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Abstract

We consider nonlinear non-autonomous multivariable systems governed
by differential equations with differentiable linear parts. Explicit conditions
for the exponential stability are established. These conditions are formu-
lated in terms of the norms of the derivatives and eigenvalues of the variable
matrices, and certain scalar functions characterizing the nonlinearity. More-
over, an estimate for the solutions is derived. It gives us a bound for the
region of attraction of the steady state. As a particular case we obtain
absolute stability conditions.

Our approach is based on a combined usage of the properties of the
”frozen” Lyapunov equation, and recent norm estimates for matrix func-
tions. An illustrative example is given.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

The problem of stability analysis of nonlinear nonautonomous systems continues
to attract the attention of many specialists despite its long history. It is still
one of the most burning problems of control theory, because of the absence of
its complete solution. The problem of the synthesis of a stable system is closely
connected with the problem of stability analysis. Any progress in the problem
of analysis implies success in the problem of synthesis of stable systems. The
basic method for the stability analysis of nonlinear continuous systems is the
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direct Lyapunov method, cf. [8, 10]. By that method many very strong results
are obtained, but finding Lyapunov’s functions is often connected with serious
mathematical difficulties. In the interesting papers [1, 11, 12] the authors con-
sider essentially nonlinear nonautonomous ordinary differential equations (i.e.,
equations without separated linear parts) with locally Lipschitz entries, as well
as partially slowly nonlinear time-varying systems. Besides, the classical aver-
aging methods are extended and Lyapunov’s theory is developed. About other
interesting relevant results see [2, 13] and references therein.

In this note, for a class of nonlinear non-autonomous systems we establish
explicit conditions for the exponential stability.

Introduce the notations. Let C™ be the complex n-dimensional Euclidean

space with a scalar product (-,-), the Euclidean norm | - || = +/(+,-) and unit
matrix I. For a linear operator A in C" (matrix), ||A] = sup,ccn ||Az||/||z]| is

the spectral (operator) norm, A* is the adjoint operator, Ny(A) is the Hilbert-
Schmidt (Frobenius) norm of A: No(A) = Virace AA*; \p(A) (k=1,...,n) are
the eigenvalues with their multiplicities, a(A) = max; Re A;(A). The quantity

g(4) = (NZ(4) = > ()2
k=1

plays an essential role hereafter. In addition, Q(r) = {w € C" : |w| < r} for a
positive r < oo.

Everywhere below A(t) is a variable n x n matrix, defined, uniformly bounded
on [0,00) and having a derivative measurable and uniformly bounded on [0, c0).
Our main object in this paper is the equation

(1.1) u'(t) = A(t)u(t) + F(u(t),t) (t>0),
where F': Q(r) x [0,00) — C" is continuous and satisfies the inequality
(1.2) [ (w, O] < v(@®)[wl]] (w e Q(r);t > 0),

where v(t) is a scalar continuous function uniformly bounded on [0, co).

The aim of the present paper is to extend the freezing method for linear
systems [3, 5, 15, 7] to equation (1.1).

A (global) solution of (1.1) is a continuously differentiable vector valued func-
tion satisfying (1.1) for all ¢ > 0. The existence and uniqueness of solutions is
assumed.

The zero solution of system (1.1) is said to be exponentially stable in the class
of nonlinearities (1.2) if there are constants M > 1,¢ > 0 and 6 > 0, such that
lu(®)]| < M exp(—et) ||u(0)|| (¢ > 0) for any solution wu(t) of (1.1), provided
[u(0)]] < 6.
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Suppose that

(1.3) sup a(A(t)) <0,

>0

denote by Ar(t) the smallest eigenvalue of (A(t) + A*(¢))/2 and put

n—1 . j
ut) = Y (k + 5)!g"H (A(1))

520 2 aA@) (kL)

Now we are in a position to formulate our main result.

Theorem 1. Let the conditions (1.2), (1.3) and

(14) sup / (=24 g2() |4 ()] + 2u(s)v(s))|Ar(s)]ds < 0
t>0 0

hold. Then the zero solution of (1.1) is exponentially stable.

This theorem is proved in the next two sections. Below in this section we check
that it is sharp. In addition, we will show that the proof Theorem 1 gives us the
absolute stability conditions.

From (1.3) it follows sup, Ar(s) < 0. Now Theorem 1 implies

Corollary 2. Under conditions (1.2) and (1.3), let
(1.5) sup (2 OIA @) + 2ut)v(?)) < 2.

Then the zero solution of (1.1) is exponentially stable.

