ArticleOriginal scientific text

Title

Fractional integro-differential inclusions with state-dependent delay

Authors 1, 1, 2, 3

Affiliations

  1. Laboratory of Mathematics, University of Sidi Bel-Abbès, P.O. Box 89, Sidi Bel-Abbès 22000, Algeria
  2. Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
  3. Departement of Mathematics, Faculté of Sciences, Semlalia, B.P. 2390, Marrakech, Morocco

Abstract

In this paper, we establish sufficient conditions for the existence of mild solutions for fractional integro-differential inclusions with state-dependent delay. The techniques rely on fractional calculus, multivalued mapping on a bounded set and Bohnenblust-Karlin's fixed point theorem. Finally, we present an example to illustrate the theory.

Keywords

fractional integro-differential inclusions, Caputo fractional derivative, mild solution, multivalued map, Bohnenblust-Karlin's fixed point, state-dependent delay

Bibliography

  1. S. Abbas, M. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations (Springer, New York, 2012). doi: 10.1007/978-1-4614-4036-9
  2. S. Abbas, M. Benchohra and G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations (Nova Science Publishers, New York, 2014).
  3. R. Agarwal, B. de Andrade, and G. Siracusa, On fractional integro-differential equations with state-dependent delay, Comput. Math. Appl. 62 (2011) 1143-1149. doi: 10.1016/j.camwa.2011.02.033
  4. R.P. Agarwal, M. Belmekki and M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv. Differ. Equat. 2009 (2009) Article ID 981728, 1-47.
  5. R.P. Agarwal, M. Benchohra and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. 109 (2010) 973-1033. doi: 10.1007/s10440-008-9356-6
  6. W.G. Aiello, H.I. Freedman and J. Wu, Analysis of a model representing stagestructured population growth with state-dependent time delay, SIAM J. Appl. Math. 52 (3) (1992) 855-869. doi: 10.1137/0152048
  7. K. Aissani and M. Benchohra, Semilinear fractional order integro-differential equations with infinite delay in Banach spaces, Arch. Math. 49 (2013) 105-117. doi: 10.5817/AM2013-2-105
  8. K. Aissani and M. Benchohra, Existence results for fractional integro-differential equations with state-dependent delay, Adv. Dyn. Syst. Appl. 9 (1) (2014) 17-30.
  9. K. Aissani and M. Benchohra, Impulsive fractional differential inclusions with infinite delay, Electron. J. Differ. Eq. 2013 (265) 1-13.
  10. D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calculus Models and Numerical Methods (World Scientific Publishing, New York, 2012).
  11. M. Benchohra, K. Ezzinbi and S. Litimein, The existence and controllability results for fractional order integro-differential inclusions in Fréchet spaces, Proceedings A. Razm. Math. Inst. 162 (2013) 1-23.
  12. M. Benchohra, J. Henderson, S. Ntouyas and A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2008) 1340-1350. doi: 10.1016/j.jmaa.2007.06.021
  13. M. Benchohra and S. Litimein, Fractional integro-differential equations with state-dependent delay on an unbounded domain, Afr. Diaspora J. Math. 12 (2) (2011) 13-25.
  14. M. Benchohra, S. Litimein, J.J. Trujillo and M.P. Velasco, Abstract fractional integro-differential equations with state-dependent delay, Int. J. Evol. Equat. 6 (2) (2012) 25-38.
  15. H.F. Bohnenblust and S. Karlin, On a theorem of Ville. Contribution to the theory of games, Ann. Math. Stud. No. 24, Princeton Univ. (1950) 155-160.
  16. A. Cernea, On the existence of mild solutions for nonconvex fractional semilinear differential inclusions, Electron. J. Qual. Theory Differ. Eq. 2012 (64) (2012) 1-15.
  17. A. Cernea, A note on mild solutions for nonconvex fractional semilinear differential inclusion, Ann. Acad. Rom. Sci. Ser. Math. Appl. 5 (2013) 35-45.
