ArticleOriginal scientific text

Title

A note on variational-type inequalities for (η,θ,δ)-pseudomonotone-type set-valued mappings in nonreflexive Banach spaces

Authors 1

Affiliations

  1. Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 90-924 Łódź, Poland

Abstract

In this paper the existence of solutions to variational-type inequalities problems for (η,θ,δ)- pseudomonotone-type set-valued mappings in nonreflexive Banach spaces introduced in [4] is considered. Presented theorem does not require a compact set-valued mapping, but requires a weaker condition 'locally bounded' for the mapping.

Keywords

variational-type inequalities, (η,θ,δ)-pseudomonotone-type, nonreflexive Banach spaces

Bibliography

  1. S.-S. Chang, B.-S. Lee and Y.-Q. Chen, Variational inequalities for monotone operators in nonreflexive Banach spaces, Appl. Math. Lett. 8 (6) (1995), 29-34. doi: 10.1016/0893-9659(95)00081-Z
  2. K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305-310. doi: 10.1007/BF01353421
  3. B.-S. Lee and G.-M. Lee, Variational inequalities for (η,θ)-pseudomonotone operators in nonreflexive Banach spaces, Appl. Math. Lett. 12 (5) (1999), 13-17. doi: 10.1016/S0893-9659(99)00050-6
  4. B.-S. Lee, G.-M. Lee and S.-J. Lee, Variational-type inequalities for (η,θ,δ)-pseudomonotone-type set-valued mappings in nonreflexive Banach spaces, Appl. Math. Lett. 15 (1) (2002), 109-114. doi: 10.1016/S0893-9659(01)00101-X
  5. B.-S. Lee and J.-D. Noh, Minty's lemma for (θ,η)-pseudomonotone-type set-valued mappings and applications, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 9 (1) (2002), 47-55.
  6. R.U. Verma, Variational inequalities involving strongly pseudomonotone hemicontinuous mappings in nonreflexive Banach spaces, Appl. Math. Lett. 11 (2) (1998), 41-43. doi: 10.1016/S0893-9659(98)00008-1
  7. P.J. Watson, Variational inequalities in nonreflexive Banach spaces, Appl. Math. Lett. 10 (2) (1997), 45-48. doi: 10.1016/S0893-9659(97)00009-8
Pages:
41-45
Main language of publication
English
Received
2012-07-16
Published
2013
Exact and natural sciences