The following relations are checked in [6, Section 1.5]:

g%(A) < NZ(A) — |Trace A2|, g(A) < %NM A%

and g(e'®A + zIy) = g(A) (a € R,z € C); if A is a normal matrix: AA* = A*A,
then g(A) = 0. If A; and A are commuting matrices, then g(A; + A4s) < g(A41)+
g(A3). In addition, by the inequality between the geometric and arithmetic mean

values,
(%imw?)" > (If[lwmr)z.

Hence g?(A) < N3(A) — n|det A|?/™.
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Theorem 1 and Corollary 2 are sharp in the following sense. Let F(w,t) = vyyw
(vp = const > 0) and A(t) = Ag be a constant normal matrix. Then g(A(t)) =0,
p(t) = ‘a(}%)' and (1.5) takes the form

(1.6) vy < |a(Ao)|-

But this inequality is the necessary and sufficient stability condition in the con-
sidered case. Moreover, if (1.1) is linear, then v(¢) = 0 and Theorem 1 yields the
stability result obtained in [7] in the framework of the freezing method.

2. PRELIMINARIES

Put

Q=2 [ N0 ds and qt) =2 [ A s ¢ 2 0),
0 0

As it is well known, Q(t) is a unique solution of the equation
(2.1) A (DQU) + QA = —21,

cf. [4, Section 1.5]. Clearly,

(2.2) 1R < q(t) (¢ =0).

Lemma 3. Let condition (1.2) hold. Then Q(t) is differentiable and ||Q'(t)] <
CO)IA @]

Proof. Differentiating (2.1), we have
AT(1)Q'(t) + Q' () A(t) = —(A"(1))Q(t) + QA1) (t > 0).

Hence

Thus,

Q@) < %q(t)H(A*(t))’Q(t) + QWA @ < a®QMNNIA @)

Now (2.2) yields the result. |
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For a constant Hurwitz matrix Ay, due to [6, Lemma 1.9.2],

n_l . .

) . z (k +4)1g" (Ao)
2/ HerSHQdS < [(Ap), where i(Ag) = ‘ | . |
0 j,k-z=0 2k |a(Ag)[F 1 (R1j1)3/2

So u(t) = i(A(t)) and therefore,
(2.3) QM) < q(t) < p(t) (t=0).
Now Lemma 3 implies

(2.4) Q)] < @) A (@)]-

Furthermore, put w(t) = ey (v € C*). Then w'(t) = Agw(t), and

W — (Ao + Af)uw(t), w(t)).

e d(w(t), w(t)
w(t), w(t "
—a = A(Ag + Ap)(w(t), w(t)),
where A(Ag + Af) is the smallest eigenvalue of Ay + Aj. Therefore,
e = (w(t), w(t) > e AoH4) (w(0), w(0)) = e AoH4a)|jy2.

Recall that Ag is Hurwitzian, so A(4g + Aj) < 0. Put
o0 *
Qo = 2/ eAoseMos s,
0

Then

= > : 2[A]”
(Qoh,h) =2 / (e™%h, e20*h)ds > 2 / AATAS s (|0 ||? =
0 0 [A(Ao + Ap)|
(h € C™). Hence,

(2.5) IR M < Ar()].

3. PROOF OF THEOREM 1

Lemma 4. Let conditions (1.2) with r = oo and (1.3) hold. Then a solution u(t)
of (1.1) satisfies the inequality
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(Q()u(t), u(t)) < y(0)exp [/;(—2 +Q ()l + 2v ()R INIQ™" (t1)lldty

(5(0) = (Q(0)u(0), u(0))).
Proof. Put b(t) = 1/ Q(t)|| and substitute
(3.1) u(t) = e Jo b))
into (1.1). Then we obtain
(3.2) ' = (b(t)] + At))x + Fi(z,t) (x=x(t)),

where t t
Fy (:C, t) = @fo b(S)dsF(xef Io b(s)ds’ t).

Let Q(t) be a solution of (2.1), again. Multiplying equation (3.2) by Q(t) and
taking the scalar product, we get

QM) (1), (1) = (Q)A®)x (1), 2(t)) + (Q) Fy (z(t),t), z(t)).

