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1. INTRODUCTION

Our aim in this paper is to study the existence of mild solutions for fractional
semilinear differential inclusions of the form:

(1) ‘D y(t) — Ay(t) € F(t,ye), t € Ji = (tg,tpa], K=0,...,m
(2) Ay’t:tk ka(y(t;;)% k=1,....,m
(3) y(t) = o(t)  te[-r0],

where 0 < oo < 1, F : [0,b] x D — P(E) is a given valued multivalued map,
Iy :E — E, 0=t <t < - <ty <tny1 = b, P(E) is the collection of
all subsets of E, Ayli—, = y(t{) — y(t;,), where y(t) = lim;, o+ y(tx + h) and
y(t,) = limy,_,o- y(tx + h) represent the right and left limits of y(t) at t = ty,
D = {¢ : [-r,0] — E,® continuous everywhere except for a finite number of
points at which ¥ (s~) and v¢(s™) exist and ¥(s™) = ¥ (s)}, ¢ € D, A: D(A) C
E — E is the generator of an a—resolvent operator function (a«—ROF for short)
S. For any continuous function y defined on [—r,b]\{t1,%2,...,tn} and any
t € J :=10,b], we denote by y; the element of D defined by

y(0) =yt +0), 6|0

Here y;(-) represents the history of the state from ¢ — r, up to the present time
t. We assume as usual in the theory of impulsive differential equations that the
solution of (1)—(3) is such that at the point of discontinuity t; satisfies y(tx) =
y(ty)-

Fractional differential equations have recently been proved to be valuable
tools in the modeling of many phenomena in various fields of science and engi-
neering ([4, 14, 20, 22]). There has been a significant development in ordinary
and partial fractional differential equations in recent years; see the monographs
of Abbas et al. [1], Kilbas et al. [15], Lakshmikantham et al. [16], Miller and
Ross [19], Podlubny [20], Samko et al. [21], and the papers by Agarwal et al.
[2], Anguraj et al. [3], Belmekki et al. [6], Benchohra et al. [5, 7, 8] and the
references therein.

The Cauchy problem for abstract differential equations involving Riemann-
Liouville fractional integral have been considered by several author; see for in-
stance, Cuevas and De Souza [11, 12], Benchohra et al. [9] and the reference
therein. To our knowledge, there are very few results for impulsive fractional
differential inclusions. The results of the present paper extend and complement
those obtained in the absence of the impulse functions I.



IMPULSIVE SEMILINEAR FRACTIONAL DIFFERENTIAL INCLUSIONS 151

This paper is organized as follow, in Section 2 we introduce some preliminaries
that will be used in the sequel, in Section 3 we give a new definition to the mild
solution of problem (1)—(3) and we establish our existence result.

2. PRELIMINARIES

In this section, we introduce notation, definitions, and preliminary facts which
are used throughout this paper.
C[J, E] is the Banach space of all continuous functions from J into £ with
the norm
[ull = sup{[u(t)| : t € J}

L'[J, E] denotes the Banach space of measurable functions u : J — E which are
Bochner integrable normed by

b
lull s = / () dt.

Let L*°(J,R) be the Banach space of measurable functions u : J — R which are
essentially bounded, equipped with the norm

|lyllpee = inf{c > 0: Ju(t)| < ¢, a.e. t € J}.

Let (X, |-|) be a normed space. Denote by Pei(X), Pp(X), Pep(X), Pe(X), Pero(X),
Pepc(X) the set {Y € P(X)} such that Y is closed, bounded, compact, convex,
closed and convex, compact and convex, respectively. A multivalued function
F: X — P(X) is called convex (closed) valued if F(x) is convex (closed) for
all z € X. F is called bounded valued on bounded set B if F(B) = J .5 F(x)
is bounded in X for all B € Py(X) i.e., supyep{sup{|u| : v € F(z)}} < c0. F is
called upper semi-continuous (u.s.c) on X if for each zy € X the set F'(x¢) is
nonempty closed subset of X and if for each open set N of X containing F'(z),
there exists an open neighborhood Ny of z(p such that F(Ny) € N. In other
words F' is uw.s.c if the set F~1(A4) ={z € X : F(z) C A} is open in X for every
open set A in X. F is called compact if for every M bounded subset of X,
F(M) is relatively compact. Finally F' is called completely continuous if it is
upper semi-continuous and compact on X. The following definitions are used in
the sequel.

