PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 34 | 1 | 61-87
Tytuł artykułu

Delay perturbed evolution problems involving time dependent subdifferential operators

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate in the present paper, the existence and uniqueness of solutions for functional differential inclusions involving a subdifferential operator in the infinite dimensional setting. The perturbation which contains the delay is single-valued, separately measurable, and separately Lipschitz. We prove, without any compactness condition, that the problem has one and only one solution.
Twórcy
  • Laboratoire LMPA, Department of Mathematics, Jijel University, Algeria
  • Laboratoire LMPA, Department of Mathematics, Jijel University, Algeria
Bibliografia
  • [1] J.P. Aubin and A. Celina, Differential Inclusions, Set-valued Maps and Viability Theory (Springer-Verlag Berlin Heidelberg, 1984). doi: 10.1007/978-3-642-69512-4
  • [2] H. Benabdellah, C. Castaing and A. Salvadori, Compactness and discretization methods for differential inclusions and evolution problems, Atti. Sem. Math. Fis. Univ. Modena XLV (1997) 9-51.
  • [3] M. Bounkhel and M. Yarou, Existence results for first and second order nonconvex sweeping process with delay, Port. Math. 61 (2) (2004) 2007-2030.
  • [4] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Lecture Notes in Math. (North-Holland/American Elsevier, Amsterdam/New York, 1973).
  • [5] C. Castaing, A.G. Ibrahim and M. Yarou, Existence problems in second order evolution inclusions: discretization and variational approach, Taiwanese J. Math. 12 (6) (2008) 1435-1477.
  • [6] C. Castaing, A. Jofré and A. Salvadori, Control problems governed by functional evolution inclusions with Young measures, J. Nonlin. Convex Anal. 5 (2004) 131-152.
  • [7] C. Castaing and M.D.P Monteiro Marques, Topological properties of solution sets for sweeping processes with delay, Port. Math. 54 (1997) 485-507.
  • [8] C. Castaing, A. Salvadori and L. Thibault, Functional evolution equations governed by nonconvex sweeping process, J. Nonlin. Convex Anal. 2 (2) (2001), 217-241.
  • [9] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions. Lecture Notes in Math., 580 (Springer-Verlag, Berlin, Heidelberg, 1977). doi: 10.1007/BFb0087685
  • [10] J.F. Edmond, Delay perturbed sweeping process, Set-Valued Anal. 14 (2006) 295-317. doi: 10.1007/s11228-006-0021-9
  • [11] E. Mitidieri and I. Vrabie, Existence for nonlinear functional differential equations, Hiroshima Math. J. 17 (1987) 627-649.
  • [12] M. Kisielewicz, Differential Inclusions and Optimal Control (Kluwer, Dordrecht, The Netherlands, 1991).
  • [13] J.C. Peralba, Équations d'évolution dans un espace de Hilbert, associées à des opérateurs sous-différentiels. Thèse de doctorat de spécialité (Languedoc, 1973).
  • [14] S. Saïdi, L. Thibault and M. Yarou, Relaxation of optimal control problems involving time dependent subdifferential operators, Numerical Funct. Anal. Optimization 34 (10) (2013) 1156-1186. doi: 10.1080/01630563.2013.807287
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1159
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.