  18. L. Debnath and D. Bhatta, Integral Transforms and Their Applications (Second Edition) (CRC Press, 2007).
  19. K. Deimling, Multivalued Differential Equations (Walter De Gruyter, Berlin-New York, 1992). doi: 10.1515/9783110874228
  20. K. Diethelm, The Analysis of Fractional Differential Equations (Springer, Berlin, 2010).
  21. J.P.C. dos Santos, C. Cuevas and B. de Andrade, Existence results for a fractional equation with state-dependent delay, Adv. Differ. Eq. 2011 (2011), Article ID 642013, 15 pages.
  22. R.D. Driver, A neutral system with state-dependent delay, J. Differ. Eq. 54 (1) (1984) 73-86. doi: 10.1016/0022-0396(84)90143-8
  23. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fractals 14 (2002) 433-440. doi: 10.1016/S0960-0779(01)00208-9
  24. A.M.A. El-Sayed and A.G. Ibrahim, Multivalued fractional differential equations of arbitrary orders, Appl. Math. Comput. 68 (1995) 15-25. doi: 10.1016/0096-3003(94)00080-N
  25. L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its Applications, 495 (Kluwer Academic Publishers, Dordrecht, 1999). doi: 10.1007/978-94-015-9195-9
  26. J.K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funk. Ekvacioj 21 (1978) 11-41.
  27. F. Hartung, Parameter estimation by quasilinearization in functional differential equations with state-dependent delays: a numerical study, Nonlinear Anal. TMA 47 (7) (2001) 4557-4566. doi: 10.1016/S0362-546X(01)00569-7
  28. F. Hartung, and J. Turi, Identification of parameters in delay equations with state-dependent delays, Nonlinear Anal. TMA 29 (11) (1997) 1303-1318. doi: 10.1016/S0362-546X(96)00100-9
  29. F. Hartung, T.L. Herdman and J. Turi, Parameter identification in classes of neutral differential equations with state-dependent delays, Nonlinear Anal. TMA 39 (3) (2000) 305-325. doi: 10.1016/S0362-546X(98)00169-2
  30. E. Hernández and M.A. McKibben, On state-dependent delay partial neutral functional-differential equations, Appl. Math. Comput. 186 (1) (2007) 294-301. doi: 10.1016/j.amc.2006.07.103
  31. E. Hernández, M.A. McKibben and H.R. Henriquez, Existence results for partial neutral functional differential equations with state-dependent delay, Math. Comput. Mod. 49 (2009) 1260-1267. doi: 10.1016/j.mcm.2008.07.011
  32. E. Hernández, A. Prokopczyk and L. Ladeira, A note on partial functional differential equations with state-dependent delay, Nonlinear Anal. RWA 7 (2006) 510-519. doi: 10.1016/j.nonrwa.2005.03.014
  33. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000).
  34. Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Unbounded Delay (Springer-Verlag, Berlin, 1991).
  35. A.A. Kilbas, Hari M. Srivastava and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier Science B.V., Amsterdam, 2006).
  36. A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965) 781-786.
  37. F. Li and J. Zhang, Existence of mild solutions to fractional integrodifferential equations of neutral type with infinite delay, Adv. Diff. Equat. 2011 (2011), Article ID 963463, 1-15.
  38. F. Mainardi, P. Paradisi and R. Gorenflo, Probability distributions generated by fractional diffusion equations, in: Econophysics: An Emerging Science, J. Kertesz and I. Kondor, Eds. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000).
  39. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1993).
  40. A.V. Rezounenko, Partial differential equations with discrete and distributed state-dependent delays, J. Math. Anal. Appl. 326 (2) (2007) 1031-1045. doi: 10.1016/j.jmaa.2006.03.049
  41. V.E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, Heidelberg; Higher Education Press, Beijing, 2010).
Pages:
153-167
Main language of publication
English
Received
2014-03-03
Published
2014
Exact and natural sciences