Definition. A multivalued map F' : J x D — P(FE) is said to be Carathéodory
if

(i) t— F(t,u) is measurable for each u € D
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(ii) w+ F(t,u) is u.s.c. for almost all ¢t € J.

For each y : [—r,b] — E, define the set of selections of F' by
Spy={ve LY J,E):v(t) € F(t,y) ae. t € J}.
The Riemann-Liouville fractional operators are defined as follows (see [19, 20]).

Definition. The fractional integral operator I¢ of order a > 0 of a continuous
function f(t) is given by

50 = o [ =9 (s

We can write If f(t) = f(t) * o (t) where ¢, (t) = % for t > 0 and ¥4 (t) =0
for t <0 and v, (t) — 0(t) (the delta function) as v — 0 (see [15, 19, 20]).

Definition. The a—th Riemann-Liouville fractional-order derivative of f, is de-
fined by:

DEF) = oy g, (6= 9" s

here n = [a] + 1 and [a] denotes the integer part of .

Definition [15]. For a function f given on the interval [a, b], the Caputo fractional-
order derivative of order « of f, is defined by

1

G DN = oy | (= s

where n = [a] + 1.
Therefore, for 0 < a < 1, The Caputo’s fractional derivative for ¢ € [0,0] is

D0 = ey [ =95

Definition [10]. Let a > 0. A function S, : Ry — B(X) is called an a-resolvent
operator(a-ROF) if the following conditions are satisfied:

(a) Sa(.) is strongly continuous on Ry and S, (0) = I

(b) Sa(s)Sa(t) = Sa(t)Sa(s) for all s,t >0
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(¢) the functional equation

Sa(S)ItaSa(t) - IsaSa(S)Sa(t) = Itasa(t) - IsaSOc(S)

holds for all s,¢ > 0.
The generator A of S, is defined by:

o o Sat)r -z ,
D(A) = {ac €eX: t1_1>r(1)n+ EOR ea:zsts}

and
Sa(t)r — x

=0+ Paqr(t) =€ D(4).

Definition. An o-ROF S, is said to be exponentially bounded if there exist
constants M > 0,w > 0 such that:

[Sa(t)]] < Me®t, >0,
in this case we write A € Co(M,w).

Proposition 1. Let S, be an a-ROF generated by the operator A. The following
assertions hold:

(a) Sa(t)D(A) C D(A) and AS,(t)x = S, (t)Ax for all x € D(A) and t > 0.
(b) Forallz € X, If*So(t)x € D(A) and

Sa(t)r =x + AI}S, (1), t>0.

(¢) x € D(A) and Az =y if and only if

Sa(t)z = o + AI*So(t)z, > 0.

(d) A is closed, densely defined.

Proposition 2. Leta > 0. A € Co(M,w) if and only if (w®, o00) C p(A) and there
exists a stongly continuous function Sy : Ry — B(X) such that ||Sa(t)|| < Me*
and

/ e MS, (H)xdt = A*TR(\Y, A)x A > w
0

for all x € X. Furthermore, S, is the a-ROF generated by the operator A.

For more detail see [18].
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3. MAIN RESULT

In order to define the mild solution to the problem (1-3), we shall consider the
following space

PC = {y 20,0 = E:y € C((tg,tgs1), E); K=0,...,m such that
y(t), y(th) exist with y(ty) = y(ty) k=1,... m}
which is a Banach space with the norm
lyllpo := max{||yplloc : k =0,.,.,.,m}

where yj, is the restriction of y to Jy = [tk, tk+1], £ =0,...,m.
Set
Q={y:[-rb) > E:ye DnNPC}.

Also; we introduce the definition of Caputo’s derivative in each interval (¢, txy1],
k=0,...,m.
1

F(l—a)/ (t—s)"“f'(s)ds.

173

(“Dg f)(t) =
Now, we can define a meaning of the mild solution of problem (1-3).