Since

dt
we obtain

%(Q(t)w(t), z(t)) = (Q) (b +A(t))x(t), x(8))+ (x(t), Q1) (b(E) ]+ A(t))x(t))

+ (Q'(Ox(t), (1) + (R Fi(x(t), 1), (1)) + ((t), Q) F1 (2(t), 1))
= 20(8)(Q)x (1), z(1)) + ((Q)A(L) + A*(1)Q(1))x(t), (1))
+(Q'(Ox(t), 2(t)) + (R Fi(x(t), 1), (1)) + ((t), Q) F1 (2(2), 1))
= (2 +Q'(t) + mQ(t))w(t)vw(t)) + Q) F1(x(t), 1), 2(1))
+ (2(t), Q1) Fa(2(1), 1))

But

2 o). 2 e
(HQ(t)HQ(t) (t), (t)> < 2fz(t)["
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Therefore,

a
dt
Take into account that due to (1.2)

(3.3) Q1) (), 2(1)) < |QMll=(D? +2Re (Q)Fi (w(2), 1), ().
11 (0), )| = o O F(a(tye a0
< el My (1) (2 e Jo P = () ().

Consequently,

(QE)Fi(z(t), 1), 2(t))] < v®)Q) Iz (®)]*.
Now (3.3) yields

%(Q(t)w(t),fﬂ(t))) < (lQ®) + 2v@®) Q) l=(6)]*.
Hence,
%(Q(t)w(t),fﬂ(t))) < (1" Wl + 2v (IR ) ((t), z(t))

< (1M1 +2v®lIRMIIQ™ (OI(Q®)(t), x(1)).
Integrating this inequality with y(t) = (Q(¢)x(t),x(t)), we get

t
0

y() Sy(0)+/ (IQ ()l + 2v () Q) INNIQ™ (k1) Iy (t1)dt1.

Now the Gronwall lemma implies

y(t) <y(0)exp [/0 (1Q" )l + 20 ()| Q) INQ ™" (t1) dt].

Due to (3.1) this yields the required result. |

Corollary 5. Under the hypothesis of Lemma 4, let

t
o =sup oo [ (=24 1Q )] + 2e(e0) [QU)DIQ (1) < ox.
t>0 0

Then a solution u(t) of (1.1) satisfies the inequality

(Q)u(t), u(t)) < y(0)exp (2t0o) (> 0)
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and therefore,
(3.4) [u(®)]| < dol|u(0)llexp (t60) (t > 0),

where

do = sup VIRQOQ-T®)]-
Indeed, this result is due to Lemma 4, since

(Q)u(t), u(t)) = [lu@®)]*/IQ~ "t

Lemma 6. Let conditions (1.2) and (1.3) hold with r < oo. Then inequality
(3.4) is wvalid, provided the conditions 0y < 0 and ||u(0)|| < do/r are fulfilled, and
consequently the zero solution to (1.1) is exponentially stable.

Proof. For a sufficiently small to > 0 we have ||u(t)| < r (t < tp) and therefore,
(3.4) holds for t < ty. Extending it to all ¢ > 0 we arrive at the result. [ ]

Proof of Theorem 1. Due to (2.3)—(2.5) we have
dy < d:= sup v/ [ (O) [ AR (®)]

and 6y < 0, where according to (1.4),
. 1 [t
0 :=sup [ (=24 p?(s)|A'(s)I| + 2u(s)v(s)) | Ar(s)|ds < 0.
>0 2t Jo
Now the previous lemma implies

(3.5) |u(®)]| < d|ju(0)|lexp (t0) (t > 0), provided ||u(0)| < d/r.

The assertion of Theorem 1 directly follows from (3.5). |

4. ADDITIONAL STABILITY CONDITIONS

4.1. Absolute stability

Assume that F': C" x [0,00) — C" is continuous and satisfies the inequality
(4.1) |F@w, D] < v(®)wll (e T t>0),

where v(t) again is continuous and uniformly bounded on [0, 00).

The zero solution of system (1.1) is said to be absolutely exponentially stable
in the class of nonlinearities (4.1) if there are constants M > 1,e¢ > 0, which do
not depend on a concrete form of F' (but which depend on v(t) and A(t)), such
that ||z(¢)||< M exp(—et) ||x(0)| (¢ > 0) for any solution z(t) of (1.1).
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Directly from (3.5) it follows

Corollary 7. Under inequality (1.3), let one of the conditions, either (1.4) or
(1.5) hold. Then the zero solution of (1.1) is absolutely exponentially stable in
the class of nonlinearities (4.1).

The literature on the absolute stability of continuous systems is very rich, but
mainly systems with autonomous linear parts were considered, cf. the survey
[9]. One-contour systems with non-stationary linear parts were explored, in par-
ticular, in the the well-known paper by Yakubovich [14]. Absolute stability of
multivariable systems with non-stationary linear parts to the best of our knowl-
edge was almost not investigated in the available literature.

