ArticleOriginal scientific text

Title

Norm estimates for solutions of matrix equations AX-XB=C and X-AXB=C

Authors 1

Affiliations

  1. Department of Mathematics, Ben Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel

Abstract

Let A, B and C be matrices. We consider the matrix equations Y-AYB=C and AX-XB=C. Sharp norm estimates for solutions of these equations are derived. By these estimates a bound for the distance between invariant subspaces of matrices is obtained.

Keywords

matrix equations, norm estimates, perturbations, invariant subspaces

Bibliography

  1. R. Bhatia, Matrix Analysis (Springer, NY, 1997). doi: 10.1007/978-1-4612-0653-8
  2. R. Bhatia and P. Rosenthal, How and why to solve the operator equation AX-XB=Y, Bull. London Math. Soc. 29 (1997) 1-21. doi: 10.1112/S0024609396001828
  3. R.R. Bitmead and H. Weiss, On the solution of the discrete time Lyapunov matrix equation in controllable canonical form, IEEE Trans. Automat. Control AC-24 (1979) 481-482. doi: 10.1109/TAC.1979.1102064
  4. Yu. L. Daleckii and M.G. Krein, Stability of Solutions of Differential Equations in Banach Space, Amer. Math. Soc., Providence, R.I, 1971.
  5. C. Davis and W. Kahan, The rotation of eigenvectors by a perturbation III, SIAM J. Numer. Anal. 7 (1970) 146-162. doi: 10.1137/0707001
  6. M. Dehghan and M. Hajarian, The reflexive and anti-reflexive solutions of a linear matrix equation and systems of matrix equations, Rocky Mountain J. Math. 40 (3) (2010) 825-848. doi: 10.1216/RMJ-2010-40-3-825
  7. B.W. Dickinson, Analysis of the Lyapunov equation using generalized positive real matrices, IEEE Trans. Autumut. Control AC-25 (1980) 560-563. doi: 10.1109/TAC.1980.1102391
  8. M.I. Gil', Operator Functions and Localization of Spectra, Lecture Notes In Mathematics vol. 1830 (Springer-Verlag, Berlin, 2003).
  9. M.I. Gil', Difference Equations in Normed Spaces. Stability and Oscillations, North-Holland, Mathematics Studies 206 (Elsevier, Amsterdam, 2007).
  10. M.I. Gil', Norm estimates for functions of two non-commuting matrices, Electronic Journal of Linear Algebra 22 (2011) 504-512.
  11. M.I. Gil', Matrix equations with diagonalizable coefficients, Gulf J. Math. 1 (2013) 98-104.
  12. M.I. Gil, Bounds for spectra of operators on tensor of Euclidean spaces, PanAmerican Math. J. 24 (3) (2014) 35-47.
  13. I. Gohberg, R. Lancaster and L. Rodman, Invariant Subspaces of Matrices with Applications (Wiley, New York, 1986).
  14. L. Grubisic, N. Truhar and K. Veseli, The rotation of eigenspaces of perturbed matrix pairs, Linear Algebra and Appl. 436 (2012) 4161-4178. doi: 10.1016/j.laa.2012.01.026
  15. J.Z. Hearon, Nonsingular solutions of TA-BT=C, Linear Algebra and Appl. 16 (1977) 5783. doi: 10.1016/0024-3795(77)90019-2
  16. R. Horn and C. Johnson, Topics in Matrix Analysis (Cambridge University Press, Cambridge, 1991). doi: 10.1017/CBO9780511840371
  17. M. Konstantinov, Da-Wei Gu, V. Mehrmann and P. Petkov, Perturbation Theory for Matrix Equations, Studies in Computational Mathematics, 9 (North Holland, Amsterdam, 2003).
  18. A.G. Mazko, Matrix Equations, Spectral Problems and Stability of Dynamic Systems. Stability, Oscillations and Optimization of Systems (Scientific Publishers, Cambridge, 2008).
  19. V. Ptak and N.J. Young, A generalization of the zero location theorem of Schur and Cohn, IEEE Trans. Automat. Control AC-25 (1980) 978-980. doi: 10.1109/TAC.1980.1102476
Pages:
191-206
Main language of publication
English
Received
2014-04-23
Published
2014
Exact and natural sciences