Definition. A function y € Q is called to be mild solution of (1-3) if y(t) = ¢(t)
for all t € [-7,0], Ayli=, = Ix(y(t,)), k = 1,...,m and there exists v(:) €
LY(J, E), such that v(t) € F(t,y;), a.e t € [0,b], and such that y satisfies the
following integral equation:

( Sa(t)o(0) +/ Sa(t — s)v(s)ds
0
if te [O,tl],

k

Sa(t = ti) [ [ Salti — ti-1)$(0)

k t; =t k—1
+Z/ Soc(t_tk)HSoc(tj—l—l —tj)X
i=1 7 ti-1 j=i
¢
Sa(ti —s)v(s)ds + | St — s)v(s)ds

tg
k

k—1
+ 3 Salt = te) [ [ Saltisr — t)Li(y(t)), it € (th, trpa]-
i=1 j=i
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Let us introduce the following hypotheses:

(H1) assume that A generates a compact a-ROF S, for ¢t > 0 wich is exponen-
tially bounded i.e. There exist constants M > 1,w > 0 such that:

[sa(®)| < Me**, t>0

(H2) F : J x D — Pepev(E) is Carathéodory and there exist p € L*°(J,R) and

a continuous nondecreasing function 1 : [0,00) — (0, 00) such that:

|E(t,u)||p =sup{|v| : v € F(t,u)} < p(t)Y(||ul|sw) forallt e J ue D

with
* d
idu = 0.
Cs (u)

Where
03 = min (01, CQ) .

(H3) The functions I : E — E are continuous and there exists a constant
M* > 0 such that |I(u)] < M* foreachu € E, k=1,...,m.

The nonlinear alternative of Leray-Schauder type is used to investigate the exis-
tence of solutions of problem (1-3). We need to use the following result due to
Lasota and Opial [17].

Lemma 3. Let E be a Banach space, and F be an L'-Carathéodory multivalued
map with compact convex values, and let T : LY(J,E) — C(J,E) be a linear
continuous mapping. Then the operator

IF'oSp:C(J,E) = P cv(C(J,E))

is a closed graph operator in C(J,E) x C(J, E).

Theorem 4. Under assumptions (H1)—(H3) the IVP (1-3) has at least one mild
solution on [—r,b.

Proof. Transform the problem (1-3) into a fixed point problem. Consider the
multivalued operator: N : Q — P(Q) defined by N(y) = {h € Q} such that
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( &(), if te[-r0],
Sa(t)p(0) + /Ot Sa(t — s)v(s)ds if tel0,t1],

Sa(t = te) [ [ Sa(ti — ti—1)$(0)

k t =t k—1
+Z/ Sa(t = tx) [] Saltivr —t))
i=17ti-1 j=i
t
X So(ti —s)v(s)ds+ [ Sa(t — s)v(s)ds

tg
k k—1
+ 3 Salt —tg) [ ] Saltisr — t)Li(y(t)), it t € (th, trya].
L =1 =i

Clearly, the fixed points of N are solutions to (1-3).
We shall show that /N satisfies the assumptions of the nonlinear alternative
of Leray-Schauder type [13]. The proof will be given in several steps.

Step 1. N(y) is convex for each y € ).
Let hi,ha € N(y), then there exist vi,v2 € Sp,y such that for each t € J

( t
Su(t)6(0) + / Su(t — s)ui(s)ds i ¢ e [0,t],
0
k
Sa(t = t) [ Sa(ti — ti—1)$(0)
k t =l k—1
hy = +Z/ Sult — ta) T Saltysr — 1) P
i=17ti-1 j=i
t
X Sa(ti — s)vi(s)ds + [ Sa(t — s)vi(s)ds
k k—1 e
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Let 0 < o < 1. Then for each t € J we have:

( /OtSa(t—s) ovi(s) — (1 — o)wa ds if £ € [0, 41],

k t; k—1
Z/ Sa(t —tx) H Sa(tj+1 —t5)
i=1 /ti-1 j=i

X Sa(ti — s) [ovi(s) — (1 — o)va]ds

(ch1 — (1 —o0)ha) (t) =

+/ Sa(t — S) [U’Ul(S) — (1 — J)Ug] ds if te (tk,tk+1].

ty

Since Sp, is convex (because F' has convex values), we have ohy — (1 — 0)hy €
N(y)-

Step 2. N maps bounded sets into bounded sets in €.

