(t; ν(t))dW (t) + dΛu−uo
t , z(0) = 0, t ∈ I,

which is the compact form of equation (42). We note that ν(t) is not the prob-
ability law of z(t) and ν(t)(X) = 0 for all t ∈ I. However, for each t ∈ I, the
signed measure ν(t) is linearly related to z(t). Indeed, for any Ψ ∈ Cρ(X),

< Ψ, ν(t) >Cρ(X),Ms
γ2

(X)= E < DxΨ(xo(t)), z(t) >X .

Thus equation (54) is in fact a linear integral equation in z driven by the semi-
martingale Λu−u

o ∈ SMc
2(I,X). It follows from assumption (A4) that, along

the process {xo, µo, uo}, the operator valued functions {F1, F2} and {Σ1,Σ2} are
all uniformly bounded. Thus it follows, as a special case of Theorem 4.2, that
the integral equation (54) has a unique solution. In other words, the variational
equation (54), equivalently (42), driven by the semimartingale Λu−uo(t), t ∈ I,
has a unique mild solution z ∈ Λ2 with ν ∈ C(I,Ms

γ2(X)). For the second part of

the Lemma, first note that |ν(t)|2Ms
2,ρ(X) ≤ E|z(t)|2X for all t ∈ I. For convenience

of notation, define

fo(t) ≡ fu−u
o

o (t) ≡ f(t, xo(t), µo(t), ut − uot ), and

σo(t) ≡ σu−u
o

o (t) ≡ σ(t, xo(t), µo(t), ut − uot ), t ∈ I.

Then it follows from the expression (54) and the above inequality and the uniform
boundedness of the operators {F1, F2,Σ1,Σ2} that there exist constants a1, a2

≥ 0, dependent on the bounds of the operators {F1, F2,Σ1,Σ2} and {M,T}, such
that

(55) E|z(t)|2X ≤ a1

∫ t

0
E|z(s)|2Xds+ a2 ‖ Λu−u

o ‖2SMc
2(I,X)), t ∈ I,

where

‖ Λu−u
o ‖2SMc

2(I,X)≡ E

∫ T

0
|fu−uoo |2Xds+ E

∫ T

0
Tr
(
σu−u

o

o R(σu−u
o

o )∗
)
ds.

By virtue of Gronwall inequality, it follows from (55) that

(56) ‖ z ‖2Λ2
≡ sup{E|z(t)|2X , t ∈ I} ≤ (a2 exp a1T ) ‖ Λu−u

o ‖2SMc
2(I,X) .

Clearly, it follows from this inequality and the linearity of equation (54) that, the
map Λu−u

o −→ z is a continuous linear operator from SMc
2(I,X) to Λ2. This

completes the proof.
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Now we are prepared to prove the necessary conditions of optimality.

Theorem 6.2. Consider the system (1) with the admissible controls Uad and the
cost functional (36), and suppose the assumption (A5) and those of Lemma 6.1
hold. Then, in order that uo ∈ Uad be optimal, with {xo, µo} being the correspond-
ing mild solutions of the evolution equation (1), it is necessary that there exists a
pair (ψ,Q) ∈ Λ2 × LF2 (I,LR(H,X)) such that the following inequality holds,

(57)

E

{∫
I
`(t, xo(t), µo(t), ut − uot )dt+ (ψ(t), f(t, xo(t), µo(t), ut − uot ))Xdt

+

∫
I
Tr[Q(t)Rσ∗(t, xo(t), µo(t), ut − uot )]dt

}
≥ 0, ∀ u ∈ Uad.

Proof. Let uo ∈ Uad be the optimal control with the pair {xo, µo} ∈ Λ2 ×
C(I,M2,ρ(X)) being the corresponding unique mild solution of the evolution
equation (1). Let u ∈ Uad and define uε ≡ uo + ε(u − uo) for ε ∈ (0, 1). Clearly,
by convexity of Uad, uε ∈ Uad and by optimality of uo, J(uε) ≥ J(uo) for all
ε ∈ (0, 1) and u ∈ Uad. Hence the Gâteaux differential of J at uo, in the direction
(u− uo), denoted by dJ(uo;u− uo) satisfies

(58) dJ(uo, u− uo) ≥ 0 ∀ u ∈ Uad.

