ArticleOriginal scientific text

Title

Uniformly bounded Nemytskij operators generated by set-valued functions between generalized Hölder function spaces

Authors 1, 2, 3

Affiliations

  1. Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Prof. Z. Szafrana 4a, 65-516 Zielona Góra, Poland
  2. Institute of Mathematics, Silesian University, Bankowa 14, 40-007 Katowice, Poland
  3. Institute of Mathematics and Computer Science, Jan Dlugosz University, 42-200 Częstochowa, Poland

Abstract

We prove that the generator of any uniformly bounded set-valued Nemytskij operator acting between generalized Hölder function metric spaces, with nonempty compact and convex values is an affine function with respect to the function variable.

Keywords

Nemytskij composition operator, uniformly bounded operator, set-valued function, generalized Hölder function metric space

Bibliography

  1. J. Appell and P.P. Zabrejko, Nonlinear Superposition Operators, Cambridge University Press, 1990. doi:10.1017/CBO9780511897450
  2. A. Azócar, J.A. Guerrero, J. Matkowski and N. Merentes, Uniformly continuous set-valued composition operators in the space of continuous functions of bounded variation in the sense of Wiener, Opuscula Math. 30 (2010), 53-60.
  3. V.V. Chistyakov, Lipschitzian superposition operators between spaces of functions of bounded generalized variation with weight, J. Appl. Anal. 6 (2000), 173-186. doi:10.1515/JAA.2000.173
  4. J.A. Guerrero, H. Leiva, J. Matkowski and N. Merentes, Uniformly continuous composition operators in the space of bounded φ-variation functions, Nonlinear Anal. 72 (2010), 3119-3123. doi:10.1016/j.na.2009.11.051
  5. J.J. Ludew, On Lipschitzian operators of substitution generated by set-valued functions, Opuscula Math. 27 (1) (2007), 13-24.
  6. J. Matkowski, Functional equations and Nemytskij operators, Funkc. Ekvacioj Ser. Int. 25 (1982), 127-132.
  7. J. Matkowski, Lipschitzian composition operators in some function spaces, Nonlin. Anal. Theory Meth. Appl. 30 (2) (1997), 719-726. doi:10.1016/S0362-546X(96)00287-8
  8. J. Matkowski, Remarks on Lipschitzian mappings and some fixed point theorems, Banach J. Math. Anal. 2 (2007), 237-244 (electronic), www.math-analysis.org.
  9. J. Matkowski, Uniformly continuous superposition operators in the spaces of differentiable functions and absolutely continuous functions, Internat. Ser. Numer. Math. 157 (2008), 155-155.
  10. J. Matkowski, Uniformly continuous superposition operators in the space of Hölder functions, J. Math. Anal. Appl. 359 (2009), 56-61. doi:10.1016/j.jmaa.2009.05.020
  11. J. Matkowski, Uniformly continuous superposition operators in the spaces of bounded variation functions, Math. Nachr. 283 (7) (2010), 1060-1064.
  12. J. Matkowski, Uniformly bounded composition operators between general Lipschitz function normed spaces, (accepted), Top. Math. Nonl. Anal.
  13. J. Matkowski and J. Miś, On a charakterization of Lipschitzian operators of substitution in the space BV[a,b], Math. Nachr. 117 (1984), 155-159. doi:10.1002/mana.3211170111
  14. K. Nikodem, K-convex and K-concave set-valued functions, Zeszyty Naukowe Politechniki Łódzkiej, Mat. 559, Rozprawy Naukowe 114, 1989.
  15. A. Smajdor and W. Smajdor, Jensen equation and Nemytskii operator for set-valued functions, Rad. Math. 5 (1989), 311-320.
  16. W. Smajdor, Note on Jensen and Pexider functional equations, Demonstratio Math. 32 (1999), 363-376.
Pages:
183-198
Main language of publication
English
Received
2011-05-30
Published
2011
Exact and natural sciences