Let By = {y € Q: ||yl < ¢}, ¢ > 0 a bounded set in Q. It is equivalent to
show that there exists a positive constant [ such that for each y € B, we have
IN (9] <.

Let y € By, then for each h € N(y), there exists v € Sg, such that:

o(t), if te[-r0]

Sa(t)p(0) + /Ot Sa(t — s)v(s)ds if t € [0,t1],

k k—1
+ 3 Salt —tx) [ [ Saltisr — ) Li(y(t7)), i ¢ € (tr,tpa]-
i—1 =i

\
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Then, for t € J

h(8)] <

which gives

h(t)] <

t
Me“"[|¢(0)]] + Me™ / e “*lv(s)llds
0

k
M e (t—tr) H Mew(ti*ti—l)nqs(o)n

=1
k t k—1
4 Z Mew(t—tk) H Mew(tj+1—tj)
i=1 7 ti—1 j=i

t
x Me<=9)]|u(s)||ds + / Me“=u(s)||ds
tk

k-1 k-1
+ Z Met—t) H Me# G =t | I (y ()|,

i=1 j=i

t
Me<]|p(0)]] + Me=145(q) /0 e p(s)ds

=1
MFet)]|6(0)|

k ti
" Z Mk_i+2€w(2tk—ti1)¢(q>/ e‘”(_s)p(s)ds

i=1 ti—1

t
+Mew(t’“+1)1/1(q)/ e =)p(s)ds

ty
k
4 Z Mk7i+1 M*ew(tk+17ti,1)
=1

Step 3. N maps bounded sets into equicontinuous sets of §2.

H. HAMMOUCHE, K. GUERBATI, M. BENCHOHRA AND N. ABADA

if te [O,tl],

if te (tk;tk+1]7

if te [O,tl],

if te (tk,tk+1].

Let 71, 2 € J with 71 < 7, let B,y be a bounded set in 2 as in Step 2, and let
y € Bgand h € N(y). Then, if e > 0 with e <7 <
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|h(72) —

and

|h(m2) — h(11)| <

It gives

|h(T2) —

h(n)| <

(118a(72) = Sa(m)lllI6(0)]

T /0 82 — 5) = Salm — 8)[[0(s)]ds

M) <4 4 / " 11Su(rs = 8) = Sa(r — 8)[[o(s)|ds

+ [ " 1Salm2 — )llo(s)lds

if 7, € [O,tl],

1Sa(T2 = tk) = Sa(m1 — ti)|| f[lsa(tz‘ —ti—1)[|¢(0) |
+Z/ 1Sa (T2 — tr) — Sa(m1 — t2)
X HHS tivr — ) [1Salti — s)|[lv(s)|ds
+ ;2 So(7s — )o(s)ds — tﬁ (1 — )o(s)ds
+ z; [Sa(T2 = ti) = Sa(m1 — ti)]| kl_[l [Sa(tjr1 —t5)ll
= p

X iy )

if 71,72 € (tg, trsa]-

150(m2) — Sa(r)[16(0)]
T (q) /0 S — 5) = Salr1 — ) [p(s)ds

+ot) [ " 1Sa(r2 = 8) = Sa(m — 8)[lp(s)ds

1—€

+ Me‘”?w(q)/ i e “*p(s)ds

T1

if T, Ty € [O,tl],
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and
k
[S(r — t8) = Salr — 1)l [T Salts — 1) 6(0)]
=1
kot
#3 [ ISalra = t) = Sa(n - )]
S
« TT1Sattiss = I1at = )l o(s)lds
) — b < 4 YD [ 188 = S = )

+0@) [ Sa(r = 5) = Salr = 9)pls)ds

+Mw(q)e°”2/ e “*p(s)ds

T1

k k—1
+ 3 11Sal(m2 = ti) = Salmi = te) | [T 18a(tjr1 — 1))
i=1 j=i
< Ly )],
L if 7,72 € (tg, trt1].