Again, for simplicity of notations, we denote

`o1(t) ≡ `x(t, xo(t), µo(t), uot ), `o2(t) ≡ `µ(t, xo(t), µo(t), uot )

Φo
1(T ) ≡ Φx(xo(t), µo(T )), Φo

2(T ) ≡ Φµ(xo(t), µo(T )).

Under the assumption (A5), it follows from Corollary 4.3 that `o2(t) ∈ Cρ(X) ⊂
Cγ2(X) P-a.s for all t ∈ I, and Φo

2(T ) ∈ Cρ(X) P-a.s. Hence the Gâteaux
differential of J , denoted by dJ, is well defined and it is given by

dJ(uo, u− uo) = L(z) + E

∫ T

0
`(t, xo(t), µo(t), ut − uot )dt.(59)

where

(60)

L(z) ≡ E

{∫
I
{< `o1(t), z(t) >X + < `o2(t), ν(t) >Cγ2 (X),Ms

γ2
(X)}dt

+ < Φo
1(T ), z(T ) >X + < Φo

2(T ), ν(T ) >Cγ2 (X),Ms
γ2

(X)

}
.

Since, for each t ∈ I, `o2(t) ∈ Cρ(X) P-a.s, and Φo
2(T ) ∈ Cρ(X) P-a.s, using La-

grange formula and Fubini’s theorem it is easy to verify that the above expression
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is equivalent to the following one

(61)

L(z) = E

{∫
I
{< `o1(t) +Dx`

o
2(t), z(t) >X}dt

+ < Φo
1(T ) +DxΦo

2(T ), z(T ) >X

}
.

By virtue of the growth properties (C1)–(C2) of ` and Φ, and the growth prop-
erty (A5) of their Gâteaux differentials, we have `o1 + Dx`

o
2 ∈ LF2 (I,X) and

Φo
1(T ) + DxΦo

2(T ) ∈ LFT2 (Ω, X). Thus it follows from (61) that z −→ L(z) is a
continuous linear functional on Λ2. On the other hand, it follows from Lemma
6.1 that Λu−u

o −→ z is a continuous linear operator from the Hilbert space
SMc

2(I,X) to the Banach space Λ2. Hence the composition map

Λu−u
o −→ z −→ L(z) ≡ L̃(Λu−u

o
)

is a continuous linear functional on SMc
2(I,X). Thus, it follows from semi-

martingale representation theorem that there exists a unique pair (ψ,Q) ∈ Λ2 ×
LF2 (I,LR(H,X)) such that

(62)

L(z) = L̃(Λu−u
o
) = E

{∫ T

0
(ψ(t), f(t, xo(t), µo(t), ut − uot ))X

+

∫ T

0
Tr[Q(t)Rσ∗(t, xo(t), µo(t), ut − uot )]dt

}
.

The necessary condition (57) then follows from (58), (59) and (62). This com-
pletes the proof.

We note that Theorem 6.2 asserts the existence of the pair

(ψ,Q) ∈ Λ2 × LF2 (I,LR(H,X))

as the necessary condition for optimality. However, it does not say how one can
construct such a pair. Here we present a constructive procedure. The operators
appearing in the following theorem are defined in the body of its proof.

Theorem 6.3. Suppose the assumptions of Theorem 6.2 hold and further σ is
uniformly bounded on I ×X ×M1(X)× U . Then the pair (ψ,Q) is given by the
Ft-adapted mild solution of the following adjoint evolution equation (backward
stochastic evolution equation),

(63)
−dϕ = A∗ϕdt+ F ∗1 (t)ϕdt+B∗1(t)ϕdt+ Υ(t)ϕdt+ [Σ̃1(t;ϕ)

+ B̃2(t;ϕ)]dW + (`o1(t) +Dx`
o
2(t))dt
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satisfying the terminal condition,

ϕ(T ) = ϕo(T ) ≡ Φo
1(T ) +DxΦo

2(T )(64)

giving ψ(t) = ϕ(t) and Q(t) = Σo(t) ≡ Σ̃1(t;ϕ) + B̃2(t;ϕ) for t ∈ I; where the
operators are identified in the body of the proof. Further, the backward stochas-
tic evolution equation (63) with the terminal condition (64) has a unique mild
solution ϕ ∈ Λ2 ⊂ LF2 (I,X).