4.2. Stability tests in terms of the Hurwitzness of auxiliary matrices

We are going to reformulate the condition

(4.2) PONA O] + 2p(t)r(t) <2

for a fixed ¢ in the terms of the Hurwitzness of some matrices. In this subsection,
for the brevity sometimes we put g(A(t)) = g, v(t) = v, a(A(t)) = « and

a = +/|[|A'(t)]|. In addition, let

n—1

k+]) 2n—k—j—2
Py E (y > 0).
3/2
a2 (RDY

Denote by 7(b) the unique positive root of the equation
(4.3) y*" 1 =bP(y) (b= const > 0)
and assume that v # 0,g # 0. Then (4.2) can be rewritten as
W2(1)a? + 2u()y + 12/(a?) = (u(t)a + v/a)? < 2+ 12/ (a?),
and therefore, cgu(t) < 2, where

20 24/ (1) |
(V227 —v)g  (VRIADI+ 720 - v(1) 9(A()

c=c(t) =

We can write

| ktj

(k+4)lg
_69” ) =cg Z TR ez <L
fyane s |laBtaH1 (KL51)3/
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Substitute |a| = yg/2 into this inequality. Then

n—1 .
(k+7)!
—_ < 1.
Cj;o Tt GV DR

Multiplying this inequality by y**~! we get y?"~1 > cP(y). So y > ro(c) and
therefore |a| > gro(c)/2. So (4.2) holds, provided a + gro(c)/2 < 0, since A(t) is
Hurwitzian. Now from Corollary 2 it follows

Corollary 8. For allt >0, let A'(t) # 0, g(A(t)) #0 and

A1) + 50(AW®)ro(elt)T

be a Hurwitz matriz. Then the zero solution to (1.1) is exponentially stable.

The cases A'(t) = 0 or (and) g(A(t)) = 0 are left to the reader. Let us estimate
ro(b).

Lemma 9. One has r9(b) < d9(b), where

0 6) = { 21 /bP(1) if bP(1)

<1
bP(1) if bP(1) > 1.

Proof. 1f bP(1) > 1, then from (4.3) it follows that ro(b) = o > 1,

(k+4)! _

2n 1 2n—k—j—2 2n—1

5 e < b P
7,k=0

and thus o < bP(1). If bP(1) < 1, then 7o < 1 and 73"~ < bP(1), as claimed.

|
Due to the previous lemma and Corollary 8, we arrive at the following result.

Corollary 10. For allt >0, let A'(t) # 0, g(A(t)) # 0 and

A1) + 50(AW)o(elt)T

be a Hurwitz matriz. Then the zero solution to (1.1) is exponentially stable.
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4.3. Example

Consider the system
Z1(t) = —x1(t) + a sin(wt)xa(t) + fi(x1(t), z2(1),1),
Zo(t) = a sin(wt)x1(t) — x2(t) + fo(x1(t), z2(t),1)

with positive constants a and w. In addition, f; (kK = 1,2) are real continuous
functions defined on R? x [0, 00) and satisfying

| Freyi, y2, O < me(®) (v +y3)P* (y1,y2 € R,t > 0)

for a pr > 1. Here n;(t) are bounded continuous functions. So for an r > 0 we
have

IF(y, 11> = [f1(y1, y2, ) > + [ f2 (1, y2, 1) [?
<)yt + 3P + 03 () (yi + y3)P
< (PP 40PV +43) (v = (1, v2)ivt + 5 < 17).
Thus condition (1.2) holds with
v(t) = ( (0)r* @Y 4 g3 (p)r2E )2,

In addition, under consideration,

Alt) :( -1 asiiziwt) >

—a sin(wt)

We have A\ 2(A(t)) = —1 £ ia sin(wt) and ||A'(t)|| = aw|cos(wt)|. So a(A(t)) =
—1. In addition, g(A(t)) = 0, since A(¢) under consideration is normal. Thus
u(t) = 1. Due to Corollary 2 the zero solution to the considered equation is
exponentially stable, provided

sup (aw|cos(wt)| + 2v(t)) < 2.
>0

Concluding remarks:

In this paper we have established a sufficient explicit exponential stability test
for a class of nonlinear nonautonomous systems. The test is sharp. It becomes
also the necessary condition provided A(t) is a constant normal matrix. As the
example shows, in appropriate situations we can avoid the constructing of the
Lyapunov functions. Moreover, the solution estimate (3.5) gives us a bound for
the region of attraction of the steady state and the absolute stability conditions.
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