As 11 — 7 and € becomes sufficiently small, the right-hand side of the above
inequality tends to zero, since S, is a strongly continuous operator and the com-
pactness of S, for ¢ > 0 implies the continuity in the uniform operator topology.
This proves the equicontinuity for the case where t #£ t;,¢1 = 1,...,m + 1. It re-
mains to examine the equicontinuity at ¢ = ¢;. First we prove the equicontinuity
at t = t;. We have for some y € Bg, there exists v € Sg, such that for each
teJ:

if te [0, tl],

h(t) = Sa(t)$(0) +/0 Sa(t — s)v(s)ds
if te (tkatk+1]

k
h(t) = Sa(t — tg) [ [ Salti — ti-1)¢(0)

=1

k t; k—1
+ Z/ Sa(t = ti) [ Satis1 — t;)Salti — s)v(s)ds
i=1 V-1 j=i

¢ k k—1
+ / Sa(t — s)v(s)ds + Z Sa(t —tx) H Saltj1 — ;) Liy(t;)).
i i=1 Jj=i
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Fix ¢; > 0 such that {tx,k # [} N[t; — d1,t + 1] = 0. For 0 < p < 01, we have
[Sa(ts = p) — Sa(t)[¢(0)]]

It — p) — h(t)| < { + (@) /0 U 1Salti— p— ) — Salty — 5)Ipls)ds

- MewtldJ(Q)/ e " p(s)ds if & —pti€[0.t1],
t_p

and
\\Sa(tz —p—t) = Salti — t1)||
HHS i — ti1)[[[0(0)]]

T b(g) Z / 1Sa(t = p— t4) = Salts — t4)]
g HHS (ti41 — )l1Salti — 5)lIp(s)/ds

|h(tr = p) = h(t)] < ¢+ y(q) /tl_p [Sa(ti — p—s) — Sa(t; — s)|p(s)ds

x HHS tivr =t Ly

if ¢ —p,ti € (tg, thsa].

\

They tends to zero as p — 0.
Define

ho(t) = h(t), i te[0,4]

and
~ h<t)7 if t € (tiati—i-l]
h(th), if t=t,.
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Next, we prove equicontinuity at ¢ = t;. Fix o > 0 such that {tx, k # i} N
[t; — 82, t; + 2] = 0. First we study the equicontinuity at ¢t = 0F.
If t € [0,t1] we have

~ h’(t)v if te (Oatl]
ha(t) = { _
#(0), if t=0.

For 0 < p < 62, we have
. . P
|hi(p) = h1(0)] < [|@(0)[[1Salp) — I + 6‘“%((1)/0 e “p(s)ds.

The right hand-side tends to zero as p — 0 (I is the unitary operator).
Now we study the equicontinuity at ¢ = t;r, i > 1. For 0 < p < d2, we have

|A(ti + p) = h(t)] < [1Sa(p) = I T I1Sa(t; = t;-) 110(0)]
j=1

+o@ Y [ ISt -1
=1

ti—1

i—1
< JT1ISa(tjs1 = t) I Salts = $)ll|p(s)|ds
j=l
ti+p
+ M@b(q)e”(ti+p)/ e “*p(s)ds
t;
+ > 11Salp) — I
=1

1—1
< T ISa(tjzr — )LL)
7=l

The right hand-side tends to zero as p — 0.

The equicontinuity for the cases 71 < 70 < 0 and 71 < 0 < 75 follows from the
uniform continuity of ¢ on the interval [—r,0]. As a consequence of Steps 1 and
2 together with Arzela-Ascoli theorem it suffices to show that N maps B into a
precompact set in E.