Proof. We prove that the necessary condition given by Theorem 6.2 leads to a
backward stochastic evolution equation of the form

(65)
dϕ = −A∗ϕdt+ (BV terms)dt+ Σo(t)dW

ϕ(T ) = ϕo(T ), t ∈ I.

Using the notations presented above the inequality (55), we rewrite the variational
equation (54) as follows:

(66)

dz = Azdt+ F1(t)zdt+ F2(t)ν(t)dt+ fo(t)dt

+ Σ1(t; z(t))dW (t) + Σ2(t; ν(t))dW (t) + σo(t)dW,

z(0) = 0, t ∈ I.

Keeping in mind that we are only interested in mild solutions, we can formally
compute the Itô differential of the scalar product (ϕ(t), z(t))X . This can be jus-
tified rigorously using Yosida approximation An of A and taking limits using the
fact that the corresponding semigroups Sn(t), t ≥ 0, converge in the strong op-
erator topology to S(t), t ≥ 0, uniformly on compact intervals [8, Theorem 4.5.4,
p. 133]. Thus we have

d(ϕ, z) = (dϕ, z) + (ϕ, dz)+ << dϕ, dz >>(67)

where << ·, · >> denotes the quadratic variation. Integrating this over the
interval [0, T ] we have

(68) E(ϕ(T ), z(T )) = E

∫ T

0
(dϕ, z) + E

∫ T

0
(ϕ, dz) + E

∫ T

0
<< dϕ, dz >> .

Considering the second term on the righthand side and using equation (66) and
necessary adjoint operations, we have

(69)

E

∫ T

0
(ϕ, dz) = E

∫ T

0
(A∗ϕdt+ F ∗1 (t)ϕdt, z)

+ E

∫ T

0
(ϕ,Σ1(t; z)dW ) + E

∫ T

0
(ϕ, F2(t)ν)dt+ E

∫ T

0
(ϕ,Σ2(t; ν)dW )

+ E

∫ T

0
(ϕ, f0)dt+ E

∫ T

0
(ϕ, σ0(t)dW ).
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By virtue of assumption (A4), F2 and Σ2 are uniformly bounded (and uniformly
measurable) linear operator valued functions with values F2(t) ∈ L(M s

γ2(X), X)

and Σ2(t; ·) ∈ L(M s
γ2(X),LR(H,X)) respectively. Recall that the signed measure

ν is linearly related to the process z. In particular, we have (with a slight abuse
of notation)

(70)

F2(t)ν(t) =

∫
X
F2(t)(ξ)ν(t)(dξ)

= lim
ε↓0

(1/ε)

{∫
X
F2(t)(ξ)(µε(t)(dξ)− µo(t)(dξ))

}
= E lim

ε↓0
(1/ε)[F2(t)(xε(t))− F2(t)(xo(t))]

= EDxF2(t)(xo(t); z(t)) ≡ E(DxF2(t; z(t))).

The reader can easily verify this using Lagrange formula, Fubini’s theorem and
dominated convergence theorem. Similarly, we have Σ2(t; ν(t)) = EDxΣ2(t, xo(t);
z(t)) ≡ EDxΣ2(t; z(t)); and both are linear in z. Thus the middle three terms of
equation (69), denoted by M3(69), can be written as

(71)

M3(69) = E

∫ T

0
(ϕ,Σ1(t; z)dW ) + E

∫ T

0
(ϕ,E(DxF2(t; z(t)))dt

+ E

∫ T

0
(ϕ,E(DxΣ2(t; z(t)))dW ).

Define the following multi linear forms:

b0(t, z, ϕ, h) ≡ (ϕ,Σ1(t; z)h)

b1(t, ϕ, z) ≡ (ϕ,E(DxF2(t; z(t)))(72)

b2(t, ϕ, z, h) ≡ (ϕ,E(DxΣ2(t; z(t)))h), h ∈ Ht.

Since the operators {F1, F2,Σ1,Σ2} are bounded and linear, these forms are also
bounded. For each t ∈ I, let Xt (Ht) denote the space of all Ft-measurable X
valued (H-valued) norm-square integrable random variables. Clearly, for each
t ∈ I, b0 is a trilinear form on Xt×Xt×Ht, and therefore by Riesz representation
theorem on Hilbert spaces there exists a unique operator valued function Σ̃1 such
that b0 has an equivalent representation given by

b0(t, z, ϕ, h) ≡ (ϕ,Σ1(t; z)h)Xt = (z, Σ̃1(t;ϕ)h)Xt .