Let 0 < t* < b be fixed and let € be a real number satisfying 0 < € < t*. For
y € B, we define
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Sa(t*)o(0) + /Ot h Sa(t* —€e—s)v(s)ds if t* € [0,t],

k
t* — ) [[ Salti — tie1)6(0)
=1

k

t; -
he(t*) = +Z/t Sa(t* —t1) HS (tiy1 — t;)%

Sa(ti — s)v(s)ds + / ~ Sa(t* —e—s)v(s)ds

23
k k—1
+ 3 Salt = t) [ Saltisr — ) Li(y(t;), if t* € (it
i=1 =i

where v € Sg,. Since S, (t*) is a compact operator, the set
HE(t") = {h(t") - he € N(y)}

is precompact in E for every €, 0 < e < t*. Moreover, for every h € N(y) we
have

¥(q) /0 T Salt?) = Salt” — )llp(s)ds

+ M?ﬁ(q)e‘“*/ e “*p(s)ds if t*€[0,t],

t*—e

BE) =Rt <9 / T 8alt) = Salt* — lps)ds

tr o

+ Map(q)evt” / e “*p(s)ds

t*—e

if t* € (t, tes]-

Therefore, there are precompact sets arbitrarily close to the set H(t*) = {h(t*) :
h € N(y)}. Hence the set H(t*) = {h(t*) : h € N(B)} is precompact in E. Hence
the operator IV is completely continuous.

Step 4. N has a closed graph.

Let y — Yu, hyn € N(yn), and h, — h,. We shall show that h, € N(y.).
hn € N(yn) means that there exists v, € Sg,, such that:
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o(t), it te[-r0],

S (1)6(0) + /0 "t s)on(s)ds it ¢ e 0,4,
k

Sa(t = t) [ [ Sa(ti — ti-1)¢(0)

k t =t k—1
+Z/ Sa(t = ti) [ [ Saltivr —t))
i=17ti-1 j=i

X Sa(t; — s)vn(s)ds + t Sa(t — s)vn(s)ds

tg
k

k-1
+ > Salt — ) H Sa(tjr1 — ) Li(y(t;)), if ¢ € (ks tit]

L =1

We have to prove that there exists v, € Sg,, such that for each ¢t € J we have
( t
Sa(t)p(0) —I—/ Sa(t — s)v*(s)ds if te[0,t],
0
k

Sa(t = tx) [ ] Salt: = ti-1)9(0)

i=1

k t k—1
net) =4 +30 [ sat =t [ St —1)
i=1 7 tim1 j=i
t
X Salti —s)v*(s)ds+ [ Sa(t — s)v*(s)ds

2%
k k—1
+ Z Sa(t = ty) H Sa(tjr1 —t)Li(y(t; ), if t€ (ty, tyta]
i=1 j=i

Consider the linear and continuous operator £ : L'(J,R) — D defined by
t
/ Sa(t — s)v(s)ds if tel0,t1],
0

k t; k—1
IOIOERSS / Sult — ta) T Saltysr — 1)
i=1 7 ti-1 j=i

¢
X Sa(ti — s)v(s)ds+ | Sa(t —s)v(s)ds if t € (tg,tgt1]-
tk
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We have for ¢ € [0, 1]
[(hn(t) = Sa(t)$(0)) = (ha(t) = Sa(t)$(0))] = [hn(t) — ha(t)]

< |lhn = hilloo = 0, as n+— oc.

From Lemma 3 it follows that £ o Sg is a closed graph operator and from the
definition of £ one has

hn(t) — Sa(t)p(0) € Lo Spy,.
As y, — y« and h,, — hy, there is a v, € Sy, such that
t
hs(t) — Sa(t)p(0) = / Sa(t — s)vi(s)ds.
0

If t € (tg, tpy1]

|(Ba(t) = Salt = tx) HSa )$(0)
k k— 1
=Y Salt —tr) ] Saltisr — t) Ly(t)))
i=1 j=i
k
= () = Sa(t = t1) [ ] Salti = ti-1)$(0)
=1

k k—1
=D Salt —te) [ | Saltiry — t;)Li(y(t;)]
i=1 j=i

— |hn(t) = ha(t)] < [Jhn — halloo = 0, as n s oo.

From Lemma 3 it follows that £ o Sg is a closed graph operator and from the
definition of £ one has

k
hn(t) = Sa(t — tg) [ [ Salts — ti—1)¢(0)
=1
k k—1
=Y Salt = t1) [ [ Saltits — ) Li(y(t;)) € Lo Sky,.
i=1 Jj=1i

As y, — y« and hy, — h,, there is a v, € Sg,, such that
k
ha(t) = Sa(t = te) [ | Salti — ti-1)$(0)
=1
1

k k—
—Z (t —tg) HSa tiv1 —t;) Li(y(t;))
=1 j=i
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k t k—1
ZZ/ Sa(t_tk)HSa(tj+l —t5)
i=1 /ti-1 j=i
t
X Salti —s)v*(s)ds+ [ Sa(t — s)v*(s)ds.

ty

Hence the multivalued operator NN is upper semi-continuous.

Step 5. A priori bounds on solutions.

Now, it remains to show that the set
E={ye PC(J,E):ye ANy, 0< <1}

is bounded.
Let y € £ be any element. Then there exists v € Sg,, such that

Sa(t)p(0) + | Sa(t — s)v(s)ds, if te][0,t1],

k-1

vy =4 +3 [ Satt =t [T Sults =)

i=1 j=i
t
X Sa(t; — s)v(s)ds + | Sa(t —s)v(s)ds
ti
k

k—1
+ 3 Salt =) [ ] Saltisr — t)Lily(E;),  if t € (tg, thra]-
i=1 j=i

Then from (H1), (H2), (H3) we obtain

t

Mt $(0) ] + M / e p(s)(llyslids, if t € [0,t],
0

MEHLE | b(0) |

t;

k
#3o et [ sy s

Hy(t)” < i=1 . ti—1
20t [ esps) s ds
12
+ MYy MR ) if te (tyter).

=1
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Consider the function p(t) defined by

p(t) =sup{ly(s)| - r<s<t}, 0<t<D.

Then, we have ||ys|| < wp(t) for all t € J. Let t* € J be such that u(t) = |y(t*)].

Then, by the previous inequality we have for ¢ € J

t
Me=b[$(0)]] + Me=» /0 e p(syp(u(s))ds if ¢ [0,t],
MFFL | 6(0) |

k A t;
< | e / e p(s) () ds
> i=1 i—1

M / e p(s)b(u(s))ds
i k

i=1
Set

C1 = Me*|[$(0)],

m . ti
Cy = M™ e[ 6(0)]| + ZMm_ZHewb/t e “p(s)Y(u(s))ds
i=1 i1
+ M* Z MmfiJrlew(bfti).
=1

It follows that

t
Ch —G—Me“’b/ e “p(s)(u(s))ds, if te[0,t1],
0

S Ry / e~ p(s)1(1(s))ds

173
if t€ (ty, tyta]

Let us note the right hand-side of the above inequality by v(t) i.e,

¢
C’l—l—Mewb/ e “p(s)(u(s))ds, if te[0,t1],
0

_ t
U =Y ¢y 4 aest / e~ p(s))(u(s))ds
k if t€ (trtral

+ MY M) if ¢ e (ththe)
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Then, we have
wu(t) <w(t) forall teJ

and
’U(O) :Cl, ’U(tk) :CQ, k:L...,m.

Differentiating both sides of the above equality, we obtain
V' (t) = Me*CDp)(u(t))ds, ae. te .
Using the nondecreasing character of the function ¢, we have
V() < Me*Cp(t)h(v(t)), ae. te

that is

200 < MO Vp(t), ae. te

Integrating from 0 to ¢ if ¢ € [0,¢1] and from ¢ to t if ¢ € (tg,txr1] we get

t 1)/(3) wh te_ws e ,
/0 w(v(s))ds < Me /0 p(s)ds, if t€[0,1],

and

" () ds < Me*? /t e “p(s)ds, if t€ (tg,trr1], k=1 m
< ) R
te Y(v(s)) th ’

By a change of variables we obtain

t ’U/(S)

b, Y(v(s))

t
dsﬁCl/ p(s)ds, k=0,...m.
0

By a change of variables again we get
v(t) d t 0 g
/ e < Me‘”b/ e “p(s)ds < / —u,
(o) Y(u) 0 o5 Y(u)

C3 = min(Cq, Cy).

where
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Hence, there exists a constant K such that

w(t) <v(t) <K forall teJ

Now from the definition of u it follows that

lylle = sup ly(t)] < p(b) < K forall ye&.
te[—r,b

This shows that the set £ is bounded. As a consequence of Theorem of Leray-
Schauder, the multivalued operator N has a fixed point y on the interval [—r, b]
which is a mild solution of problem (1-3). ]

Acknowledgements

The authors are grateful to the referee for the helpful remarks.