Similarly, b1 is a bilinear form on Xt×Xt and therefore, again by Riesz represen-
tation theorem, there exists a unique Ft-adapted bounded linear operator valued
function B1(t) ∈ L(Xt) such that b1(t, ϕ, z) = (ϕ,B1(t)z)Xt . Again by the same
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representation theorem, the trilinear form b2 admits two equivalent representa-
tions

b2(t, ϕ, z, h) = (ϕ,B2(t; z)h)Xt = (z, B̃2(t;ϕ)h)Xt

where B2(t; ·) ∈ L(Xt,L(Ht,Xt)) and B̃2(t; ·) ∈ L(Xt,L(Ht,Xt)). Based on these
representations, we conclude that the expression (71) is equivalent to the following
one,

(73)

M3(69) = E

∫ T

0
(z(t), Σ̃1(t;ϕ)dW ) + E

∫ T

0
(z(t), B∗1(t)ϕ(t))dt

+ E

∫ T

0
(z(t), B̃2(t;ϕ)dW ).

Thus the first two terms on the right hand side of equation (68) can be rewritten
as follows:

E

∫ T

0
(dϕ, z) + E

∫ T

0
(ϕ, dz)

= E

∫ T

0
(dϕ+A∗ϕdt+ F ∗1 (t)ϕdt+B∗1(t)ϕdt+ [Σ̃1(t;ϕ) + B̃2(t;ϕ)]dW, z)(74)

+ E

∫ T

0
(ϕ, fo)dt+ (ϕ, σo(t)dW ).

At this point we observe that the diffusion operator Σo of equation (65) can be
identified as follows,

Σo(t) ≡ −(Σ̃1(t;ϕ) + B̃2(t;ϕ)),

which is linear in ϕ. Now considering the quadratic variation term E
∫ T

0 < dϕ,
dz > and recalling the representation of the trilinear form b2 we have

E

∫ T

0
< dϕ, dz >= E

∫ T

0
Tr
(
Σo(t)R(Σ1(t; z) + EDxΣ2(t; z) + σ0(t))∗

)
dt

= E

∫ T

0
Tr
(
−[Σ̃1(t;ϕ) + B̃2(t;ϕ)]R[Σ1(t; z) +B2(t; z)]∗

)
dt(75)

+ E

∫ T

0
Tr(Σo(t)Rσ∗o(t))dt.

Considering the second line in the above expression, it follows from linearity and
boundedness of the operators {Σ̃1, B̃2,Σ1, B2} that the integrand is a (bounded)
bilinear form on Xt uniformly in t ∈ I, and therefore there exists an uniformly
bounded operator valued function Υ, with values Υ(t) ∈ L(Xt), such that

(76) Tr
(
−[Σ̃1(t;ϕ) + B̃2(t;ϕ)]R[Σ1(t; z) +B2(t; z)]∗

)
= (Υ(t)ϕ(t), z(t)).
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Using (74)–(75) and (76) in the expression (68) we obtain

E(ϕ(T ), z(T )) = E

{∫ T

0
(dϕ+A∗ϕdt+ F ∗1 (t)ϕdt+B∗1(t)ϕdt+ Υ(t)ϕdt

+ [Σ̃1(t;ϕ) + B̃2(t;ϕ)]dW, z)

}
(77)

+ E

{∫ T

0
Tr(Σo(t)Rσ∗o(t))dt+

∫ T

0
[(ϕ, fo)dt+ (ϕ, σo(t)dW ]

}
.

Now requiring that ϕ is a mild solution of the following backward stochastic
evolution equation,

(78)
−dϕ = A∗ϕdt+ F ∗1 (t)ϕdt+B∗1(t)ϕdt+ Υ(t)ϕdt+ [Σ̃1(t;ϕ)

+ B̃2(t;ϕ)]dW + (`o1(t) +Dx`
o
2(t))dt,

with the terminal condition, ϕ(T ) ≡ Φo
1(T )+DxΦo

2(T ), it follows from the identity
(77) that

(79)

E

∫ T

0
< `o1(t) +Dx`

o
2(t), z(t) > dt+ E ζ(Φo

1(T ) +DxΦo
2(T ), z(T ))

= E

∫ T

0
Tr(Σo(t)Rσ∗o(t))dt+ E

∫ T

0
(ϕ, fo)dt+ (ϕ, σodW ).