1]

[10]

REFERENCES

S. Abbas, M. Benchohra and G.M. N’Guérékata, Topics in Fractional Differential
Equations, Springer, New York, 2012. doi:10.1007/978-1-4614-4036-9

R.P. Agarwal, M. Benchohra and S. Hamani, Boundary value problems for fractional
differential equations, Adv. Stud. Contemp. Math. 16 (2008), 181-196.

A. Anguraj, P. Karthikeyan and G.M. N’Guérékata, Nonlocal Cauchy problem for
some fractional abstract differential equations in Banach spaces, Commun. Math.
Anal. 6 (2009).

D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calculus Models
and Numerical Methods, World Scientific Publishing, New York, 2012.

M. Belmekki and M. Benchohra, Ezistence results for fractional order semilinear
functional differential equations, Proc. A. Razmadze Math. Inst. 146 (2008), 9-20.

M. Belmekki, M. Benchohra and L. Gérniewicz, Semilinear functional differential
equations with fractional order and infinite delay, Fixed Point Th. 9 (2008), 423-439.

M. Benchohra, J.R. Graef and S. Hamani, Ezistence results for boundary value
problems with nonlinear fractional differential equations, Appl. Anal. 87 (2008),
851-863. doi:10.1080,/00036810802307579

M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab, FExistence results for
fractional order functional differential equations with infinite delay, J. Math. Anal.
Appl. 338 (2008), 1340-1350. doi:10.1016/j.jmaa.2007.06.021

M. Benchohra, S. Litimein and G. N’Guérékata, On fractional integro-differential
inclusions with state-dependent delay in Banach spaces, Appl. Anal. 92 (2013),
335-350. doi:10.1080,/00036811.2011.616496

C. Chen and M. Li, On fractional resolvent operator functions Semigroup Forum.
80 (2010), 121-142. doi:10.1007/s00233-009-9184-7


http://dx.doi.org/10.1007/978-1-4614-4036-9
http://dx.doi.org/10.1080/00036810802307579
http://dx.doi.org/10.1016/j.jmaa.2007.06.021
http://dx.doi.org/10.1080/00036811.2011.616496
http://dx.doi.org/10.1007/s00233-009-9184-7

170 H. HAMMOUCHE, K. GUERBATI, M. BENCHOHRA AND N. ABADA

[11] C-Cuevas and J-C. de Souza, S-asymptotically W-periodic solutions of semilin-
ear fractional integro-differential equations, Appl. Math. Lett. 22 (2009), 865-870.
doi:10.1016/j.aml.2008.07.013

[12] C-Cuevas and J-C. de Souza, Ezistence of S-asymptotically W-periodic solutions of
fractional order functional integro-differential equations with infinite delay, Nonlin-
ear Anal. 72 (2010), 1680-1689. doi:10.1016/j.na.2009.09.007

[13] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
doi:10.1007/978-0-387-21593-8

[14] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore,
2000.

[15] A.A. Kilbas, Hari M. Srivastava and Juan J. Trujillo, Theory and Applications of
Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier
Science B.V., Amsterdam, 2006.

[16] V. Lakshmikantham, S. Leela and J. Vasundhara, Theory of Fractional Dynamic
Systems, Cambridge Academic Publishers, Cambridge, 2009.

[17] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the the-
ory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom.
Phys. 13 (1965), 781-786.

[18] M. Liand Q. Zheng, On spectral inclusions and approximations of a—times resolvent
families, Semigroup Forum. 69 (2004), 356-368.

[19] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential
Equations, John Wiley, New York, 1993.

[20] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[21] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives.
Theory and Applications, Gordon and Breach, Yverdon, 1993.

[22] V.E. Tarasov, Fractional Dynamics. Applications of Fractional Calculus to Dynamics
of Particles, Fields and Media, Springer, Heidelberg, 2010.

Received 21 May 2013


http://dx.doi.org/10.1016/j.aml.2008.07.013
http://dx.doi.org/10.1016/j.na.2009.09.007
http://dx.doi.org/10.1007/978-0-387-21593-8