Since, by our assumption, σ is uniformly bounded, it is clear that E
∫ T

0 (σ∗oϕ, dW ) =
0. Thus it follows from the above expression that

(80)

E

∫ T

0
< `o1(t) +Dx`

o
2(t), z(t) > dt+ E(Φo

1(T ) +DxΦo
2(T ), z(T ))

= E

∫ T

0
Tr(Σo(t)Rσ∗o(t))dt+ E

∫ T

0
(ϕ, fo)dt.

The expression on the left hand side of the above identity coincides with the
functional L(z) given by the expression (60). Thus, if we identify Σo(t) with
Q(t) and ϕ(t) with ψ(t) then the expression (80) coincides with the identity
(62). Since, by assumption (A4), the Fréchet derivatives of f and σ are uni-
formly bounded, it is evident that the operator valued function Σo, given by
Σo(t) = −(Σ̃1(t;ϕ) + B̃2(t, ϕ)), belongs to LF2 (I,LR(H,X)) satisfying the neces-
sary condition of Theorem 6.2. Thus the pair (ψ,Q), whose existence was guaran-
teed by the semimartingale representation theorem (see Theorem 6.2), can be ac-
tually computed by solving the backward stochastic evolution equation (63)–(64)
provided this equation has an Ft-adapted solution. Under the given assumptions,
in particular (A4)–(A5), the operators {F ∗1 (t), B∗1(t),Υ(t)} and [Σ̃1(t; ·)+B̃2(t; ·)]
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are all Ft-adapted and uniformly bounded. Considering the system (78), the
process η given by η(t) ≡ (`o1(t) + Dx`

o
2(t)) is an element of LF2 (I,X). Thus, it

follows from a result of Hu and Peng, [16, Theorem 3.1] on BSDE that the system
(63)–(64) has a unique Ft-adapted mild solution ϕ ∈ LF2 (I,X). This completes
the proof.

Under certain convexity assumptions, it is easy to verify that the necessary con-
ditions are also sufficient. This is stated in the following corollary.

Corollary 6.4. Suppose the assumptions of Theorem 6.3 hold and consider the
real valued functional H given by

(81)
H(t, x, µ, ψ,Q, u) ≡ `(t, x, µ, u)+ < ψ, f(t, x, µ, u) >H

+ Tr(QRσ∗(t, x, µ, u))

defined on I×X×Mγ2(X)×X×LR(H,X)×M1(U). Suppose H is Borel mea-
surable in all the variables and, for each t ∈ I, it is continuous on X×Mγ2(X)×
X × LR(H,X)× U and convex in the second and third argument. The terminal
cost functional Φ is Borel measurable and convex in all its arguments. Then the
necessary conditions of optimality given by Theorem 6.2 are also sufficient.

Proof. Since the proof involves straightforward computation we present only a
brief outline. Compute the Itô differential of the scalar product (ψ(t), x(t) −
xo(t))X where ψ is the mild solution of the BSDE (63)–(64) and {xo, x} are
the mild solutions of the state equation (1) corresponding to controls {uo, u}
respectively with u ∈ Uad being arbitrary. Then taking the expected value
of the integral over the interval I ≡ [0, T ] and using the necessary condition
(inequality) (57) and the convexity assumptions one arrives at the inequality
J(u) − J(uo) ≥ 0. This ends the outline. For rigorous justification of the steps
one must use the Yosida approximation An of A, and use the Itô differential of
the scalar product (ψn, xn−xon) instead of (ψ, x−xo) where now ψn is the strong
solutions of the BSDE (63)–(64) with A∗ replaced by A∗n and ϕo(T ) replaced by
ϕon(T ) ≡ Jn(ϕo(T )) with Jn ≡ nR(n,A) where R(n,A) denotes the resolvent of
A corresponding to n ∈ ρ(A). Similarly {xon, xn} are the strong solutions of the
state equation (1), corresponding to controls {uo, u} respectively, with A replaced
by An and initial condition x0 replaced by Jnx0. By use of a well known result
from semigroup theory [8, Theorem 4.5.4], one can easily verify that as n→∞,
(ψn, xn − xon) −→ (ψ, x− xo). This completes the outline of our proof.

Remark 6.5. Theorems 6.2 and 6.3 provide the necessary conditions of opti-
mality whereby one can compute the optimal controls.
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